PC-12 Cell Line as a Neuronal Cell Model for Biosensing Applications
Abstract
:1. Introduction
2. PC-12 Cell Line
3. Biosensing and Biosensors
4. Metal Ions and Small Molecules Detection
4.1. Metal Ions
4.2. Neurotransmitters
5. Cellular Events
5.1. Attachment, Proliferation, and Differentiation
5.2. Action Potential Cell Stimulation and Intracellular Signal Transduction
5.3. Monitorization of Cytotoxic Effect
5.4. Cellular Transport
5.5. Cancer Cell Detection
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Slanzi, A.; Iannoto, G.; Rossi, B.; Zenaro, E.; Constantin, G. In vitro Models of Neurodegenerative Diseases. Front. Cell Dev. Biol. 2020, 8, 328. [Google Scholar] [CrossRef] [PubMed]
- Grau, C.M.; Greene, L.A. Use of PC12 cells and rat superior cervical ganglion sympathetic neurons as models for neuroprotective assays relevant to parkinson’s disease. Methods Mol. Biol. 2012, 846, 201–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giordano, G.; Costa, L.G. Primary neurons in culture and neuronal cell lines for in vitro neurotoxicological studies. Methods Mol. Biol. 2011, 758, 13–27. [Google Scholar] [CrossRef]
- Cheran, L.E.; Benvenuto, P.; Thompson, M. Coupling of neurons with biosensor devices for detection of the properties of neuronal populations. Chem. Soc. Rev. 2008, 37, 1229–1242. [Google Scholar] [CrossRef]
- Wiatrak, B.; Kubis-Kubiak, A.; Piwowar, A.; Barg, E. PC12 Cell Line: Cell Types, Coating of Culture Vessels, Differentiation and Other Culture Conditions. Cells 2020, 9, 958. [Google Scholar] [CrossRef]
- Klesse, L.; Meyers, K.; Marshall, C.; Parada, L. Nerve growth factor induces survival and differentiation through two distinct signaling cascades in PC12 cells. Oncogene 1999, 18, 2055–2068. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Wu, C.; Cai, H.; Hu, N.; Zhou, J.; Wang, P. Cell-based biosensors and their application in biomedicine. Chem. Rev. 2014, 114, 6423–6461. [Google Scholar] [CrossRef]
- Cui, M.R.; Zhao, W.; Li, X.L.; Xu, C.H.; Xu, J.J.; Chen, H.Y. Simultaneous monitoring of action potentials and neurotransmitter release from neuron-like PC12 cells. Anal. Chim. Acta 2020, 1105, 74–81. [Google Scholar] [CrossRef]
- Maruccio, G.; Narang, J. Electrochemical Sensors: From Working Electrodes to Functionalization and Miniaturized Devices; Woodhead Publishing: Cambridge, UK, 2022. [Google Scholar]
- Grieshaber, D.; Mackenzie, R.; Vörös, J.; Reimhult, E. Electrochemical Biosensors-Sensor Principles and Architectures. Sensors 2008, 8, 1400–1458. [Google Scholar] [CrossRef]
- Ronkainen, N.J.; Halsall, H.B.; Heineman, W.R. Electrochemical biosensors. Chem. Soc. Rev. 2010, 39, 1747–1763. [Google Scholar] [CrossRef]
- Sadighbayan, D.; Hasanzadeh, M.; Ghafar-Zadeh, E. Biosensing based on field-effect transistors (FET): Recent progress and challenges. TrAC Trends Anal. Chem. 2020, 133, 116067. [Google Scholar] [CrossRef] [PubMed]
- Vu, C.A.; Chen, W.Y. Field-Effect Transistor Biosensors for Biomedical Applications: Recent Advances and Future Prospects. Sensors 2019, 19, 4214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Özsoylu, D.; Wagner, T.; Schöning, M.J. Electrochemical Cell-based Biosensors for Biomedical Applications. Curr. Top. Med. Chem. 2022, 22, 713–733. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Liu, Q. Cell-Based Biosensors Principles and Applications; Artech House: Norwood, MA, USA, 2010. [Google Scholar]
- Tsujimura, A.; Kamae, Y.; Kawasaki, H.; Nagai, H.; Kano, M.; Tabata, T. Carbon powder-filled microelectrode: An easy-to-fabricate probe for cellular electrochemistry. Anal. Biochem. 2021, 629, 114316. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.G.; Mitchell, E.C.; Dunaway, L.E.; Mccarty, G.S.; Sombers, L.A. Carbon-Fiber Nanoelectrodes for Real-Time Discrimination of Vesicle Cargo in the Native Cellular Environment. ACS Nano 2020, 14, 2917–2926. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Majdi, S.; Dunevall, J.; Fathali, H.; Ewing, A.G. ElectrochemicalC ytometry QuantitativeMeasurementofT ransmittersinIndividual Vesicles in the Cytoplasm of Single Cells with Nanotip Electrodes. Angew. Chem. Int. Ed. 2015, 54, 11978–11982. [Google Scholar] [CrossRef]
- Zhang, X.; Hatamie, A.; Ewing, A.G. Nanoelectrochemical analysis inside a single living cell. Curr. Opin. Electrochem. 2020, 22, 94–101. [Google Scholar] [CrossRef]
- Wang, J.; Wu, C.; Hu, N.; Zhou, J.; Du, L.; Wang, P. Microfabricated Electrochemical Cell-Based Biosensors for Analysis of Living Cells In Vitro. Biosensors 2012, 2, 127–170. [Google Scholar] [CrossRef] [Green Version]
- Nam, Y.; Wheeler, B.C. In Vitro Microelectrode Array Technology and Neural Recordings. Crit. Rev. Biomed. Eng. 2011, 39, 45–61. [Google Scholar] [CrossRef]
- Gupta, N.; Renugopalakrishnan, V.; Liepmann, D.; Paulmurugan, R.; Malhotra, B.D. Cell-based biosensors: Recent trends, challenges and future perspectives. Biosens. Bioelectron. 2019, 141, 111435. [Google Scholar] [CrossRef]
- Damborský, P.; Švitel, J.; Katrlík, J. Optical biosensors. Essays Biochem. 2016, 60, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borisov, S.M.; Wolfbeis, O.S. Optical biosensors. Chem. Rev. 2008, 108, 423–461. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Cheng, W.; Ji, C.; Zhang, J.; Yin, M. Detection of metal ions in biological systems: A review. Rev. Anal. Chem. 2020, 39, 231–246. [Google Scholar] [CrossRef]
- Bozym, R.A.; Thompson, R.B.; Stoddard, A.K.; Fierke, C.A. Measuring Picomolar Intracellular Exchangeable Zinc in PC-12 Cells Using a Ratiometric Fluorescence Biosensor. ACS Chem. Biol. 2006, 1, 103–111. [Google Scholar] [CrossRef]
- McCranor, B.J.; Bozym, R.A.; Vitolo, M.I.; Fierke, C.A.; Bambrick, L.; Polster, B.M.; Fiskum, G.; Thompson, R.B. Quantitative imaging of mitochondrial and cytosolic free zinc levels in an in vitro model of ischemia/reperfusion. J. Bioenerg. Biomembr. 2012, 44, 253–263. [Google Scholar] [CrossRef] [Green Version]
- Mccranor, B.J.; Szmacinski, H.; Zeng, H.H.; Stoddard, A.K.; Hurst, T.; Fierke, C.A.; Lakowicz Ab, J.R.; Thompson, R.B. Fluorescence lifetime imaging of physiological free Cu(II) levels in live cells with a Cu(II)-selective carbonic anhydrase-based biosensor. Metallomics 2014, 6, 1034. [Google Scholar] [CrossRef] [Green Version]
- Courtney, N.A.; Briguglio, J.S.; Bradberry, M.M.; Greer, C.; Chapman, E.R. Excitatory and Inhibitory Neurons Utilize Different Ca2+ Sensors and Sources to Regulate Spontaneous Release. Neuron 2018, 98, 977–991.e5. [Google Scholar] [CrossRef] [Green Version]
- Westerink, R.H.S.; Ewing, A.G. The PC12 cell as model for neurosecretion. Acta Physiol. 2008, 192, 273–285. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Jiao, X.; Cai, S.; He, S.; Zhao, L.; Zeng, X. Reversible fluorescent probe for visually monitoring the concentration-dependent dynamic correlations among HOCl, H2S, and Ca2+ in neurons. Sens. Actuators B Chem. 2021, 329, 129213. [Google Scholar] [CrossRef]
- Fishman, H.A.; Schellert, R.H.; Zare, R.N. Chemistry Identification of receptor ligands and receptor subtypes using antagonists in a capillary electrophoresis single-cell biosensor separation system (microcolumn separation/fluorescence microscopy/calcium imaging/neurotransmitters). Proc. Natl. Acad. Sci. USA 1995, 92, 7877–7881. [Google Scholar] [CrossRef] [Green Version]
- Shear, J.B.; Fishman, H.A.; Allbritton, N.L.; Garigan, D.; Zare, R.N.; Scheller, R.H. Single cells as biosensors for chemical separations. Science 1995, 267, 74–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, K.; Chang, Y.; Li, B.; Yang, H.; Xu, K. A novel coumarin-based fluorescent sensor for Ca 2+ and sequential detection of F − and its live cell imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 216, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.-W.; Park, J.-H.; Lee, K.-H.; Lee, T.; Luo, Z.; Kim, T.-H. Recent advances in nanomaterial-modified electrical platforms for the detection of dopamine in living cells. Nano Converg. 2020, 7, 40. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; McCracken, S.; Faruk Hossain, M.; Slaughter, G. Electrochemical Detection of Neurotransmitters. Biosensors 2020, 10, 101. [Google Scholar] [CrossRef]
- Wang, Y.; Ewing, A. Electrochemical Quantification of Neurotransmitters in Single Live Cell Vesicles Shows Exocytosis is Predominantly Partial. ChemBioChem 2020, 22, 807–813. [Google Scholar] [CrossRef]
- Shi, N.; Bu, X.; Zhang, M.; Wang, B.; Xu, X.; Shi, X.; Hussain, D.; Xu, X.; Chen, D. Current Sample Preparation Methodologies for Determination of Catecholamines and Their Metabolites. Molecules 2022, 27, 2702. [Google Scholar] [CrossRef]
- Liu, X.; Liu, J. Biosensors and sensors for dopamine detection. View 2021, 2, 20200102. [Google Scholar] [CrossRef]
- Tao, Y.; Lin, Y.; Ren, J.; Qu, X. A dual fluorometric and colorimetric sensor for dopamine based on BSA-stabilized Aunanoclusters. Biosens. Bioelectron. 2013, 42, 41–46. [Google Scholar] [CrossRef]
- Kruss, S.; Salem, D.P.; Vuković, L.; Lima, B.; Ende, E.V.; Boyden, E.S.; Strano, M.S. High-resolution imaging of cellular dopamine efflux using a fluorescent nanosensor array. Proc. Natl. Acad. Sci. USA 2017, 114, 1789–1794. [Google Scholar] [CrossRef] [Green Version]
- Lee, N.; Shin, M.H.; Lee, E.; Cho, S.H.; Hwang, H.; Cho, K.; Kim, J.K.; Hahn, S.K. Three-Dimensional Tungsten Disulfide Raman Biosensor for Dopamine Detection. ACS Appl. Bio Mater. 2020, 3, 7687–7695. [Google Scholar] [CrossRef]
- Taskin, M.B.; Sasso, L.; Dimaki, M.; Svendsen, W.E.; Castillo-León, J. Combined cell culture-biosensing platform using vertically aligned patterned peptide nanofibers for cellular studies. ACS Appl. Mater. Interfaces 2013, 5, 3323–3328. [Google Scholar] [CrossRef] [PubMed]
- Emran, M.Y.; Shenashen, M.A.; Morita, H.; El-Safty, S.A. 3D-Ridge Stocked Layers of Nitrogen-Doped Mesoporous Carbon Nanosheets for Ultrasensitive Monitoring of Dopamine Released from PC12 Cells under K+ Stimulation. Adv. Healthc. Mater. 2018, 7, e1701459. [Google Scholar] [CrossRef] [PubMed]
- Mir, T.A.; Akhtar, M.H.; Gurudatt, N.G.; Kim, J.I.; Choi, C.S.; Shim, Y.B. An amperometric nanobiosensor for the selective detection of K+-induced dopamine released from living cells. Biosens. Bioelectron. 2015, 68, 421–428. [Google Scholar] [CrossRef]
- Liu, M.M.; Guo, Z.Z.; Liu, H.; Li, S.H.; Chen, Y.; Zhong, Y.; Lei, Y.; Lin, X.H.; Liu, A.L. Paper-based 3D culture device integrated with electrochemical sensor for the on-line cell viability evaluation of amyloid-beta peptide induced damage in PC12 cells. Biosens. Bioelectron. 2019, 144, 111686. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Huang, X.; Shi, W.; Jiang, M.; Tian, L.; Su, M.; Wu, J.; Liu, Q.; Yu, C.; Gu, H. Pt nanoparticle decorated carbon nanotubes nanocomposite based sensing platform for the monitoring of cell-secreted dopamine. Sens. Actuators B Chem. 2021, 330, 129311. [Google Scholar] [CrossRef]
- Shi, B.X.; Wang, Y.; Zhang, K.; Lam, T.L.; Chan, H.L.W. Monitoring of dopamine release in single cell using ultrasensitive ITO microsensors modified with carbon nanotubes. Biosens. Bioelectron. 2011, 26, 2917–2921. [Google Scholar] [CrossRef]
- Zhong, Y.; Liu, M.-M.; Chen, Y.; Yang, Y.-J.; Wu, L.-N.; Bai, F.-Q.; Lei, Y.; Gao, F.; Liu, A.-L. A high-performance amperometric sensor based on a monodisperse Pt–Au bimetallic nanoporous electrode for determination of hydrogen peroxide released from living cells. Microchim. Acta 2020, 187, 499. [Google Scholar] [CrossRef]
- Abe, H.; Ino, K.; Li, C.-Z.; Kanno, Y.; Inoue, K.Y.; Suda, A.; Kunikata, R.; Matsudaira, M.; Takahashi, Y.; Shiku, H.; et al. Electrochemical Imaging of Dopamine Release from Three-Dimensional-Cultured PC12 Cells Using Large-Scale Integration-Based Amperometric Sensors. Anal. Chem. 2015, 87, 6364–6370. [Google Scholar] [CrossRef]
- Tomagra, G.; Franchino, C.; Pasquarelli, A.; Carbone, E.; Olivero, P.; Carabelli, V.; Picollo, F. Simultaneous multisite detection of quantal release from PC12 cells using micro graphitic-diamond multi electrode arrays. Biophys. Chem. 2019, 253, 106241. [Google Scholar] [CrossRef]
- Yang, C.; Liu, M.M.; Bai, F.Q.; Guo, Z.Z.; Liu, H.; Zhong, G.X.; Peng, H.P.; Chen, W.; Lin, X.H.; Lei, Y.; et al. An electrochemical biosensor for sensitive detection of nicotine-induced dopamine secreted by PC12 cells. J. Electroanal. Chem. 2019, 832, 217–224. [Google Scholar] [CrossRef]
- Xu, C.; Gu, C.; Xiao, Q.; Chen, J.; Yin, Z.Z.; Liu, H.; Fan, K.; Li, L. A highly selective and sensitive biosensor for dopamine based on a surface molecularly imprinted layer to coordinate nano-interface functionalized acupuncture needle. Chem. Eng. J. 2022, 436, 135203. [Google Scholar] [CrossRef]
- Huang, Q.; Lin, X.; Tong, L.; Tong, Q.X. Graphene Quantum Dots/Multiwalled Carbon Nanotubes Composite-Based Electrochemical Sensor for Detecting Dopamine Release from Living Cells. ACS Sustain. Chem. Eng. 2020, 8, 1644–1650. [Google Scholar] [CrossRef]
- Li, B.R.; Hsieh, Y.J.; Chen, Y.X.; Chung, Y.T.; Pan, C.Y.; Chen, Y.T. An ultrasensitive nanowire-transistor biosensor for detecting dopamine release from living pc12 cells under hypoxic stimulation. J. Am. Chem. Soc. 2013, 135, 16034–16037. [Google Scholar] [CrossRef]
- Li, B.R.; Chen, C.W.; Yang, W.L.; Lin, T.Y.; Pan, C.Y.; Chen, Y.T. Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor. Biosens. Bioelectron. 2013, 45, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.K.; Luo, G.; Ewing, A.G. Amperometric Monitoring of Stimulated Catecholamine Release from Rat Pheochromocytoma (PC12) Cells at the Zeptomole Level. Anal. Chem. 1994, 66, 3031–3035. [Google Scholar] [CrossRef]
- Kozminski, K.D.; Gutman, D.A.; Davila, V.; Sulzer, D.; Ewing, A.G. Voltammetric and pharmacological characterization of dopamine release from single exocytotic events at rat pheochromocytoma (PC12) cells. Anal. Chem. 1998, 70, 3123–3130. [Google Scholar] [CrossRef]
- Ren, L.; Oleinick, A.; Svir, I.; Amatore, C.; Ewing, A.G. Amperometric Measurements and Dynamic Models Reveal a Mechanism for How Zinc Alters Neurotransmitter Release. Angew. Chem. Int. Ed. 2020, 59, 3083–3087. [Google Scholar] [CrossRef]
- Hu, L.; Savy, A.; Grimaud, L.; Guille-Collignon, M.; Lemaître, F.; Amatore, C.; Delacotte, J. Electroactive fluorescent false neurotransmitter FFN102 partially replaces dopamine in PC12 cell vesicles. Biophys. Chem. 2019, 245, 1–5. [Google Scholar] [CrossRef]
- Li, X.; Dunevall, J.; Ewing, A.G. Quantitative Chemical Measurements of Vesicular Transmitters with Electrochemical Cytometry. Acc. Chem. Res. 2016, 49, 2347–2354. [Google Scholar] [CrossRef]
- Emran, M.Y.Y.; Mekawy, M.; Akhtar, N.; Shenashen, M.A.A.; EL-Sewify, I.M.M.; Faheem, A.; El-Safty, S.A.A. Broccoli-shaped biosensor hierarchy for electrochemical screening of noradrenaline in living cells. Biosens. Bioelectron. 2018, 100, 122–131. [Google Scholar] [CrossRef]
- Emran, M.Y.; Shenashen, M.A.; Elmarakbi, A.; Selim, M.M.; El-Safty, S.A. Nitrogen-doped carbon hollow trunk-like structure as a portable electrochemical sensor for noradrenaline detection in neuronal cells. Anal. Chim. Acta 2022, 1192, 339380. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, N.; Ghasemi, S.; Salimi, A.; Sham, T.K.; Hallaj, R. CuO nanorods as a laccase mimicking enzyme for highly sensitive colorimetric and electrochemical dual biosensor: Application in living cell epinephrine analysis. Colloids Surf. B Biointerfaces 2020, 195, 111228. [Google Scholar] [CrossRef] [PubMed]
- Okumoto, S.; Looger, L.L.; Micheva, K.D.; Reimer, R.J.; Smith, S.J.; Frommer, W.B. Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. Proc. Natl. Acad. Sci. USA 2005, 102, 8740–8745. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Bai, X.; Wang, X.; Shiu, K.K.; Zhu, Y.; Jiang, H. Highly Sensitive Graphene-Pt Nanocomposites Amperometric Biosensor and Its Application in Living Cell H2O2 Detection. Anal. Chem. 2014, 86, 9459–9465. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, M.; Yang, J.; Wu, G.; Wu, H.; Chen, C.; Liu, A. Metal-free rGO/GO hybrid microelectrode array for sensitive and in-situ hydrogen peroxide sensing. Electrochim. Acta 2019, 326, 134967. [Google Scholar] [CrossRef]
- Malkoc, V.; Gallego-Perez, D.; Nelson, T.; Lannutti, J.J.; Hansford, D.J. Controlled neuronal cell patterning and guided neurite growth on micropatterned nanofiber platforms. J. Micromech. Microeng. 2015, 25, 125001. [Google Scholar] [CrossRef]
- Kotanen, C.N.; Wilson, A.N.; Dong, C.; Dinu, C.Z.; Justin, G.A.; Guiseppi-Elie, A. The effect of the physicochemical properties of bioactive electroconductive hydrogels on the growth and proliferation of attachment dependent cells. Biomaterials 2013, 34, 6318–6327. [Google Scholar] [CrossRef]
- Cans, A.S.; Höök, F.; Shupliakov, O.; Ewing, A.G.; Eriksson, P.S.; Brodin, L.; Orwar, O. Measurement of the dynamics of exocytosis and vesicle retrieval at cell populations using a quartz crystal microbalance. Anal. Chem. 2001, 73, 5805–5811. [Google Scholar] [CrossRef]
- Mir, T.A.; Shinohara, H. Two-dimensional surface plasmon resonance imaging system for cellular analysis. Methods Mol. Biol. 2017, 157, 131–146. [Google Scholar]
- Shinohara, H. 2.2.3 Invited: Novel Cell-based Biosensing with 2D-SPR imager. Tagungsband 2020, 1, 173–174. [Google Scholar]
- Moschopoulou, G.; Kintzios, S. Noninvasive Superoxide Monitoring of in Vitro Neuronal Differentiation Using a Cell-Based Biosensor. J. Sens. 2015, 2015, 768352. [Google Scholar] [CrossRef] [Green Version]
- Hahn, A.T.; Jones, J.T.; Meyer, T. Quantitative analysis of cell cycle phase durations and PC12 differentiation using fluorescent biosensors. Cell Cycle 2009, 8, 1044–1052. [Google Scholar] [CrossRef] [Green Version]
- Fujita, A.; Koinuma, S.; Yasuda, S.; Nagai, H.; Kamiguchi, H.; Wada, N.; Nakamura, T. GTP hydrolysis of TC10 promotes neurite outgrowth through exocytic fusion of Rab11- and L1-containing vesicles by releasing exocyst component Exo70. PLoS ONE 2013, 8, e79689. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.B.M.; Yoshinobu, T.; Iwasaki, H.; Sugihara, H.; Yukimasa, T.; Hirata, I.; Iwata, H. Investigation on light-addressable potentiometric sensor as a possible cell-semiconductor hybrid. Biosens. Bioelectron. 2003, 18, 1509–1514. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Zhu, J.; Hu, Y.; Xing, W.; Cheng, J. Real-time monitoring of extracellular matrix-mediated PC12 cell attachment and proliferation using an electronic biosensing device. Biotechnol. Lett. 2012, 34, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.C.; Lin, S.Y.; Sheu, J.T. Using impedance biosensors to distinguish the PC12 cells adhesion and differentiation. In Proceedings of the NEMS 2011-6th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Kaohsiung, Taiwan, 20–23 February 2011. [Google Scholar]
- Bieberich, E.; Guiseppi-Elie, A. Neuronal differentiation and synapse formation of PC12 and embryonic stem cells on interdigitated microelectrode arrays: Contact structures for neuron-to-electrode signal transmission (NEST). Biosens. Bioelectron. 2004, 19, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Vinzons, L.U.; Gupta, A.K.; Lai, T.Y.; Lin, S.P. Interpretation of biosensing technology in cell-coupled silicon nanowire transistors via impedance spectra. Mater. Lett. 2022, 308, 131087. [Google Scholar] [CrossRef]
- Shinohara, H.; Sakai, Y.; Mir, T.A. Real-time monitoring of intracellular signal transduction in PC12 cells by two-dimensional surface plasmon resonance imager. Anal. Biochem. 2013, 441, 185–189. [Google Scholar] [CrossRef]
- Zibaii, M.I.; Latifi, H.; Asadollahi, A.; Noraeipoor, Z.; Dargahi, L. Real-time monitoring of intracellular signal transduction in PC12 cells by non-adiabatic tapered optical fiber biosensor. In Proceedings of the 23rd International Conference on Optical Fibre Sensors, Santander, Spain, 2–6 June 2014; Volume 9157. [Google Scholar]
- Herbst, K.J.; Allen, M.D.; Zhang, J. Spatiotemporally Regulated Protein Kinase A Activity Is a Critical Regulator of Growth Factor-Stimulated Extracellular Signal-Regulated Kinase Signaling in PC12 Cells. Mol. Cell. Biol. 2011, 31, 4063–4075. [Google Scholar] [CrossRef] [Green Version]
- Alatraktchi, F.A.; Bakmand, T.; Dimaki, M.; Svendsen, W.E. Novel membrane-based electrochemical sensor for real-time bio-applications. Sensors 2014, 14, 22128–22139. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.X.; Lü, X.Y.; Wang, Z.G.; Ren, T.L.; Fang, T.; Zhang, J.; Zhou, C.J.; Wang, L.G. Silicon-based microelectrode arrays for stimulation and signal recording of in vitro cultured neurons. Sci. China Inf. Sci. 2011, 54, 2199–2208. [Google Scholar] [CrossRef]
- Liang, C.K.; Chen, D.K.; Chen, J.J.J.; Chen, S.C. A multi-functional online measurement system for neuron-microelectrode interface study. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology-Proceedings, San Francisco, CA, USA, 1–5 September 2004. [Google Scholar]
- Lü, X.Y.; Meng, C.; An, S.; Zhao, Y.F.; Wang, Z.G. Study on influence of external factors on the electrical excitability of PC12 quasi-neuronal networks through Voltage Threshold Measurement Method. PLoS ONE 2022, 17, e0265078. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.J.; Ye, W.W.; Yu, H.; Hu, N.; Du, L.P.; Wang, P. Neurochip based on light-addressable potentiometric sensor with wavelet transform de-noising. J. Zhejiang Univ. Sci. B 2010, 11, 323–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagamura, Y.; Terawaki, K.; Uezono, Y.; Tsukada, T. Enhancement of catecholamine release from PC12 cells by the traditional Japanese medicine, rikkunshito. BMC Complement. Altern. Med. 2014, 14, 256. [Google Scholar] [CrossRef] [Green Version]
- Cui, H.F.; Ye, J.S.; Chen, Y.; Chong, S.C.; Sheu, F.S. Microelectrode array biochip: Tool for in vitro drug screening based on the detection of a drug effect on dopamine release from PC12 cells. Anal. Chem. 2006, 78, 6347–6355. [Google Scholar] [CrossRef]
- Ryan Preston, R.; McFadden, P.N. A two-cell biosensor that couples neuronal cells to optically monitored fish chromatophores. Biosens. Bioelectron. 2001, 16, 447–455. [Google Scholar] [CrossRef]
- Shah, P.; Yue, Q.; Zhu, X.; Xu, F.; Wang, H.S.; Li, C.Z. PC12 cell integrated biosensing neuron devices for evaluating neuronal exocytosis function upon silver nanoparticles exposure. Sci. China Chem. 2015, 58, 1600–1604. [Google Scholar] [CrossRef]
- Liu, M.M.; Zhong, Y.; Chen, Y.; Wu, L.N.; Chen, W.; Lin, X.H.; Lei, Y.; Liu, A.L. Electrochemical monitoring the effect of drug intervention on PC12 cell damage model cultured on paper-PLA 3D printed device. Anal. Chim. Acta 2022, 1194, 339409. [Google Scholar] [CrossRef]
- Slaughter, G.E.; Hobson, R. An impedimetric biosensor based on PC 12 cells for the monitoring of exogenous agents. Biosens. Bioelectron. 2009, 24, 1153–1158. [Google Scholar] [CrossRef]
- Pham Ba, V.A.; Pham Van Bach, N.; Nguyen Luong, T.; Nguyen, K.V. Semiconducting Carbon Nanotube-Based Nanodevices for Monitoring the Effects of Chlorphenamine on the Activities of Intracellular Ca2+Stores. J. Anal. Methods Chem. 2022, 2022, 9019262. [Google Scholar] [CrossRef]
- Slaughter, G.E.; Hobson, R.S. Artificial neural network for temporal impedance recognition of neurotoxins. In Proceedings of the IEEE International Conference on Neural Networks-Conference Proceedings, Vancouver, BC, Canada, 16–21 July 2006. [Google Scholar]
- Gu, Y.X.; Liang, X.X.; Yin, N.Y.; Yang, Y.; Wan, B.; Guo, L.H.; Faiola, F. New insights into mechanism of bisphenol analogue neurotoxicity: Implications of inhibition of O-GlcNAcase activity in PC12 cells. Arch. Toxicol. 2019, 93, 2661–2671. [Google Scholar] [CrossRef] [PubMed]
- Pitchford, S.; De Moor, K.; Glaeser, B.S. Nerve growth factor stimulates rapid metabolic responses in PC12 cells. Am. J. Physiol. Cell Physiol. 1995, 268, C936–C943. [Google Scholar] [CrossRef]
- Mir, T.A.; Shinohara, H. P1.1.18 Real-time monitoring of cell response to drug stimulation by 2D-SPR Sensor: An approach to study neuronal differentiation. Proc. IMCS 2020, 2012, 863–865. [Google Scholar]
- Mir, T.A.; Shinohara, H. 2D-SPR biosensor detects the intracellular signal transduction in PC 12 cells at single cell level. In Proceedings of the International Conference on Sensing Technology, ICST, Kolkata, India, 18–21 December 2012. [Google Scholar]
- Guo, M.; Zhu, F.; Qiu, W.; Qiao, G.; Law, B.Y.K.; Yu, L.; Wu, J.; Tang, Y.; Yu, C.; Qin, D.; et al. High-throughput screening for amyloid-β binding natural small-molecules based on the combinational use of biolayer interferometry and UHPLC−DAD-Q/TOF-MS/MS. Acta Pharm. Sin. B 2021, 12, 1723–1739. [Google Scholar] [CrossRef]
- Cho, Y.; Ba, V.A.P.; Jeong, J.Y.; Choi, Y.; Hong, S. Ion-selective carbon nanotube field-effect transistors for monitoring drug effects on nicotinic acetylcholine receptor activation in live cells. Sensors 2020, 20, 3680. [Google Scholar] [CrossRef]
- Pham Ba, V.A.; Cho, D.G.; Hong, S. Nafion-Radical Hybrid Films on Carbon Nanotube Transistors for Monitoring Antipsychotic Drug Effects on Stimulated Dopamine Release. ACS Appl. Mater. Interfaces 2019, 11, 9716–9723. [Google Scholar] [CrossRef] [Green Version]
- Dutta, A.K.; Korchev, Y.E.; Shevchuk, A.I.; Hayashi, S.; Okada, Y.; Sabirov, R.Z. Spatial distribution of maxi-anion channel on cardiomyocytes detected by smart-patch technique. Biophys. J. 2008, 94, 1646–1655. [Google Scholar] [CrossRef] [Green Version]
- Kaur, B.; Kumar, S.; Kaushik, B.K. 2D Materials based Fiber Optic SPR Biosensor for Cancer Detection at 1550 nm. IEEE Sens. J. 2021, 21, 23957–23964. [Google Scholar] [CrossRef]
- Hossain, B.; Paul, A.K.; Islam, M.A.; Rahman, M.M.; Sarkar, A.K.; Abdulrazak, L.F. A highly sensitive surface plasmon resonance biosensor using SnSe allotrope and heterostructure of BlueP/MoS2 for cancerous cell detection. Optik 2022, 252, 168506. [Google Scholar] [CrossRef]
- Hoseinian, M.S.; Ahmadi, A.; Safaei Bezgabadi, A.; Bolorizadeh, M.A. Simulation of wagon wheel optical fiber biosensor for quick and easy detection of cancer cells. Opt. Quantum Electron. 2021, 53, 427. [Google Scholar] [CrossRef]
- Jibon, R.H.; Podder, E.; Bulbul, A.A.M. Adrenal Glands Cancer Detection using PCF-based Biosensor. In Proceedings of the International Conference on Electronics, Communications and Information Technology, ICECIT, Khulna, Bangladesh, 14–16 September 2021. [Google Scholar]
- Segovia-Chaves, F.; Yague, J.C.T.; Vinck-Posada, H. Effects of chemical potential and cavity thickness on defective mode sensitivity for a cancer cell in a biosensor formed using a photonic crystal. Optik 2021, 240, 166823. [Google Scholar] [CrossRef]
- Adoghe, A.U.; Noma-Osaghae, E.; Israel, Y.R. Photonic crystal and its application as a biosensor for the early detection of cancerous cells. Int. J. Online Biomed. Eng. 2020, 16, 86–94. [Google Scholar] [CrossRef] [Green Version]
- Meshginqalam, B.; Barvestani, J. High performance surface plasmon resonance-based photonic crystal fiber biosensor for cancer cells detection. Eur. Phys. J. Plus 2022, 137, 417. [Google Scholar] [CrossRef]
- Ramola, A.; Marwaha, A.; Singh, S. Design and investigation of a dedicated PCF SPR biosensor for CANCER exposure employing external sensing. Appl. Phys. A Mater. Sci. Process. 2021, 127, 643. [Google Scholar] [CrossRef]
- Azab, M.Y.; Hameed, M.F.O.; Nasr, A.M.; Obayya, S.S.A. Highly Sensitive Metamaterial Biosensor for Cancer Early Detection. IEEE Sens. J. 2021, 21, 7748–7755. [Google Scholar] [CrossRef]
- Feng, Q.M.; Liu, Z.; Chen, H.Y.; Xu, J.J. Paper-based electrochemiluminescence biosensor for cancer cell detection. Electrochem. Commun. 2014, 49, 88–92. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oprea, D.; Sanz, C.G.; Barsan, M.M.; Enache, T.A. PC-12 Cell Line as a Neuronal Cell Model for Biosensing Applications. Biosensors 2022, 12, 500. https://doi.org/10.3390/bios12070500
Oprea D, Sanz CG, Barsan MM, Enache TA. PC-12 Cell Line as a Neuronal Cell Model for Biosensing Applications. Biosensors. 2022; 12(7):500. https://doi.org/10.3390/bios12070500
Chicago/Turabian StyleOprea, Daniela, Caroline G. Sanz, Madalina M. Barsan, and Teodor Adrian Enache. 2022. "PC-12 Cell Line as a Neuronal Cell Model for Biosensing Applications" Biosensors 12, no. 7: 500. https://doi.org/10.3390/bios12070500
APA StyleOprea, D., Sanz, C. G., Barsan, M. M., & Enache, T. A. (2022). PC-12 Cell Line as a Neuronal Cell Model for Biosensing Applications. Biosensors, 12(7), 500. https://doi.org/10.3390/bios12070500