All-in-One Optofluidic Chip for Molecular Biosensing Assays
Abstract
:1. Introduction
2. Materials and Methods
2.1. Device Design
2.2. Device Fabrication
2.3. Experimental Setup
2.4. Fluorescent Bead Detection
2.5. All-in-One Bioassay Detection
3. Results
3.1. Fluorescent Bead Detection
3.2. All-in-One Nucleic Acid Assay Detection
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baryeh, K.; Takalkar, S.; Lund, M.; Liu, G. Introduction to Medical Biosensors for Point of Care Applications. Med. Biosens. Point Care Appl. 2017, 1, 3–25. [Google Scholar] [CrossRef]
- Stambaugh, A.; Parks, J.W.; Stott, M.A.; Meena, G.G.; Hawkins, A.R.; Schmidt, H. Optofluidic Multiplex Detection of Single SARS-CoV-2 and Influenza A Antigens Using a Novel Bright Fluorescent Probe Assay. Proc. Natl. Acad. Sci. USA 2021, 118, e2103480118. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Maier, S.A.; Tittl, A. Trends in Nanophotonics-Enabled Optofluidic Biosensors. Adv. Opt. Mater. 2022, 10, 2102366. [Google Scholar] [CrossRef]
- Sun, Y.; Quyen, T.L.; Hung, T.Q.; Chin, W.H.; Wolff, A.; Bang, D.D. A Lab-on-a-Chip System with Integrated Sample Preparation and Loop-Mediated Isothermal Amplification for Rapid and Quantitative Detection of Salmonella Spp. in Food Samples. Lab Chip 2015, 15, 1898–1904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, A.P.F. Biosensors: Sense and Sensibility. Chem. Soc. Rev. 2013, 42, 3184–3196. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; White, I.M. Optofluidic Microsystems for Chemical and Biological Analysis. Nat. Photonics 2011, 5, 591–597. [Google Scholar] [CrossRef]
- Schmidt, H.; Hawkins, A.R. The Photonic Integration of Non-Solid Media Using Optofluidics. Nat. Photonics 2011, 5, 598–604. [Google Scholar] [CrossRef]
- Psaltis, D.; Quake, S.R.; Yang, C. Developing Optofluidic Technology through the Fusion of Microfluidics and Optics. Nature 2006, 442, 381–386. [Google Scholar] [CrossRef]
- Hawkins, A.R.; Schmidt, H. Handbook of Optofluidics; CRC Press: Boca Raton, Fl, USA, 2010. [Google Scholar]
- Whitesides, G.M. The Origins and the Future of Microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef]
- Daniels, J.S.; Pourmand, N. Label-Free Impedance Biosensors: Opportunities and Challenges. Electroanalysis 2007, 19, 1239–1257. [Google Scholar] [CrossRef]
- Stambaugh, A.; Parks, J.W.; Stott, M.A.; Meena, G.G.; Hawkins, A.R.; Schmidt, H. Optofluidic Detection of Zika Nucleic Acid and Protein Biomarkers Using Multimode Interference Multiplexing. Biomed. Opt. Express 2018, 9, 3725–3730. [Google Scholar] [CrossRef] [PubMed]
- Nikoleli, G.P.; Siontorou, C.G.; Nikolelis, D.P.; Bratakou, S.; Karapetis, S.; Tzamtzis, N. Biosensors Based on Microfluidic Devices Lab-on-a-Chip and Microfluidic Technology. Nanotechnol. Biosens. 2018, 1, 375–394. [Google Scholar] [CrossRef]
- Monat, C.; Domachuk, P.; Eggleton, B.J. Integrated Optofluidics: A New River of Light. Nat. Photonics 2007, 1, 106–114. [Google Scholar] [CrossRef]
- Meena, G.G.; Jain, A.; Parks, J.W.; Stambaugh, A.; Patterson, J.L.; Hawkins, A.R.; Schmidt, H. Integration of Sample Preparation and Analysis into an Optofluidic Chip for Multi-Target Disease Detection. Lab Chip 2018, 18, 3678–3686. [Google Scholar] [CrossRef] [PubMed]
- Luka, G.; Ahmadi, A.; Najjaran, H.; Alocilja, E.; Derosa, M.; Wolthers, K.; Malki, A.; Aziz, H.; Althani, A.; Hoorfar, M. Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications. Sensors 2015, 15, 30011–30031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Sanchez, M.M.; Yin, Y.; Herzer, R.; Ma, L.; Schmidt, O.G. Silicon-Based Integrated Label-Free Optofluidic Biosensors: Latest Advances and Roadmap. Adv. Mater. Technol. 2020, 5, 1901138. [Google Scholar] [CrossRef]
- Szydzik, C.; Gavela, A.F.; Herranz, S.; Roccisano, J.; Knoerzer, M.; Thurgood, P.; Khoshmanesh, K.; Mitchell, A.; Lechuga, L.M. An Automated Optofluidic Biosensor Platform Combining Interferometric Sensors and Injection Moulded Microfluidics. Lab Chip 2017, 17, 2793–2804. [Google Scholar] [CrossRef] [Green Version]
- Parks, J.W.; Cai, H.; Zempoaltecatl, L.; Yuzvinsky, T.D.; Leake, K.; Hawkins, A.R.; Schmidt, H. Hybrid Optofluidic Integration. Lab Chip 2013, 13, 4118–4123. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, M.; Gleeson, M.A.; Spaugh, B.; Tybor, F.; Gunn, W.G.; Hochberg, M.; Baehr-Jones, T.; Bailey, R.C.; Gunn, L.C. Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 654–661. [Google Scholar] [CrossRef]
- Rahman, M.; Islam, K.R.; Islam, M.R.; Islam, M.J.; Kaysir, M.R.; Akter, M.; Rahman, M.A.; Alam, S.M.M. A Critical Review on the Sensing, Control, and Manipulation of Single Molecules on Optofluidic Devices. Micromachines 2022, 13, 968. [Google Scholar] [CrossRef]
- Bhat, M.P.; Kurkuri, M.; Losic, D.; Kigga, M.; Altalhi, T. New Optofluidic Based Lab-on-a-Chip Device for the Real-Time Fluoride Analysis. Anal. Chim. Acta 2021, 1159, 338439. [Google Scholar] [CrossRef] [PubMed]
- Persichetti, G.; Grimaldi, I.A.; Testa, G.; Bernini, R. Multifunctional Optofluidic Lab-on-Chip Platform for Raman and Fluorescence Spectroscopic Microfluidic Analysis. Lab Chip 2017, 17, 2631–2639. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Psaltis, D. Optofluidic Dye Lasers. Microfluid. Nanofluidics 2008, 4, 145–158. [Google Scholar] [CrossRef]
- Helbo, B.; Kristensen, A.; Menon, A. A Micro-Cavity Fluidic Dye Laser. J. Micromechanics Microengineering 2003, 13, 307–311. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Suter, J.D.; Fan, X. Robust Integrated Optofluidic-Ring-Resonator Dye Lasers. Opt. Lett. 2009, 34, 1042–1044. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Palit, P.; Liu, Y.; Vaziri, S.; Sun, Y. Reconfigurable Integrated Optofluidic Droplet Laser Arrays. ACS Appl. Mater. Interfaces 2020, 12, 26936–26942. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, Z.; Emery, T.; Scherer, A.; Psaltis, D. Single Mode Optofluidic Distributed Feedback Dye Laser. Opt. Express 2006, 14, 696–701. [Google Scholar] [CrossRef] [Green Version]
- Gersborg-Hansen, M.; Kristensen, A. Tunability of Optofluidic Distributed Feedback Dye Lasers. Opt. Express 2007, 15, 137–142. [Google Scholar] [CrossRef]
- Kim, J.; Kang, M.; Jensen, E.C.; Mathies, R.A. Lifting Gate Polydimethylsiloxane Microvalves and Pumps for Microfluidic Control. Anal. Chem. 2012, 84, 2067–2071. [Google Scholar] [CrossRef] [Green Version]
- Sano, T.; Black, J.; Mitchell, S.; Zhang, H.; Schmidt, H. Pneumatically Tunable Optofluidic DFB Dye Laser Using Corrugated Sidewalls. Opt. Lett. 2020, 45, 5978. [Google Scholar] [CrossRef]
- Parks, J.W.; Schmidt, H. Flexible Optofluidic Waveguide Platform with Multi-Dimensional Reconfigurability. Sci. Rep. 2016, 6, 33008. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Qiu, W.; Shao, G.; Wang, W. A New Fabrication Method for All-PDMS Waveguides. Sens. Actuators A Phys. 2013, 204, 44–47. [Google Scholar] [CrossRef]
- Ganjalizadeh, V.; Meena, G.G.; Wall, T.A.; Stott, M.A.; Hawkins, A.R.; Schmidt, H. Fast Custom Wavelet Analysis Technique for Single Molecule Detection and Identification. Nat. Commun. 2022, 13, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Gökaltun, A.; Kang, Y.B.A.; Yarmush, M.L.; Usta, O.B.; Asatekin, A. Simple Surface Modification of Poly(Dimethylsiloxane) via Surface Segregating Smart Polymers for Biomicrofluidics. Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sano, T.; Zhang, H.; Losakul, R.; Schmidt, H. All-in-One Optofluidic Chip for Molecular Biosensing Assays. Biosensors 2022, 12, 501. https://doi.org/10.3390/bios12070501
Sano T, Zhang H, Losakul R, Schmidt H. All-in-One Optofluidic Chip for Molecular Biosensing Assays. Biosensors. 2022; 12(7):501. https://doi.org/10.3390/bios12070501
Chicago/Turabian StyleSano, Tyler, Han Zhang, Ravipa Losakul, and Holger Schmidt. 2022. "All-in-One Optofluidic Chip for Molecular Biosensing Assays" Biosensors 12, no. 7: 501. https://doi.org/10.3390/bios12070501
APA StyleSano, T., Zhang, H., Losakul, R., & Schmidt, H. (2022). All-in-One Optofluidic Chip for Molecular Biosensing Assays. Biosensors, 12(7), 501. https://doi.org/10.3390/bios12070501