Niosome-Assisted Delivery of DNA Fluorescent Probe with Optimized Strand Displacement for Intracellular MicroRNA21 Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Double-Stranded DNA Probe
2.3. Preparation and Characterization of Niosome System
2.4. Characterization of SPN and SPN/dsDNA Complexes
2.5. Selection of Reporter DNA Strand Length
2.6. Fluorescence Assay of miR21
2.7. Cell Culture
2.8. miRNA Quantification by RT-qPCR
2.9. In Situ Fluorescence Imaging of miR21
2.10. Cell Viability
2.11. Statistical Analysis
3. Results and Discussion
3.1. Optimization of Double-Stranded DNA Probe for miR21 Sensing
3.2. Analytical Performance of the dsDNA Probe for In Vitro miR21 Sensing
3.3. Selectivity and Specificity of the dsDNA Probe
3.4. Synthesis and Characterization of Niosome/dsDNA Platform
3.5. Intracellular miR21 Fluorescence Imaging
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rooij, E.V.; Olson, E.N. MicroRNA therapeutics for cardiovascular disease: Opportunities and obstacles. Nat. Rev. Drug Discov. 2012, 11, 860–872. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ba, Y.; Ma, L.; Cai, X.; Yin, Y.; Wang, K.; Guo, J.; Zhang, Y.; Chen, J.; Guo, X.; et al. Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008, 18, 997–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.; O’Briant, K.C.; Allen, A.; et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA 2008, 105, 10513–10518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Gao, Y.; Liu, P.; Xu, S.; Luo, X. Core—Shell Multifunctional Nanomaterial-Based All-in-One Nanoplatform for Simultaneous Multilayer Imaging of Dual Types of Tumor Biomarkers and Photothermal Therapy. Anal. Chem. 2020, 92, 15169–15178. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, Z.; Shao, Y.; Hu, W.; Li, L. Spatially Selective Imaging of Mitochondrial MicroRNAs via Optically Programmable Strand Displacement Reactions. Angew. Chem. Int. Ed. 2021, 60, 17937–17941. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, F.; Wei, W.; Wang, Y.; Yang, S.; Li, J.; Xing, Y.; Zhou, L.; Dai, W.; Dong, H. Self-Propelled Janus Mesoporous Micromotor for Enhanced MicroRNA Capture and Amplified Detection in Complex Biological Samples. ACS Nano 2022, 16, 5587–5596. [Google Scholar] [CrossRef]
- Xian, L.; Xu, F.; Liu, J.; Xu, N.; Li, H.; Ge, H.; Shao, K.; Fan, J.; Xiao, G.; Peng, X. MicroRNA Detection with Turnover Amplification via Hybridization-Mediated Staudinger Reduction for Pancreatic Cancer Diagnosis. J. Am. Chem. Soc. 2019, 141, 20490–20497. [Google Scholar] [CrossRef]
- Su, M.; Chen, Z.; Ye, B.; Chen, H.; Yuan, R.; Li, P.; Liang, W. Three-in-One System Based on Multi-Path Nucleic Acid Amplification for Bioanalysis of Pre-miRNA/miRNA and Dicer Activity. Anal. Chem. 2022, 94, 8258–8266. [Google Scholar] [CrossRef]
- Lagos-Quintana, M.; Rauhut, R.; Lendeckel, W.; Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 2001, 294, 853–858. [Google Scholar] [CrossRef] [Green Version]
- Meng, F.; Henson, R.; Wehbe Janek, H.; Ghoshal, K.; Jacob, S.T.; Patel, T. MicroRNA-21 Regulates Expression of the PTEN Tumor Suppressor Gene in Human Hepatocellular Cancer. Gastroenterology 2007, 133, 647–658. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wang, J.; Zhao, F.; Liu, Q.; Jiang, K.; Yang, G. MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC). Clin. Chim. Acta 2010, 411, 846–852. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Si, M.; Wu, H.; Mo, Y. MicroRNA-21 Targets the Tumor Suppressor Gene Tropomyosin 1 (TPM1). J. Biol. Chem. 2007, 282, 14328–14336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatley, M.E.; Patrick, D.M.; Garcia, M.R.; Richardson, J.A.; Bassel-Duby, R.; van Rooij, E.; Olson, E.N. Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. Cancer Cell 2010, 18, 282–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krichevsky, A.M.; Gabriely, G. miR-21: A small multi-faceted RNA. J. Cell. Mol. Med. 2009, 13, 39–53. [Google Scholar] [CrossRef]
- Volinia, S.; Calin, G.A.; Liu, C.; Ambs, S.; Cimmino, A.; Petrocca, F.; Visone, R.; Iorio, M.; Roldo, C.; Ferracin, M.; et al. A MicroRNA Expression Signature of Human Solid Tumors Defines Cancer Gene Targets. Proc. Natl. Acad. Sci. USA 2006, 103, 2257–2261. [Google Scholar] [CrossRef] [Green Version]
- Medina, P.P.; Nolde, M.; Slack, F.J. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 2010, 467, 86–90. [Google Scholar] [CrossRef]
- Jenike, A.E.; Halushka, M.K. miR-21: A non—specific biomarker of all maladies. Biomark. Res. 2021, 9, 18. [Google Scholar] [CrossRef]
- Pfeffer, S.R.; Yang, C.H.; Pfeffer, L.M. The Role of miR-21 in Cancer. Drug Dev. Res. 2015, 76, 270–277. [Google Scholar] [CrossRef]
- Greenwald, E.C.; Mehta, S.; Zhang, J. Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. Chem. Rev. 2018, 118, 11707–11794. [Google Scholar] [CrossRef]
- Schäferling, M. The Art of Fluorescence Imaging with Chemical Sensors. Angew. Chem. Int. Ed. 2012, 51, 3532–3554. [Google Scholar] [CrossRef]
- Yue, S.; Li, Y.; Qiao, Z.; Song, W.; Bi, S. Rolling Circle Replication for Biosensing, Bioimaging, and Biomedicine. Trends Biotechnol. 2021, 39, 1160–1172. [Google Scholar] [CrossRef] [PubMed]
- Seeman, N.C.; Sleiman, H.F. DNA nanotechnology. Nat. Rev. Mater. 2018, 3, 17068. [Google Scholar] [CrossRef]
- Krishnan, Y.; Seeman, N.C. Introduction: Nucleic Acid Nanotechnology. Chem. Rev. 2019, 119, 6271–6272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, X.; Murfin, L.C.; Wu, L.; Lewis, S.E.; James, T.D. Fluorescent small organic probes for biosensing. Chem. Sci. 2021, 12, 346–3426. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Gong, X.; Wang, Q.; Pan, M.; Liu, X.; Liu, J.; Xia, F.; Wang, F. Construction of an autonomously concatenated hybridization chain reaction for signal amplification and intracellular imaging. Chem. Sci. 2018, 9, 52–61. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Chen, T.; Wang, X.; Ke, Y.; Jiang, J. RNA imaging in living mice enabled by an in vivo hybridization chain reaction circuit with a tripartite DNA probe. Chem. Sci. 2020, 11, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Cansiz, S.; Zhang, L.; Teng, I.; Qiu, L.; Li, J.; Liu, Y.; Zhou, C.; Hu, R.; Zhang, T.; et al. A Nonenzymatic Hairpin DNA Cascade Reaction Provides High Signal Gain of mRNA Imaging inside Live Cells. J. Am. Chem. Soc. 2015, 137, 4900–4903. [Google Scholar] [CrossRef] [Green Version]
- Li, J.J.; Li, W.N.; Du, W.F.; Lv, M.M.; Wu, Z.K.; Jiang, J.H. Target induced reconstruction of DNAzymatic amplifier nanomachines in living cells for concurrent imaging and gene silencing. Chem. Commun. 2018, 54, 10626–10629. [Google Scholar] [CrossRef]
- Cheglakov, Z.; Cronin, T.M.; He, C.; Weizmann, Y. Live Cell MicroRNA Imaging Using Cascade Hybridization Reaction. J. Am. Chem. Soc. 2015, 137, 6116–6119. [Google Scholar] [CrossRef]
- Crosby, D.; Bhatia, S.; Brindle, K.M.; Coussens, L.M.; Dive, C.; Emberton, M.; Esener, S.; Fitzgerald, R.C.; Gambhir, S.S.; Kuhn, P.; et al. Early detection of cancer. Science 2022, 375, eaay9040-1. [Google Scholar] [CrossRef]
- Sun, T.; Zhang, Y.S.; Pang, B.; Hyun, D.C.; Yang, M.; Xia, Y. Engineered Nanoparticles for Drug Delivery in Cancer Therapy. Angew. Chem. Int. Ed. 2014, 53, 12320–12364. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yao, T.; Cai, W.; Yu, S.; Hong, Y.; Nguyen, K.T.; Yuan, B. A Biocompatible and Near—Infrared Liposome for In Vivo Ultrasound—Switchable Fluorescence Imaging. Adv. Healthc. Mater. 2020, 9, 1901457. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Liang, X.; Yang, J.; Zhao, C.; Nie, W.; Liu, L.; Yi, T.; Jiang, Y.; Geng, J.; Zhao, X.; et al. Hyaluronan Reduces Cationic Liposome-Induced Toxicity and Enhances the Antitumor Effect of Targeted Gene Delivery in Mice. ACS Appl. Mater. Interfaces 2018, 10, 32006–32016. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.Z.; Xu, Y.; Xie, J.F.; Jiang, Z.H.; Peng, L.H. Ginsenoside as a new stabilizer enhances the transfection efficiency and biocompatibility of cationic liposome. Biomater. Sci. 2021, 9, 8373–8385. [Google Scholar] [CrossRef]
- Moghassemi, S.; Hadjizadeh, A. Nano-niosomes as nanoscale drug delivery systems: An illustrated review. J. Control. Release 2014, 185, 22–36. [Google Scholar] [CrossRef]
- Grimaldi, N.; Andrade, F.; Segovia, N.; Ferrer-Tasies, L.; Sala, S.; Veciana, J.; Ventosa, N. Lipid-based nanovesicles for nanomedicine. Chem. Soc. Rev. 2016, 45, 652–6545. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Yang, C.; Zheng, J.; Wang, M.; Chen, M.; Le, D.Q.S.; Kjems, J.; Bünger, C.E. Enhanced efficacy of chemotherapy for breast cancer stem cells by simultaneous suppression of multidrug resistance and antiapoptotic cellular defense. Acta Biomater. 2015, 28, 171–182. [Google Scholar] [CrossRef]
- Obeid, M.A.; Elburi, A.; Young, L.C.; Mullen, A.B.; Tate, R.J.; Ferro, V.A. Formulation of Nonionic Surfactant Vesicles (NISV) Prepared by Microfluidics for Therapeutic Delivery of siRNA into Cancer Cells. Mol. Pharm. 2017, 14, 2450–2458. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Zhang, Y.; Yu, B.; Phelps, M.A.; Lee, L.J.; Lee, R.J. Comparative cellular pharmacokinetics and pharmacodynamics of siRNA delivery by SPANosomes and by cationic liposomes. Nanomed. Nanotechnol. Biol. Med. 2013, 9, 504–513. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Gao, S.; Song, P.; Dagnæs-Hansen, F.; Jakobsen, M.; Kjems, J. Theranostic Niosomes for Efficient siRNA/MicroRNA Delivery and Activatable Near-Infrared Fluorescent Tracking of Stem Cells. ACS Appl. Mater. Interfaces 2018, 10, 19494–19503. [Google Scholar] [CrossRef]
- Jiang, Y.J.; Wang, N.; Cheng, F.; Lin, H.R.; Zhen, S.J.; Li, Y.F.; Li, C.M.; Huang, C.Z. Dual Energy Transfer-Based DNA/Graphene Oxide Nanocomplex Probe for Highly Robust and Accurate Monitoring of Apoptosis-Related microRNAs. Anal. Chem. 2020, 92, 11565–11572. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhang, S.; Zhao, H.; Niu, H.; Wu, Z.; Chang, H. Branched DNA Junction-Enhanced Isothermal Circular Strand Displacement Polymerization for Intracellular Imaging of MicroRNAs. Anal. Chem. 2018, 90, 13891–13899. [Google Scholar] [CrossRef] [PubMed]
- Chai, S.Q.; Lv, W.Y.; He, J.H.; Li, C.H.; Li, Y.F.; Li, C.M.; Huang, C.Z. Dual Energy Transfer-Based Fluorescent Nanoprobe for Imaging miR-21 in Nonalcoholic Fatty Liver Cells with Low Background. Anal. Chem. 2019, 91, 6761–6768. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Wang, S.; Zhao, J.; Sun, J.; Yang, X. Classical Triplex Molecular Beacons for MicroRNA-21 and Vascular Endothelial Growth Factor Detection. ACS Sens. 2018, 3, 2438–2445. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Chen, T.; Huo, J.; Chu, X. Nanoscale Zeolitic Imidazolate Framework-8 for Ratiometric Fluorescence Imaging of MicroRNA in Living Cells. Anal. Chem. 2017, 89, 12351–12359. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, X.; Fang, X.; Cai, S.; Wang, M.; Xing, C.; Lu, C.; Yang, H. Self-Assembled mRNA-Responsive DNA Nanosphere for Bioimaging and Cancer Therapy in Drug-Resistant Cells. Anal. Chem. 2020, 92, 11779–11785. [Google Scholar] [CrossRef]
- Zhao, T.; Gao, Y.; Wang, J.; Cui, Y.; Niu, S.; Xu, S.; Luo, X. From Passive Signal Output to Intelligent Response: “On-Demand” Precise Imaging Controlled by Near-Infrared Light. Anal. Chem. 2021, 93, 12329–12336. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, C.; Li, N.; Pan, W.; Fu, M.; Ong Achwa Machuki, J.; Ge, K.; Liu, Z.; Gao, F. Gold-Bipyramid-Based Nanothernostics: FRET-Mediated Protein-Specific Sialylation Visualization and Oxygen-Augmenting Phototherapy against Hypoxic Tumor. Anal. Chem. 2021, 93, 12103–12115. [Google Scholar] [CrossRef]
Name | Sequence 5′-3′ |
---|---|
Capture DNA | TCAACATCAGTCTGATAAGCTA-BHQ1 |
Reporter DNA 22 | FAM-TAGCTTATCAGACTGATGTTGA |
Reporter DNA 20 | FAM-TAGCTTATCAGACTGATGTT |
Reporter DNA 18 | FAM-TAGCTTATCAGACTGATG |
Reporter DNA 16 | FAM-TAGCTTATCAGACTGA |
Reporter DNA 14 | FAM-TAGCTTATCAGACT |
miR21 | UAG CUU AUC AGA CUG AUG UUG A |
mis-2-miR21 | UAG CUU AUG AGA GUG AUG UUG A |
mis-4-miR21 | UAG CUU AUG ACA GUG AUC UUG A |
miR155 | UUA AUG CUA AUU GUG AUA GGG GU |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.; Zhang, H.; Dong, X.; Lin, M.; Yang, C. Niosome-Assisted Delivery of DNA Fluorescent Probe with Optimized Strand Displacement for Intracellular MicroRNA21 Imaging. Biosensors 2022, 12, 557. https://doi.org/10.3390/bios12080557
Zhu Z, Zhang H, Dong X, Lin M, Yang C. Niosome-Assisted Delivery of DNA Fluorescent Probe with Optimized Strand Displacement for Intracellular MicroRNA21 Imaging. Biosensors. 2022; 12(8):557. https://doi.org/10.3390/bios12080557
Chicago/Turabian StyleZhu, Zongwei, Hongqian Zhang, Xiaoxue Dong, Meng Lin, and Chuanxu Yang. 2022. "Niosome-Assisted Delivery of DNA Fluorescent Probe with Optimized Strand Displacement for Intracellular MicroRNA21 Imaging" Biosensors 12, no. 8: 557. https://doi.org/10.3390/bios12080557
APA StyleZhu, Z., Zhang, H., Dong, X., Lin, M., & Yang, C. (2022). Niosome-Assisted Delivery of DNA Fluorescent Probe with Optimized Strand Displacement for Intracellular MicroRNA21 Imaging. Biosensors, 12(8), 557. https://doi.org/10.3390/bios12080557