Electrochemical Biosensors Based on Convectively Assembled Colloidal Crystals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Instruments
2.2. Preparation of Nanochannel-Based Sensing Electrode with Polystyrene Spheres
2.3. Fabrication and Surface Modification of the Polystyrene Sphere-Based Biosensor
2.4. Electrode Characterisation
2.5. Electrochemical Detection
3. Results and Discussion
3.1. Characterisation of Silica Deposition on Polystyrene Spheres
3.2. Stepwise Characterisation of the Polystyrene Sphere-Based Biosensor
3.3. Evaluation of Polystyrene Sphere-Based Biosensor Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Penack, O.; Rempf, P.; Eisenblätter, M.; Stroux, A.; Wagner, J.; Thiel, E.; Blau, I.W. Bloodstream infections in neutropenic patients: Early detection of pathogens and directed antimicrobial therapy due to surveillance blood cultures. Ann. Oncol. 2007, 18, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Pinu, F.R. Early detection of food pathogens and food spoilage microorganisms: Application of metabolomics. Trends Food Sci. Technol. 2016, 54, 213–215. [Google Scholar] [CrossRef]
- Griesche, C.; Baeumner, A.J. Biosensors to support sustainable agriculture and food safety. TrAC Trends Anal. Chem. 2020, 128, 115906. [Google Scholar] [CrossRef]
- Lesimple, A.; Jasim, S.Y.; Johnson, D.J.; Hilal, N. The role of wastewater treatment plants as tools for SARS-CoV-2 early detection and removal. J. Water Process Eng. 2020, 38, 101544. [Google Scholar] [CrossRef]
- Reta, N.; Saint, C.P.; Michelmore, A.; Prieto-Simon, B.; Voelcker, N.H. Nanostructured Electrochemical Biosensors for Label-Free Detection of Water- and Food-Borne Pathogens. ACS Appl. Mater. Interfaces 2018, 10, 6055–6072. [Google Scholar] [CrossRef]
- Toze, S. PCR and the detection of microbial pathogens in water and wastewater. Water Res. 1999, 33, 3545–3556. [Google Scholar] [CrossRef]
- Chai, Y.; Tian, D.; Wang, W.; Cui, H. A novel electrochemiluminescence strategy for ultrasensitive DNA assay using luminol functionalized gold nanoparticles multi-labeling and amplification of gold nanoparticles and biotin–streptavidin system. Chem. Commun. 2010, 46, 7560–7562. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.; Ibrahim, F. Current Optical Biosensors in Clinical Practice. In Novel Polymeric Biochips for Enhanced Detection of Infectious Diseases; Springer: Singapore, 2016; pp. 1–12. [Google Scholar]
- Reta, N.; Michelmore, A.; Saint, C.; Prieto-Simón, B.; Voelcker, N.H. Porous silicon membrane-modified electrodes for label-free voltammetric detection of MS2 bacteriophage. Biosens. Bioelectron. 2016, 80, 47–53. [Google Scholar] [CrossRef]
- Reverté, L.; Prieto-Simón, B.; Campàs, M. New advances in electrochemical biosensors for the detection of toxins: Nanomaterials, magnetic beads and microfluidics systems. A review. Anal. Chim. Acta 2016, 908, 8–21. [Google Scholar] [CrossRef]
- Negahdary, M. Aptamers in nanostructure-based electrochemical biosensors for cardiac biomarkers and cancer biomarkers: A review. Biosens. Bioelectron. 2020, 152, 112018. [Google Scholar] [CrossRef]
- Zaidi, S.A.; Shin, J.H. Recent developments in nanostructure based electrochemical glucose sensors. Talanta 2016, 149, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Rajeev, G.; Prieto Simon, B.; Marsal, L.F.; Voelcker, N.H. Advances in Nanoporous Anodic Alumina-Based Biosensors to Detect Biomarkers of Clinical Significance: A Review. Adv. Healthc. Mater. 2018, 7, 1700904. [Google Scholar] [CrossRef] [PubMed]
- Reta, N.; Michelmore, A.; Saint, C.P.; Prieto-Simon, B.; Voelcker, N.H. Label-Free Bacterial Toxin Detection in Water Supplies Using Porous Silicon Nanochannel Sensors. ACS Sens. 2019, 4, 1515–1523. [Google Scholar] [CrossRef] [PubMed]
- De la Escosura-Muñiz, A.; Espinoza-Castañeda, M.; Chamorro-García, A.; Rodríguez-Hernández, C.J.; De Torres, C.; Merkoçi, A. In situ monitoring of PTHLH secretion in neuroblastoma cells cultured onto nanoporous membranes. Biosens. Bioelectron. 2018, 107, 62–68. [Google Scholar] [CrossRef] [PubMed]
- De la Escosura-Muñiz, A.; Chunglok, W.; Surareungchai, W.; Merkoçi, A. Nanochannels for diagnostic of thrombin-related diseases in human blood. Biosens. Bioelectron. 2013, 40, 24–31. [Google Scholar] [CrossRef] [Green Version]
- De la Escosura-Muñiz, A.; Merkoçi, A. A Nanochannel/Nanoparticle-Based Filtering and Sensing Platform for Direct Detection of a Cancer Biomarker in Blood. Small 2011, 7, 675–682. [Google Scholar] [CrossRef]
- Rajeev, G.; Melville, E.; Cowin, A.J.; Prieto-Simon, B.; Voelcker, N.H. Porous Alumina Membrane-Based Electrochemical Biosensor for Protein Biomarker Detection in Chronic Wounds. Front. Chem. 2020, 8, 155. [Google Scholar] [CrossRef] [Green Version]
- Easton, C.D.; Kinnear, C.; McArthur, S.L.; Gengenbach, T.R. Practical guides for x-ray photoelectron spectroscopy: Analysis of polymers. J. Vac. Sci. Technol. A 2020, 38, 023207. [Google Scholar] [CrossRef]
- Yang, R.; He, Q.; Wang, C.; Sun, S. Surface modification of polystyrene microsphere using ozone treatment. Ferroelectrics 2018, 530, 130–135. [Google Scholar] [CrossRef]
- Yusilawati, A.N.; Maizirwan, M.; Sopyan, I.; Hamzah, M.S.; Ng, K.H.; Wong, C.S. Surface Modification of Polystyrene Beads by UV/Ozone Treatment. Adv. Mater. Res. 2011, 264–265, 1532–1537. [Google Scholar] [CrossRef]
- Espinoza-Castañeda, M.; Escosura-Muñiz, A.d.l.; Chamorro, A.; Torres, C.d.; Merkoçi, A. Nanochannel array device operating through Prussian blue nanoparticles for sensitive label-free immunodetection of a cancer biomarker. Biosens. Bioelectron. 2015, 67, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Escosura-Muñiz, A.; Mekoçi, A. Nanoparticle based enhancement of electrochemical DNA hybridization signal using nanoporous electrodes. Chem. Commun. 2010, 46, 9007–9009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aslan, K.; Luhrs, C.C.; Pérez-Luna, V.H. Controlled and Reversible Aggregation of Biotinylated Gold Nanoparticles with Streptavidin. J. Phys. Chem. B 2004, 108, 15631–15639. [Google Scholar] [CrossRef]
- Ali, M.; Schiedt, B.; Neumann, R.; Ensinger, W. Biosensing with Functionalized Single Asymmetric Polymer Nanochannels. Macromol. Biosci. 2010, 10, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Prevo, B.G.; Kuncicky, D.M.; Velev, O.D. Engineered deposition of coatings from nano- and micro-particles: A brief review of convective assembly at high volume fraction. Colloids Surf. A Physicochem. Eng. Asp. 2007, 311, 2–10. [Google Scholar] [CrossRef]
- Das, S.; Duraia, E.-s.M.; Velev, O.D.; Gatabi, J.R.; Beall, G.W. Reduction of defects in self-assembling colloidal monolayer via surface modifiers and periodic mechanical vibration. Surf. Coat. Technol. 2017, 319, 353–358. [Google Scholar] [CrossRef]
- Shrivastava, A.; Gupta, V. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2011, 2, 21–25. [Google Scholar] [CrossRef]
- Golmohammadi, R.; Valegård, K.; Fridborg, K.; Liljas, L. The Refined Structure of Bacteriophage MS2 at 2·8 Å Resolution. J. Mol. Biol. 1993, 234, 620–639. [Google Scholar] [CrossRef]
- Schwarz, K.R.; Sidhu, J.P.S.; Toze, S.; Li, Y.; Lee, E.; Gruchlik, Y.; Pritchard, D.L. Decay rates of Escherichia coli, Enterococcus spp., F-specific bacteriophage MS2, somatic coliphage and human adenovirus in facultative pond sludge. Water Res. 2019, 154, 62–71. [Google Scholar] [CrossRef]
- Bayarri, B.; Cruz-Alcalde, A.; López-Vinent, N.; Micó, M.M.; Sans, C. Can ozone inactivate SARS-CoV-2? A review of mechanisms and performance on viruses. J. Hazard. Mater. 2021, 415, 125658. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.M.; Wang, L.; Reipa, V.; Murphy, T.E. Porous silicon biosensor for detection of viruses. Biosens. Bioelectron. 2007, 23, 741–745. [Google Scholar] [CrossRef] [PubMed]
- Guo, K.; Sharma, A.; Toh, R.J.; Alvárez de Eulate, E.; Gengenbach, T.R.; Cetó, X.; Voelcker, N.H.; Prieto-Simón, B. Porous Silicon Nanostructures as Effective Faradaic Electrochemical Sensing Platforms. Adv. Funct. Mater. 2019, 29, 1809206. [Google Scholar] [CrossRef]
- Chaturvedi, P.; Rodriguez, S.D.; Vlassiouk, I.; Hansen, I.A.; Smirnov, S.N. Simple and Versatile Detection of Viruses Using Anodized Alumina Membranes. ACS Sens. 2016, 1, 488–492. [Google Scholar] [CrossRef] [Green Version]
- Prieto-Simón, B.; Bandaru, N.M.; Saint, C.; Voelcker, N.H. Tailored carbon nanotube immunosensors for the detection of microbial contamination. Biosens. Bioelectron. 2015, 67, 642–648. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shiohara, A.; Easton, C.D.; Prieto-Simon, B.; Voelcker, N.H. Electrochemical Biosensors Based on Convectively Assembled Colloidal Crystals. Biosensors 2022, 12, 480. https://doi.org/10.3390/bios12070480
Shiohara A, Easton CD, Prieto-Simon B, Voelcker NH. Electrochemical Biosensors Based on Convectively Assembled Colloidal Crystals. Biosensors. 2022; 12(7):480. https://doi.org/10.3390/bios12070480
Chicago/Turabian StyleShiohara, Amane, Christopher D. Easton, Beatriz Prieto-Simon, and Nicolas H. Voelcker. 2022. "Electrochemical Biosensors Based on Convectively Assembled Colloidal Crystals" Biosensors 12, no. 7: 480. https://doi.org/10.3390/bios12070480
APA StyleShiohara, A., Easton, C. D., Prieto-Simon, B., & Voelcker, N. H. (2022). Electrochemical Biosensors Based on Convectively Assembled Colloidal Crystals. Biosensors, 12(7), 480. https://doi.org/10.3390/bios12070480