Machine Learning-Enabled Prediction of 3D-Printed Microneedle Features
Abstract
:1. Introduction
2. Methods
2.1. Designing and 3D Printing of the MNAs
2.2. Preparing KOH Solution and Performing Etching Experiment
2.3. Image-Based Classification and Defect Detection Using DL
2.4. Extracting Similarity Indices Using Image Processing
2.5. Creating Training Library and Applying ML
2.6. Skin Perforation Experiment on Porcine Skin Ex Vivo
2.7. Preparing Rhodamine B (RhB) Solution and Its Delivery as a Drug Model
3. Results and Discussion
3.1. Role of Design Parameters and Etching Doses
3.2. Anomaly Detection Using DL
3.3. Image Processing and ML
3.4. Capability of MNAs for Perforation of Porcine Skin Ex Vivo
3.5. Capability of MNAs for Model Drug Delivery into Porcine Skin Ex Vivo
4. Outlook and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ingrole, R.S.J.; Azizoglu, E.; Dul, M.; Birchall, J.C.; Gill, H.S.; Prausnitz, M.R. Trends of microneedle technology in the scientific literature, patents, clinical trials and internet activity. Biomaterials 2021, 267, 120491. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.; Gong, Y.; Wang, Z.; Wang, L.; Chen, W. Microneedle arrays integrated with living organisms for smart biomedical applications. Theranostics 2021, 11, 10012–10029. [Google Scholar] [CrossRef] [PubMed]
- Sarabi, M.R.; Ahmadpour, A.; Yetisen, A.K.; Tasoglu, S. Finger-Actuated Microneedle Array for Sampling Body Fluids. Appl. Sci. 2021, 11, 5329. [Google Scholar] [CrossRef]
- Haq, M.I.; Smith, E.; John, D.N.; Kalavala, M.; Edwards, C.; Anstey, A.; Morrissey, A.; Birchall, J.C. Clinical administration of microneedles: Skin puncture, pain and sensation. Biomed. Microdevices 2009, 11, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Gill, H.S.; Denson, D.D.; Burris, B.A.; Prausnitz, M.R. Effect of microneedle design on pain in human volunteers. Clin. J. Pain 2008, 24, 585–594. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, B.B.; Goodson, J.L.; Chu, S.Y.; Rota, P.A.; Meltzer, M.I. Assessing the Potential Cost-Effectiveness of Microneedle Patches in Childhood Measles Vaccination Programs: The Case for Further Research and Development. Drugs RD 2016, 16, 327–338. [Google Scholar] [CrossRef] [Green Version]
- Chi, Y.; Huang, Y.; Kang, Y.; Dai, G.; Liu, Z.; Xu, K.; Zhong, W. The effects of molecular weight of hyaluronic acid on transdermal delivery efficiencies of dissolving microneedles. Eur. J. Pharm. Sci. 2022, 168, 106075. [Google Scholar] [CrossRef]
- Sarabi, M.R.; Bediz, B.; Falo, L.D.; Korkmaz, E.; Tasoglu, S. 3D printing of microneedle arrays: Challenges towards clinical translation. J. 3D Print. Med. 2021, 5, 65–70. [Google Scholar] [CrossRef]
- Dabbagh, S.R.; Sarabi, M.R.; Rahbarghazi, R.; Sokullu, E.; Yetisen, A.K.; Tasoglu, S. 3D-printed microneedles in biomedical applications. iScience 2021, 24, 102012. [Google Scholar] [CrossRef]
- Shahrubudin, N.; Lee, T.C.; Ramlan, R. An Overview on 3D Printing Technology: Technological, Materials, and Applications. Procedia Manuf. 2019, 35, 1286–1296. [Google Scholar] [CrossRef]
- Lee, J.-Y.; An, J.; Chua, C.K. Fundamentals and applications of 3D printing for novel materials. Appl. Mater. Today 2017, 7, 120–133. [Google Scholar] [CrossRef]
- Rahmani Dabbagh, S.; Rezapour Sarabi, M.; Birtek, M.T.; Mustafaoglu, N.; Zhang, Y.S.; Tasoglu, S. 3D bioprinted organ-on-chips. Aggregate 2022, e197. [Google Scholar] [CrossRef]
- Yigci, D.; Rezapour Sarabi, M.; Ustun, M.; Atceken, N.; Sokullu, E.; Onder, T.B.; Tasoglu, S. 3D Bioprinted Glioma Models. Prog. Biomed. Eng. 2022, 4, 113–125. [Google Scholar] [CrossRef]
- Yu, K.-H.; Beam, A.L.; Kohane, I.S. Artificial intelligence in healthcare. Nat. Biomed. Eng. 2018, 2, 719–731. [Google Scholar] [CrossRef]
- Rezapour Sarabi, M.; Jiang, N.; Ozturk, E.; Yetisen, A.K.; Tasoglu, S. Biomedical optical fibers. Lab. A Chip 2021, 21, 627–640. [Google Scholar] [CrossRef]
- Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; DePristo, M.; Chou, K.; Cui, C.; Corrado, G.; Thrun, S.; Dean, J. A guide to deep learning in healthcare. Nat. Med. 2019, 25, 24–29. [Google Scholar] [CrossRef]
- Alsuliman, T.; Humaidan, D.; Sliman, L. Machine learning and artificial intelligence in the service of medicine: Necessity or potentiality? Curr. Res. Transl. Med. 2020, 68, 245–251. [Google Scholar] [CrossRef]
- Sarabi, M.R.; Yetisen, A.K.; Tasoglu, S. Magnetic levitation for space exploration. Trends Biotechnol. 2022; in press. [Google Scholar] [CrossRef]
- Chen, M.; Hao, Y.; Hwang, K.; Wang, L.; Wang, L. Disease Prediction by Machine Learning Over Big Data From Healthcare Communities. IEEE Access 2017, 5, 8869–8879. [Google Scholar] [CrossRef]
- Tasoglu, S. Toilet-based continuous health monitoring using urine. Nat. Rev. Urol. 2022, 19, 219–230. [Google Scholar] [CrossRef]
- Liao, Z.; Li, D.; Wang, X.; Li, L.; Zou, Q. Cancer Diagnosis Through IsomiR Expression with Machine Learning Method. Curr. Bioinform. 2018, 13, 57–63. [Google Scholar] [CrossRef]
- Osareh, A.; Shadgar, B. Machine learning techniques to diagnose breast cancer. In Proceedings of the 2010 5th International Symposium on Health Informatics and Bioinformatics, Antalya, Turkey, 20–22 April 2010; pp. 114–120. [Google Scholar]
- Ranschaert, E.R.; Morozov, S.; Algra, P.R. Artificial Intelligence in Medical Imaging: Opportunities, Applications and Risks; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Mohri, M.; Rostamizadeh, A.; Talwalkar, A. Foundations of Machine Learning; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Bonaccorso, G. Machine Learning Algorithms; Packt Publishing Ltd.: Birmingham, UK, 2017. [Google Scholar]
- Goh, G.D.; Sing, S.L.; Yeong, W.Y. A review on machine learning in 3D printing: Applications, potential, and challenges. Artif. Intell. Rev. 2021, 54, 63–94. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, Y.; Baek, S.; De Backer, W.; Harik, R. Manufacturability analysis for additive manufacturing using a novel feature recognition technique. Comput.-Aided Des. Appl. 2018, 15, 941–952. [Google Scholar] [CrossRef] [Green Version]
- Gan, Z.; Li, H.; Wolff, S.J.; Bennett, J.L.; Hyatt, G.; Wagner, G.J.; Cao, J.; Liu, W.K. Data-Driven Microstructure and Microhardness Design in Additive Manufacturing Using a Self-Organizing Map. Engineering 2019, 5, 730–735. [Google Scholar] [CrossRef]
- Garg, A.; Lam, J.S.L.; Savalani, M. A new variant of genetic programming in formulation of laser energy consumption model of 3D printing process. In Handbook of Sustainability in Additive Manufacturing; Springer: Berlin/Heidelberg, Germany, 2016; pp. 31–50. [Google Scholar]
- Sarlo, R.; Tarazaga, P.A. A neural network approach to 3D printed surrogate systems. In Topics in Modal Analysis & Testing; Springer: Berlin/Heidelberg, Germany, 2016; Volume 10, pp. 215–222. [Google Scholar]
- Son, D.; Liimatainen, V.; Sitti, M. Machine Learning-Based and Experimentally Validated Optimal Adhesive Fibril Designs. Small 2021, 17, 2102867. [Google Scholar] [CrossRef]
- Muñiz Castro, B.; Elbadawi, M.; Ong, J.J.; Pollard, T.; Song, Z.; Gaisford, S.; Pérez, G.; Basit, A.W.; Cabalar, P.; Goyanes, A. Machine learning predicts 3D printing performance of over 900 drug delivery systems. J. Control. Release 2021, 337, 530–545. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Juan, PR, USA, 17–19 June 1997; pp. 770–778. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Juan, PR, USA, 17–19 June 1997; pp. 4510–4520. [Google Scholar]
- Liu, Z.; Mao, H.; Wu, C.-Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A ConvNet for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 21–24 June 2022. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L. Pytorch: An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 3, 8026–8037. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Li, F.-F. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami Beach, FL, USA, 20–26 June 2009; pp. 248–255. [Google Scholar]
- Defard, T.; Setkov, A.; Loesch, A.; Audigier, R. Padim: A patch distribution modeling framework for anomaly detection and localization. In Proceedings of the International Conference on Pattern Recognition, Beijing, China, 20–24 August 2018; pp. 475–489. [Google Scholar]
- Luzuriaga, M.A.; Berry, D.R.; Reagan, J.C.; Smaldone, R.A.; Gassensmith, J.J. Biodegradable 3D printed polymer microneedles for transdermal drug delivery. Lab. A Chip 2018, 18, 1223–1230. [Google Scholar] [CrossRef]
- Camović, M.; Biščević, A.; Brčić, I.; Borčak, K.; Bušatlić, S.; Ćenanović, N.; Dedović, A.; Mulalić, A.; Osmanlić, M.; Sirbubalo, M. Coated 3d printed PLA microneedles as transdermal drug delivery systems. In Proceedings of the International Conference on Medical and Biological Engineering, Banja Luka, Bosnia and Herzegovina, 16–18 May 2019; pp. 735–742. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Van Der Walt, S.; Colbert, S.C.; Varoquaux, G. The NumPy array: A structure for efficient numerical computation. Comput. Sci. Eng. 2011, 13, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Makvandi, P.; Kirkby, M.; Hutton, A.R.J.; Shabani, M.; Yiu, C.K.Y.; Baghbantaraghdari, Z.; Jamaledin, R.; Carlotti, M.; Mazzolai, B.; Mattoli, V.; et al. Engineering Microneedle Patches for Improved Penetration: Analysis, Skin Models and Factors Affecting Needle Insertion. Nano-Micro Lett. 2021, 13, 93. [Google Scholar] [CrossRef]
- Eggleston, T.A.; Roach, W.; Mitchell, M.A.; Smith, K.; Oler, D.; Johnson, T.E. Comparison of two porcine (Sus scrofa domestica) skin models for in vivo near-infrared laser exposure. Comp. Med. 2000, 50, 391–397. [Google Scholar] [PubMed]
- NASA. Man-Systems Integration Standards, Revision, B. Available online: https://msis.jsc.nasa.gov/sections/section04.htm (accessed on 15 February 2022).
- Chen, J.; Qiu, Y.; Zhang, S.; Yang, G.; Gao, Y. Controllable coating of microneedles for transdermal drug delivery. Drug Dev. Ind. Pharm. 2015, 41, 415–422. [Google Scholar] [CrossRef]
- Wu, L.; Shrestha, P.; Iapichino, M.; Cai, Y.; Kim, B.; Stoeber, B. Characterization method for calculating diffusion coefficient of drug from polylactic acid (PLA) microneedles into the skin. J. Drug Deliv. Sci. Technol. 2021, 61, 102192. [Google Scholar] [CrossRef]
- Damiri, F.; Kommineni, N.; Ebhodaghe, S.O.; Bulusu, R.; Jyothi, V.G.S.S.; Sayed, A.A.; Awaji, A.A.; Germoush, M.O.; Al-malky, H.S.; Nasrullah, M.Z.; et al. Microneedle-Based Natural Polysaccharide for Drug Delivery Systems (DDS): Progress and Challenges. Pharmaceuticals 2022, 15, 190. [Google Scholar] [CrossRef] [PubMed]
- Golsanami, N.; Jayasuriya, M.N.; Yan, W.; Fernando, S.G.; Liu, X.; Cui, L.; Zhang, X.; Yasin, Q.; Dong, H.; Dong, X. Characterizing clay textures and their impact on the reservoir using deep learning and Lattice-Boltzmann simulation applied to SEM images. Energy 2022, 240, 122599. [Google Scholar] [CrossRef]
# | Schematics | Designed Needle Base Diameter (μm) | Designed Needle Height (μm) | Designed Draft Angle (deg) | Etching Solution Concentrations (M) | Etching Durations (h) |
---|---|---|---|---|---|---|
1 | 1000 | 2000 | 0 | 3; 4; 5; 6 | 4; 7; 14; 18; 21; 24 | |
2 | 1000 | 2000 | 5 | 3; 4; 5; 6 | 4; 7; 14; 18; 21; 24 | |
3 | 1000 | 2500 | 0 | 3; 4; 5; 6 | 4; 7; 14; 18; 21; 24 | |
4 | 1000 | 2500 | 5 | 3; 4; 5; 6 | 4; 7; 14; 18; 21; 24 | |
5 | 1500 | 2000 | 0 | 3; 4; 5; 6 | 4; 7; 14; 18; 21; 24 | |
6 | 1500 | 2000 | 5 | 3; 4; 5; 6 | 4; 7; 14; 18; 21; 24 | |
7 | 1500 | 2500 | 0 | 3; 4; 5; 6 | 4; 7; 14; 18; 21; 24 | |
8 | 1500 | 2500 | 5 | 3; 4; 5; 6 | 4; 7; 14; 18; 21; 24 | |
9 | 1000 | 3000 | 5 | 3; 4; 5; 6 | 4; 7; 14; 18; 21; 24 | |
10 | 1500 | 3000 | 10 | 3; 4; 5; 6 | 4; 7; 14; 18; 21; 24 |
# | Model | Precision | Recall | F-1 Score | Accuracy |
---|---|---|---|---|---|
1 | SGD | 0.75 | 0.75 | 0.75 | 0.75 |
2 | Decision Trees | 0.76 | 0.76 | 0.76 | 0.76 |
3 | Naïve Bayes | 0.83 | 0.82 | 0.82 | 0.82 |
4 | MLP | 0.84 | 0.84 | 0.84 | 0.84 |
5 | SVM | 0.87 | 0.86 | 0.86 | 0.86 |
# | Model | Precision | Recall | F-1 Score | Accuracy |
---|---|---|---|---|---|
1 | Resnet34 | 0.93 | 0.92 | 0.92 | 0.92 |
2 | MobilnetV2 | 0.94 | 0.93 | 0.93 | 0.93 |
3 | ConvNeXt_Base | 0.96 | 0.96 | 0.96 | 0.96 |
# | Metric | Formula | Best Performing ML Model | R2 |
---|---|---|---|---|
1 | Similarity Index | SVM (Cubic Kernel) | 0.63 | |
2 | 3DP-to-CAD Area Ratio | Gaussian Processes (Squared Exponential) | 0.90 | |
3 | Accuracy | SVM (Cubic Kernel) | 0.60 | |
4 | Sensitivity | Gaussian Processes (Squared Exponential) | 0.75 | |
5 | Dice Similarity Coefficient | Gaussian Processes (Squared Exponential) | 0.55 |
Predicted Class | ||||
0 | 1 | |||
True Class | 0 | TN = 98 | FP = 7 | 105 |
1 | FN = 7 | TP = 128 | 135 | |
105 | 135 | 240 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezapour Sarabi, M.; Alseed, M.M.; Karagoz, A.A.; Tasoglu, S. Machine Learning-Enabled Prediction of 3D-Printed Microneedle Features. Biosensors 2022, 12, 491. https://doi.org/10.3390/bios12070491
Rezapour Sarabi M, Alseed MM, Karagoz AA, Tasoglu S. Machine Learning-Enabled Prediction of 3D-Printed Microneedle Features. Biosensors. 2022; 12(7):491. https://doi.org/10.3390/bios12070491
Chicago/Turabian StyleRezapour Sarabi, Misagh, M. Munzer Alseed, Ahmet Agah Karagoz, and Savas Tasoglu. 2022. "Machine Learning-Enabled Prediction of 3D-Printed Microneedle Features" Biosensors 12, no. 7: 491. https://doi.org/10.3390/bios12070491
APA StyleRezapour Sarabi, M., Alseed, M. M., Karagoz, A. A., & Tasoglu, S. (2022). Machine Learning-Enabled Prediction of 3D-Printed Microneedle Features. Biosensors, 12(7), 491. https://doi.org/10.3390/bios12070491