Fabrication and Characterization of Acute Myocardial Infarction Myoglobin Biomarker Based on Chromium-Doped Zinc Oxide Nanoparticles
Abstract
:1. Introduction
2. Experimental Details
2.1. Materials
2.2. Synthesis of ZnO and Cr-Doped ZnO NPs
2.3. Characterizations
2.4. Fabrication of Mb Sensor
3. Results and Discussion
3.1. Characterizations and Properties of Cr-Doped ZnO NPs
3.2. Fabrication and Characterization of Mb Biosensor Based on Cr-Doped ZnO NPs
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liao, L.; Liu, D.; Li, J.; Liu, C.; Fu, Q.; Ye, M. Synthesis and Raman analysis of 1D-ZnO nanostructure via vapor phase growth. Appl. Surf. Sci. 2005, 240, 175–179. [Google Scholar] [CrossRef]
- WHO Staff. Avoiding Heart Attacks and Strokes: Don’t Be a Victim-Protect Yourself; World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- Tabish, T.A.; Hayat, H.; Abbas, A.; Narayan, R.J. Graphene Quantum Dots-Based Electrochemical Biosensing Platform for Early Detection of Acute Myocardial Infarction. Biosensors 2022, 12, 77. [Google Scholar] [CrossRef] [PubMed]
- Ravariu, C.; Mihaiescu, D.; Morosan, A.; Vasile, B.S.; Purcareanu, B. Sulpho-Salicylic Acid Grafted to Ferrite Nanoparticles for n-Type Organic Semiconductors. Nanomaterials 2020, 10, 1787. [Google Scholar] [CrossRef] [PubMed]
- Hui, Y.; Liu, L.; Chen, F.; Huang, L. Preparation of Silver Nanoparticle Composite Material and Its Role in Electrocardiogram Treatment of Acute Myocardial Infarction. Sci. Adv. Mater. 2020, 12, 1572–1580. [Google Scholar] [CrossRef]
- Guk, K.; Han, G.; Lim, J.; Jeong, K.; Kang, T.; Lim, E.-K.; Jung, J. Evolution of wearable devices with real-time disease monitoring for personalized healthcare. Nanomaterials 2019, 9, 813. [Google Scholar] [CrossRef] [Green Version]
- Reddy, K.; Khaliq, A.; Henning, R.J. Recent advances in the diagnosis and treatment of acute myocardial infarction. World J. Cardiol. 2015, 7, 243. [Google Scholar] [CrossRef]
- Wang, G.; Mamat, X.; Li, Y.; Hu, X.; Wang, P.; Xin, X.; Hu, G. Highly sensitive electrochemical sensor for the detection of chloramphenicol based on biomass derived porous carbon. Sci. Adv. Mater. 2020, 12, 376–382. [Google Scholar] [CrossRef]
- Ibrahim, A.A.; Ahmad, R.; Umar, A.; Al-Assiri, M.; Al-Salami, A.; Kumar, R.; Ansari, S.; Baskoutas, S. Two-dimensional ytterbium oxide nanodisks based biosensor for selective detection of urea. Biosens. Bioelectron 2017, 98, 254–260. [Google Scholar] [CrossRef]
- Fathil, M.; Arshad, M.M.; Gopinath, S.C.; Hashim, U.; Adzhri, R.; Ayub, R.; Ruslinda, A.; Nuzaihan, M.; Azman, A.; Zaki, M. Diagnostics on acute myocardial infarction: Cardiac troponin biomarkers. Biosens. Bioelectron 2015, 70, 209–220. [Google Scholar] [CrossRef]
- Chen, X.; Pei, Y. Application of graphene-based nanocomposites in electrochemical detection of heavy metal ions. Sci. Adv. Mater. 2020, 12, 435–440. [Google Scholar] [CrossRef]
- Umar, A.; Ahmad, R.; Kumar, R.; Ibrahim, A.A.; Baskoutas, S. Bi2O2CO3 nanoplates: Fabrication and characterization of highly sensitive and selective cholesterol biosensor. J. Alloys Compd. 2016, 683, 433–438. [Google Scholar] [CrossRef]
- Noor, M.O.; Krull, U.J. Silicon nanowires as field-effect transducers for biosensor development: A review. Anal. Chim. Acta 2014, 825, 1–25. [Google Scholar] [CrossRef]
- Cheng, H.; Zhou, Z.; Qin, D.; Huang, W.; Feng, J.; Tang, T.; Hu, G.; Li, L. Electrochemical sensor based on electrospun three-dimensional carbon nanofibers to determine trace levels of Cu (II). Sci. Adv. Mater. 2020, 12, 693–700. [Google Scholar] [CrossRef]
- Umar, A.; Ahmad, R.; Al-Hajry, A.; Kim, S.H.; Abaker, M.E.; Hahn, Y.-B. Spruce branched α-Fe2O3 nanostructures as potential scaffolds for a highly sensitive and selective glucose biosensor. New J. Chem. 2014, 38, 5873–5879. [Google Scholar] [CrossRef]
- Tang, L.; Casas, J. Quantification of cardiac biomarkers using label-free and multiplexed gold nanorod bioprobes for myocardial infarction diagnosis. Biosens. Bioelectron. 2014, 61, 70–75. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, A.; Mishra, Y.K.; Kobayashi, H.; Turner, A.P. Intelligent Nanomaterials; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Chomba, H.; Pan, T.; Zhuo, X.; Zhao, L.; Wang, Y.; Huang, Z.; Martin, H.; Chen, D.; Nie, L. A Bio-Barcode Electrochemical DNA Biosensor Based on Poly T30 Copper Nanoparticle Signaling. Sci. Adv. Mater. 2021, 13, 73–79. [Google Scholar] [CrossRef]
- EMatveeva, G.; Gryczynski, Z.; Lakowicz, J.R. Myoglobin immunoassay based on metal particle-enhanced fluorescence. J. Immunol. Methods 2005, 302, 26–35. [Google Scholar] [CrossRef]
- Aldous, S.J. Cardiac biomarkers in acute myocardial infarction. Int. J. Cardiol. 2013, 164, 282–294. [Google Scholar] [CrossRef]
- Mokhtarzadeh, A.; Eivazzadeh-Keihan, R.; Pashazadeh, P.; Hejazi, M.; Gharaatifar, N.; Hasanzadeh, M.; Baradaran, B.; de la Guardia, M. Nanomaterial-based biosensors for detection of pathogenic virus. TrAC Trends Anal. Chem. 2017, 97, 445–457. [Google Scholar] [CrossRef]
- Mishra, S.; Chishti, B.; Fouad, H.; Seo, H.; Ansari, Z. Nanostructured cerium-oxide-based screen printed electrode for electrochemical detection of melamine via ascorbic acid. Sci. Adv. Mater. 2020, 12, 220–227. [Google Scholar] [CrossRef]
- Jubete, E.; Loaiza, O.A.; Ochoteco, E.; Pomposo, J.A.; Grande, H.; Rodríguez, J. Rodríguez, Nanotechnology: A tool for improved performance on electrochemical screen-printed (bio) sensors. J. Sens. 2009, 2009, 842575. [Google Scholar] [CrossRef] [Green Version]
- Khodrog, O.; Kabir, N.; Gong, X.; Yuan, Q.; Liu, J. Scintillation and Luminescence Properties of the Zinc Oxide (ZnO) Doped Frit Crystal Under Gamma Radiation. J. Nanoelectron. Optoelectron. 2020, 15, 566–573. [Google Scholar] [CrossRef]
- Barbosa, H.P.; Araújo, D.A.G.; Pradela-Filho, L.A.; Takeuchi, R.M.; de Lima, R.G.; Ferrari, J.L.; Góes, M.S.; dos Santos, A.L. Zinc Oxide as a Multifunctional Material: From Biomedical Applications to Energy Conversion and Electrochemical Sensing, Metal and Metal Oxides for Energy and Electronics; Springer: Cham, Switzerland, 2021; pp. 251–305. [Google Scholar]
- Umar, A.; Alduraibi, M.; Al-Dossary, O. NOx Gas Sensing Properties of Fe-Doped ZnO NPs. Sci. Adv. Mater. 2020, 12, 908–914. [Google Scholar] [CrossRef]
- Wu, C.; Ye, G.; Qi, L.; Wang, Y.; Yuan, C.; Zhang, L. Novel ZnO sensor and gas detection performance in tunnel construction. J. Nanoelectron. Optoelectron. 2020, 15, 1114–1119. [Google Scholar]
- Arshi, N.; Prashanthi, Y.; Rao, T.N.; Ahmed, F.; Kumar, S.; Oves, M. Biosynthesis of ZnO Nanostructures Using Azadirachta indica Leaf Extract and Their Effect on Seed Germination and Seedling Growth of Tomato: An Eco-Friendly Approach. J. Nanoelectron. Optoelectron. 2020, 15, 1412–1422. [Google Scholar] [CrossRef]
- Barick, K.; Singh, S.; Aslam, M.; Bahadur, D. Porosity and photocatalytic studies of transition metal doped ZnO nanoclusters. Microporous Mesoporous Mater. 2010, 134, 195–202. [Google Scholar] [CrossRef]
- Mugheri, A.Q.; Fouad, H.; Imran, M.; Ameen, S.; Anil, S. Green Approach for the Synthesis of NiO Material and Their Non-Enzymatic Glucose Sensor-Based Applications at Low Potential. Sci. Adv. Mater. 2021, 13, 1310–1317. [Google Scholar] [CrossRef]
- Choudhury, B.; Choudhury, A. Oxygen vacancy and dopant concentration dependent magnetic properties of Mn doped TiO2 nanoparticle. Curr. Appl. Phys. 2013, 13, 1025–1031. [Google Scholar] [CrossRef]
- Jiang, S.; Pu, Q.; Zhu, W.; Yan, B.; Xie, G. Modeling Analysis and Performance Study of Toxoplasma IgM Antibody Immunosensor Based on Graphene and Au–Fe3O4. J. Nanoelectron. Optoelectron. 2020, 15, 353–360. [Google Scholar] [CrossRef]
- Sima, M.; Enculescu, I.; Sima, M.; Enache, M.; Vasile, E.; Ansermet, J.P. ZnO: Mn: Cu nanowires prepared by template method. Phys. Status Solidi (B) 2007, 244, 1522–1527. [Google Scholar] [CrossRef]
- Umar, A.; Ahmad, R.; Hwang, S.; Kim, S.; Al-Hajry, A.; Hahn, Y. Development of highly sensitive and selective cholesterol biosensor based on cholesterol oxidase co-immobilized with α-Fe2O3 micro-pine shaped hierarchical structures. Electrochim. Acta 2014, 135, 396–403. [Google Scholar] [CrossRef]
- Dai, M.; Liu, H.; Zhao, D.; Zhu, X.; Umar, A.; Algarni, H.; Wu, X. Ni Foam Substrates Modified with a ZnCo2O4 Nanowire-Coated Ni(OH)2 Nanosheet Electrode for Hybrid Capacitors and Electrocatalysts. ACS Appl. Nanomater. 2021, 4, 5461–5468. [Google Scholar] [CrossRef]
- Kumar, R.; Umar, A.; Kumar, R.; Chauhan, M.S.; Al-Hadeethi, Y. ZnO-SnO2 Nanocubes for Fluorescence Sensing and dye Degradation Applications. Ceram. Int. 2021, 47, 6201–6210. [Google Scholar] [CrossRef]
- Kumar, M.; Chauhan, M.S.; Akhtar, M.S.; Umar, A. Effect of cerium ions in Ce-Doped ZnO nanostructures on their photocatalytic and picric acid chemical sensing. Ceram. Int. 2021, 47, 3089–3098. [Google Scholar] [CrossRef]
- Kumar, R.; Umar, A.; Kumar, R.; Chauhan, M.S.; Kumar, G.; Chauhan, S. Spindle-like Co3O4-ZnO Nanocomposites Scaffold for Hydrazine Sensing and Photocatalytic Degradation of Rhodamine B Dye. Eng. Sci. 2021, 16, 288–300. [Google Scholar] [CrossRef]
- Umar, A.; Akhtar, M.; Algadi, H.; Ibrahim, A.; Alhamami, M.; Baskoutas, S. Highly Sensitive and Selective Eco-Toxic 4-Nitrophenol Chemical Sensor Based on Ag-Doped ZnO Nanoflowers Decorated with Nanosheets. Molecules 2021, 26, 4619. [Google Scholar] [CrossRef]
- Kumar, M.; Negi, K.; Umar, A.; Chauhan, M.S. Photocatalytic and fluorescent chemical sensing applications of La-Doped ZnO nanoparticles. Chem. Pap. 2021, 75, 1555–1566. [Google Scholar] [CrossRef]
- Ahmed, F.; Almutairi, G.; Alotaibi, B.; Kumar, S.; Arshi, N.; Hussain, S.G.; Umar, A.; Ahmad, N.; Aljaafari, A. Binder-Free Electrode based on ZnO Nanorods Directly Grown on Aluminum Substrate for High Performance Supercapacitors. Nanomaterials 2020, 10, 1979. [Google Scholar] [CrossRef]
- Al-Hadeethi, Y.; Umar, A.; Al-Heniti, S.H.; Raffah, B.M.; Badran, R.I. ZnO nanowalls/Si substrate heterojunction assembly: Morphological, optical and electrical properties. J. Nanoelectron. Optoelectron. 2020, 15, 586–591. [Google Scholar] [CrossRef]
- Radhakrishnan, S.; Sumathi, C.; Umar, A.; Kim, S.J.; Wilson, J.; Dharuman, V. Polypyrrole–poly (3, 4-ethylenedioxythiophene)–Ag (PPy–PEDOT–Ag) nanocomposite films for label-free electrochemical DNA sensing. Biosens. Bioelectron. 2013, 47, 133–140. [Google Scholar] [CrossRef]
- Nakarungsee, P.; Srirattanapibul, S.; Issro, C.; Tang, I.M.; Thongmee, S. High performance Cr doped ZnO by UV for NH3 gas sensor. Sens. Actuators A Phys. 2020, 314, 112230. [Google Scholar] [CrossRef]
- Iqbal, M.; Thebo, A.A.; Jatoi, W.B.; Tabassum, M.T.; Rehman, M.U.; Thebo, K.H.; Mohsin, M.A.; Ullah, S.; Jatoi, A.H.; Shah, I. Facile synthesis of Cr doped hierarchical ZnO nano-structures for enhanced photovoltaic performance. Inorg. Chem. Commun. 2020, 116, 107902. [Google Scholar] [CrossRef]
- Chang, C.J.; Yang, T.L.; Weng, Y.C. Synthesis and characterization of Cr-doped ZnO nanorod-array photocatalysts with improved activity. J. Solid State Chem. 2014, 214, 101–107. [Google Scholar] [CrossRef]
- Al-Hardan, N.H.; Abdullah, M.J.; Aziz, A.A. Performance of Cr-doped ZnO for acetone sensing. Appl. Surf. Sci. 2013, 270, 480–485. [Google Scholar] [CrossRef]
- Chinnasamy, M.; Balasubramanian, K. Enhanced UV photodetection behavior of Cr doped wurtzite ZnO crystalline nanorods. Opt. Mater. 2020, 110, 110492. [Google Scholar] [CrossRef]
- Wu, C.; Shen, L.; Zhang, Y.-C.; Huang, Q. Solvothermal synthesis of Cr-doped ZnO nanowires with visible light-driven photocatalytic activity. Mater. Lett. 2011, 65, 1794–1796. [Google Scholar] [CrossRef]
- Kauppinen, J.K.; Moffatt, D.J.; Mantsch, H.H.; Cameron, D.G. Fourier self-deconvolution: A method for resolving intrinsically overlapped bands. Appl. Spectrosc. 1981, 35, 271–276. [Google Scholar] [CrossRef]
- Rusling, J.; Kumosinski, T. New advances in computer modeling of chemical and biochemical data. Intell. Instrum. Comput. 1992, 10, 139–145. [Google Scholar]
- Lee, Y.; Song, K.B. Effect of gamma-irradiation on the molecular properties of myoglobin. J. Biochem. Mol. Biol. 2002, 35, 590–594. [Google Scholar]
- Mandal, G.; Bhattacharya, S.; Ganguly, T. Mode of bindings of zinc oxide NPs to myoglobin and horseradish peroxidase: A spectroscopic investigations. J. Appl. Phys. 2011, 110, 024701. [Google Scholar] [CrossRef]
- Ren, S.X.; Sun, G.W.; Zhao, J.; Dong, J.Y.; Wei, Y.; Ma, Z.C.; Zhao, X.; Chen, W. Electric field-induced magnetic switching in Mn:ZnO film. Appl. Phys. Lett. 2014, 104, 232406. [Google Scholar] [CrossRef]
- Chiang, Y.D.; Chang, W.Y.; Ho, C.Y.; Chen, C.Y.; Ho, C.H.; Lin, S.J.; Wu, T.B.; He, J.H. Single-ZnO-nanowire memory. IEEE Trans. Electron Devices 2011, 58, 1735–1740. [Google Scholar] [CrossRef]
- El-Said, W.A.; Fouad, D.M.; El-Safty, S.A. Ultrasensitive label-free detection of cardiac biomarker myoglobin based on surface-enhanced Raman spectroscopy. Sens. Actuators B Chem. 2016, 228, 401–409. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, X.; Yang, X.; Liu, F.; Wang, K. Visual detection of myoglobin via G-quadruplex DNAzyme functionalized gold NPs-based colorimetric biosensor. Sens. Actuators B Chem. 2015, 212, 440–445. [Google Scholar] [CrossRef]
- Moreira, F.T.; Dutra, R.A.; Noronha, J.P.; Sales, M.G.F. Myoglobin-biomimetic electroactive materials made by surface molecular imprinting on silica beads and their use as ionophores in polymeric membranes for potentiometric transduction. Biosens. Bioelectron. 2011, 26, 4760–4766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Han, M.; Ye, X.; Wu, K.; Wu, T.; Li, C. Voltammetric myoglobin sensor based on a glassy carbon electrode modified with a composite film consisting of carbon nanotubes and a molecularly imprinted polymerized ionic liquid. Microchim. Acta 2017, 184, 195–202. [Google Scholar] [CrossRef]
- Osman, B.; Uzun, L.; Beşirli, N.; Denizli, A. Microcontact imprinted surface plasmon resonance sensor for myoglobin detection. Mater. Sci. Eng. C 2013, 33, 3609–3614. [Google Scholar] [CrossRef]
- Lee, H.Y.; Choi, J.S.; Guruprasath, P.; Lee, B.-H.; Cho, Y.W. An electrochemical biosensor based on a myoglobin-specific binding peptide for early diagnosis of acute myocardial infarction. Anal. Sci. 2015, 31, 699–704. [Google Scholar] [CrossRef] [Green Version]
- Shumyantseva, V.V.; Bulko, T.V.; Sigolaeva, L.V.; Kuzikov, A.V.; Archakov, A.I. Electrosynthesis and binding properties of molecularly imprinted poly-o-phenylenediamine for selective recognition and direct electrochemical detection of myoglobin. Biosens. Bioelectron. 2016, 86, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Adeel, M.; Rahman, M.M.; Lee, J.-J. Label-free aptasensor for the detection of cardiac biomarker myoglobin based on gold NPs decorated boron nitride nanosheets. Biosens. Bioelectron. 2019, 126, 143–150. [Google Scholar] [CrossRef]
- Prashanth, S.; Ramesh, K.; Seetharamappa, J. Electrochemical oxidation of an immunosuppressant, mycophenolate mofetil, and its assay in pharmaceutical formulations. Int. J. Electrochem. 2011, 2011, 193041. [Google Scholar] [CrossRef] [Green Version]
- Wang, J. Analytical Electrochemistry, 2nd ed.; Wiley, VCH: New York, NY, USA, 2000. [Google Scholar]
ZnO with Cr Doping Concentrations (No. of Atoms/cm3) | Optical Bandgap (eV) | Grain Size (nm) * | Dislocation Density (×1018m−2) | Strain (ε) | Zeta Potential (mV) |
---|---|---|---|---|---|
Pure ZnO (S0) | 3.59 | 35 | 0.0028 | 0.035 | −68.87 ± 0.05 |
13 × 1017 (S1) | 2.82 | 13 | 0.0061 | 0.505 | −20.60 ± 0.05 |
20 × 1017 (S2) | 2.94 | 22 | 0.0020 | 0.293 | −53.40 ± 0.05 |
32 × 1017 (S3) | 3.29 | 14 | 0.0050 | 0.504 | −54.40 ± 0.05 |
Method | Method/Sample Matrix | Amplification Signal | Linear Range/Sensitivity | LOD Value | Ref. |
---|---|---|---|---|---|
SER spectroscopy | Ag nanostructure modified ITO | SER signal | 937 R.U (µg/mL) | 10ng/mL (0.52 nM) | [56] |
Colorimetric biosensor | DNAzyme-gold NPs | Absorbance | 2.5–100 nM | 2.5 nM | [57] |
Potentiometric | molecular imprinted silica beads | Potential | 8.0 × 10−7 mol/L | 1.3 × 10−6 mol/L | [58] |
Voltammetric | MIP printed glassy carbon electrode | Current | 60.0 nM to 6.0 μM (100 μAmg−1/mL) | 9.7 nM | [59] |
Electrochemical | Ti-NT modified electrodes | Current | 18 μA mg−1 /ml | 50 nM | [53] |
SPR | Imprinted [poly(HEMA-MATrp)] | SPR signal | 0.1 μg/mL–1.0 μg/mL | 87.6 ng/mL (10 nM) | [60] |
Electrochemical | Peptide immobilized gold electrode | Current | 17.8 to 1780 ngml−1 (3 μAng−1/mL) | 9.8 ng/mL (0.5nM) | [61] |
Electrochemical | MIP | Current | 1nM–1 μM | 0.5 nM 9 ng/mL | [62] |
Electrochemical aptasensor | AuNPs/BNNSs | Current | 0.1–100 µg/mL (40 μA μg−1/mL) | 34.6 ng/mL | [63] |
Electrochemical | SPE-Cr-doped ZnO NPs | Current/ resistance | * S0: 2.30 µA cm−2/nM * S1: 37.97 µA cm−2/nM * S2: 34.31 µA cm−2/nM * S3: 30.89 µA cm−2/nM | 1.030 nM 0.150 nM 0.160 nM 0.163 nM | Current work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Fatease, A.; Haque, M.; Umar, A.; Ansari, S.G.; Mahnashi, M.H.; Alhamhoom, Y.; Ansari, Z.A. Fabrication and Characterization of Acute Myocardial Infarction Myoglobin Biomarker Based on Chromium-Doped Zinc Oxide Nanoparticles. Biosensors 2022, 12, 585. https://doi.org/10.3390/bios12080585
Al Fatease A, Haque M, Umar A, Ansari SG, Mahnashi MH, Alhamhoom Y, Ansari ZA. Fabrication and Characterization of Acute Myocardial Infarction Myoglobin Biomarker Based on Chromium-Doped Zinc Oxide Nanoparticles. Biosensors. 2022; 12(8):585. https://doi.org/10.3390/bios12080585
Chicago/Turabian StyleAl Fatease, Adel, Mazharul Haque, Ahmad Umar, Shafeeque G. Ansari, Mater H. Mahnashi, Yahya Alhamhoom, and Zubaida A. Ansari. 2022. "Fabrication and Characterization of Acute Myocardial Infarction Myoglobin Biomarker Based on Chromium-Doped Zinc Oxide Nanoparticles" Biosensors 12, no. 8: 585. https://doi.org/10.3390/bios12080585
APA StyleAl Fatease, A., Haque, M., Umar, A., Ansari, S. G., Mahnashi, M. H., Alhamhoom, Y., & Ansari, Z. A. (2022). Fabrication and Characterization of Acute Myocardial Infarction Myoglobin Biomarker Based on Chromium-Doped Zinc Oxide Nanoparticles. Biosensors, 12(8), 585. https://doi.org/10.3390/bios12080585