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Abstract: In this study, we explored machine learning approaches for predictive diagnosis using
surface-enhanced Raman scattering (SERS), applied to the detection of COVID-19 infection in bio-
logical samples. To do this, we utilized SERS data collected from 20 patients at the University of
Maryland Baltimore School of Medicine. As a preprocessing step, the positive-negative labels are
obtained using Polymerase Chain Reaction (PCR) testing. First, we compared the performance of
linear and nonlinear dimensionality techniques for projecting the high-dimensional Raman spectra to
a low-dimensional space where a smaller number of variables defines each sample. The appropriate
number of reduced features used was obtained by comparing the mean accuracy from a 10-fold
cross-validation. Finally, we employed Gaussian process (GP) classification, a probabilistic machine
learning approach, to correctly predict the occurrence of a negative or positive sample as a function
of the low-dimensional space variables. As opposed to providing rigid class labels, the GP classifier
provides a probability (ranging from zero to one) that a given sample is positive or negative. In prac-
tice, the proposed framework can be used to provide high-throughput rapid testing, and a follow-up
PCR can be used for confirmation in cases where the model’s uncertainty is unacceptably high.

Keywords: surface-enhanced Raman spectroscopy; machine learning; COVID-19; Gaussian processes

1. Introduction

Coronavirus disease (COVID-19), caused by the SARS-CoV-2 virus, is a viral infection
that is primarily spread when people breathe in air contaminated with the virus, either
through aerosolized particles or droplets expelled by infected persons [1]. Due to the
severity of this disease and its rapid spread, there is a pressing need for high-throughput
and quick and reliable testing methods. To enable the better management of patients and
implementation of proactive steps to limit transmission rates, timely identification of SARS-
CoV-2 infection in affected patients is essential [2]. Several COVID-19 testing methods
have been developed to diagnose the disease, including the polymerase chain reaction
test (PCR) [2], antigen-based tests [3], and serological enzyme-linked immunosorbent
assay (ELISA) [4]. However, while the PCR is the most accurate and frequently used as
a benchmark against which other tests are measured, it has certain drawbacks, including
being time-consuming [5] and being a sample-dependent method with a high false-negative
ratio [6]. This makes it unsuitable for situations where rapid medical and personal decisions
need to be made. Furthermore, the ELISA approach is based on immunoassay sensitivity
and requires accurate coupling between an enzyme-coupled antibody and numerous viral-
specific antigens [7]. In response to the limitations, a number of previous studies have
utilized Raman spectroscopy (RS) for diagnoses. In their study, Desai et al. used Raman
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spectroscopy for SARS-CoV-2 detection through the saliva [8]. In their research, Yin et al.
proposed a method of detecting COVID-19 based on Raman spectroscopy, concluding
that it is a safe and effective method for the detection of the disease [6]. In another
study, Carlomagno et al. developed a Raman-based classification model that was able to
distinguish COVID-19 patients with an accuracy range of about 89–92% [9].

Raman spectroscopy is a non-invasive diagnostic method that can reveal chemical and
biochemical information embedded in cells [10]. It is based on the interaction of photons
in an incident beam with a material’s chemical bonds. Raman (or inelastic) scattering
occurs when light photons make direct contact with the sample. This causes molecular
excitations that lead to vibrations. The difference in energy between the incident and
scattered photons correlates to the energy of molecular vibrations in the sample, and these
show up as spikes in the resulting spectra [11]. The spectra provide information about
the presence of some biochemicals in the sample based on the intensity of the spikes. One
limitation, however, of Raman spectroscopy is its low sensitivity arising from low signals.
In response to this issue, the Raman signal is sometimes amplified using plasmonic particles
in a process known as surface-enhanced Raman scattering (SERS). The spectral information
from Raman spectroscopy (and SERS) has been used in previous studies for tasks such
as detecting the occurrence of cancerous cells [12] hepatitis B virus [13], tuberculosis [14],
dengue virus [15], and the influenza virus A [16], to mention a few.

The spectra of heterogeneous bio-systems, including many biomolecules, such as cells,
tissues, and biofluids, are complicated and high dimensional [8]. A Raman spectrum is
typically made up of 500–3000 features (i.e., Raman intensities) and most datasets contain
very few samples [17]. As a result, to extract useful information and gain a deeper under-
standing, it is often necessary to pre-process the data and reduce its dimensionality. Many
data preprocessing and dimensionality reduction techniques have been applied to Raman
spectroscopy data, such as non-negative matrix factorization (NNMF), principal component
analysis (PCA), variational autoencoders (VAEs), and uniform manifold approximation
and projection (UMAP) [11,12,17–20]. What these techniques have in common is that they
are used to map data from high-dimensional input spaces to lower-dimensional subspaces.
Within the low-dimensional subspace, the number of variables that defines the dataset
is reduced, yet the majority of the variance in the original dataset remains retained. The
dimensionality reduction helps alleviate the problem of the curse of dimensionality, which
as just described, is a frequent difficulty that arises in Raman spectral data analysis. In their
research, Desai et al. [8] used PCA to reduce the features from Raman spectral data to two
principal components, covering 76% of the total variance of the dataset.

The reduced set of variables obtained from the dimensionality reduction techniques
as described above is often fed as inputs to various machine learning classifiers. Vi-
dales et al. [21] showed in their work that PCA and support vector machine (SVM) algo-
rithms correctly distinguished between wild and mutant types of the p53 cancer biomarker
with an accuracy of 94%. Bovenkamp et al. [22] achieved 93% accuracy in distinguishing
between low- and high-grade lesions using PCA followed by KNN, demonstrating that RS
can be efficiently integrated with machine learning as a preferred strategy for diagnosing
cancer. Another study examined RS’s capability to distinguish between benign lesions
and malignant cancer samples, which were gathered from 20 different donors. On the
spectrum dataset, a number of chemometric techniques were used. Principal component
analysis-linear discriminant analysis (PCA-LDA), principal component analysis-quadratic
discriminant analysis (PCA-QDA), and partial least squares-discriminant analysis (PLS-DA)
all produced classification results with greater than 80% sensitivity and specificity, while
principal component analysis-support vector machines (PCA-SVM) produced classification
results with greater than 90% sensitivity and specificity [23]. In order to reduce the effects
of high feature dimension and noise in RS data, He et al. utilized variational autoencoders.
The data was then classified using a variety of machine learning techniques, with Gaussian
Naïve Bayes achieving the best accuracy [19].
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The aim of this paper was to introduce a methodology for high-throughput and rapid
COVID-19 detection. Besides an accurate model, it is also of primary concern to have
a reliable estimate of the model’s uncertainties. In other words, we sought to obtain a
model that could answer the following question: how much confidence can we place in a
predicted negative or positive diagnosis? To this end, we employed Gaussian processes
for COVID-19 diagnoses, using data obtained from SERS. Using a Bayesian framework
as its foundation, Gaussian processes belong to a class of non-parametric techniques. The
underlying probability densities are presupposed to have a prior distribution, which en-
sures certain smoothness properties. Given a sample, the GPC approach used in this paper
provided a robust positive–negative probability for each class, from which the uncertainty
associated with the sample could be estimated. We also evaluated the dimensionality
reduction effects of PCA, a linear dimensionality reduction technique, and UMAP, a non-
linear dimensionality reduction technique. Grid search and cross-validation were used
to get the optimal hyperparameter for building the classifier due to the small size of our
dataset. Finally, we discuss the significance of our results and close the paper with some
concluding remarks.

2. Materials and Methods
2.1. Data Collection and Preprocessing

Standard commercial kits were used to extract and purify RNA from the clinical
samples. Antisense oligonucleotides (ASOs) were designed based on the whole genome
sequence of SARS-CoV-2 [24–32]. The ASOs were 20 nucleotides in length. Four ASOs were
used to target the genes (N and E gene) [29]. The thiolated ASOs were used to cap citrate-
stabilized gold nanoparticles (AuNPs). For the Raman experiments, 2 µL of Au-ASO NPs
(concentration of 2 × 1011 particles/mL) were mixed with 2 µL of SARS-CoV-2 RNA (con-
centration ranging from 1 fg/mL, i.e., 63 copies/mL to 1 µg/mL, i.e., 63 × 109 copies/mL)
by gentle pipetting a few times on an ice rack [12,30,33,34]. An amount of 2 µL of this
mixture was drop-casted on a clean stainless-steel slide and then allowed to air-dry at room
temperature. Immediately after, Raman spectra of the dried spots were recorded using a
Renishaw inVia Reflex Raman Spectroscope. In the scenario, where Raman spectra were
acquired directly from the clinical samples and without the extraction of RNA, the samples
were first added with lysis buffer containing guanidine isothiocyanate at a 2:1 v/v ratio.
2 µL of these lysed samples were then added with 2 µL of Au-ASO NPs (concentration of
2 × 1011 particles/mL) and mixed adequately as discussed earlier. The Raman spectra of
AuNP, SARS-CoV-2 RNA, and SERS spectra of Au-ASO, Au-ASO-SARS-CoV-2 RNA are
provided in the Supplementary Information (Figures S1–S3).

Raman experiments were performed using a laser with excitation wavelengths of
λ = 785 nm, grating = 1200, power = 10%, exposure time = 10 s, objective = 50X long
working distance (LWD). At least ten spectra were acquired from each sample for statistical
analysis in the range of 100–3200 cm−1. Raman images were acquired in StreamHR image
acquisition mode using a step size (resolution) of 200 × 200 µm for clinical samples
and 70 × 70 µm for RNA samples. During the Raman imaging, the exposure time was
set to be 0.5 s. Renishaw WiRE 4.4 was used for data processing and analysis of Raman
signals and images. For baseline correction, we used intelligent fitting of WiRE 4.4 with a
polynomial order of 11 and noise tolerance of 1.5. Subsequent data processing was also
performed by OriginLab 2018 [28]. We utilized SERS data collected from 20 patients at
the University of Maryland, with the positive–negative labels obtained using Polymerase
Chain Reaction (PCR) testing. The data collected were evenly balanced, containing a 50–50
split of positive and negative samples. The raw SERS spectra have intensities collected over
3062 Raman shifts, amounting to 3062 features. The entire positive and negative spectra as
well as the mean spectra have been plotted in Figure 1a,b.
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The positive and negative SERS spectra were stacked together in an array, with the
samples in the rows and intensity for a given Raman shift on the columns. This resulted
in a dataset X ∈ Rm×n, where m is the number of samples, and n is the number of Raman
shifts. Before performing dimensionality reduction, the data was normalized between 0
and 1 to avoid low-magnitude features being weighted unfairly.

2.2. Dimensionality Reduction
2.2.1. Principal Component Analysis (PCA)

Principal component analysis (PCA) is a dimensionality reduction strategy that takes
advantage of correlations between existing variables to produce a new collection of uncor-
related features known as principal components (PCs). It is an unsupervised technique
that projects a high-dimensional data matrix onto a lower-dimensional subspace by per-
forming a linear transformation. The high dimensional data is reduced to smaller primary
components that are orthogonal and uncorrelated, with each successive component chosen
based on the direction of maximum variance. In other words, it decreases dimensionality
while maximizing the retained variance [17]. Dimensionality reduction is important for
this dataset because of the large number of Raman shifts and the relatively small data sam-
ples. To build an ML model that performs well on this dataset and minimizes overfitting,
dimensionality reduction is key.

2.2.2. Uniform Manifold Approximation and Projection (UMAP)

PCA is a linear approach and is, therefore, inefficient when dealing with data that
contains nonlinear structures. Therefore, we also performed dimensionality reduction
using UMAP [20], a nonlinear manifold learning technique, and compared the results with
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those obtained from PCA. UMAP is a relatively recent dimensionality reduction method
that assumes the available data samples are evenly distributed across a topological space
or manifold, which can be approximated from these finite data samples and mapped to
a lower-dimensional space [20]. This technique excels at capturing nonlinear structures
in high-dimensional data, particularly at a local level, which means that if two points are
close together in the high-dimensional space, they are likely to be close together in the
low-dimensional embedding as well. The UMAP has different hyperparameters that can
impact the lower dimensional embeddings created, described below.

I. The number of neighbors: This controls the focus on local or global structure
in the data. Lower values of this parameter force the UMAP to focus on a very
local structure, while the higher values will make the UMAP focus on larger or
global structures.

II. The minimum distance: This parameter governs how closely UMAP can pack
points together. Lower numbers indicate that the points will be tightly clustered
and vice versa.

III. The number of components: This determines the dimensionality of the low-
dimensional space.

2.3. Machine Learning Classification

In this study, a supervised learning approach—Gaussian Process Classifier (GPC)
was employed to learn the appropriate labels for the samples. Gaussian processes are
non-parametric methods based on the Bayesian methodology. It yields probabilistic clas-
sification, with each prediction representing a probability over each class. The choice of
GPC stems from the fact that their prediction is based on more a rigorous treatment of
probability when compared to other approaches. Because of their probabilistic output,
uncertainty estimates can be calculated, this would enable one to assess the degree to
which the prediction can be relied upon. A high confidence value would indicate that
the predicted class is likely accurate, but a low confidence score would be inconclusive,
and would perhaps, indicate that confirmation via a PCR test is advisable. In general, the
quantification of uncertainties is important in medical diagnostic applications because of
the potential significance of a misdiagnosis. Therefore, a model that predicts a confidence
score alongside its predictions is vital to reducing the rate of the wrong diagnosis. The PCA
and GPC models were created using Scikit-learn v1.0.2 [35], while the UMAP reduction
was obtained using the open-source UMAP library on GitHub [20].

A k-fold cross-validation approach, where the dataset was partitioned into 10 parts
(or folds), was employed. An iterative procedure was used to loop over the folds, where
the kth fold was used for validation at a given iteration, while other folds were used for
model training. In this way, the model’s performance for various subsets of the dataset can
be determined. The performance metrics used in this study were accuracy, precision, recall,
F1-score, and area under the curve (AUC). Accuracy measures the ratio of samples that
were correctly labeled to the total number of samples in the datasets. Accuracy is often
reliable when the dataset has balanced classes, which was the case in this study. Precision
is the ratio of accurately predicted positive observations to the total number of predicted
positives, while recall (also known as sensitivity) is the ratio of the number of correctly
predicted positive observations to the number of actual positive occurrences. The F1-score
is the harmonic mean of both precision and recall. A model with a high F1 score indicates
high precision and recall values.

3. Results and Discussion

Figures 1 and 2 show the SERS spectral and mean intensities of all the positive and
negative samples, respectively. The mean intensity plot shows a significant distinction
between the positive and negative samples, with a Raman shift of 1300–1600, 2100–2200
and 2800–3000 cm−1. As mentioned earlier, each spectrum has 3062 entries, which can be
interpreted as features with varying intensity levels. Many of these features are redundant
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and do not contribute to the separation of the classes. Therefore, we performed dimen-
sionality reduction using linear (PCA) and nonlinear (UMAP) dimensionality reduction
techniques, as described in Section 2.
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Figure 2 shows the ratio of the variance captured as a function of the number of
retained variables. A higher ratio of variance captured means that most of the information
in the dataset has been captured by the retained PCs, and therefore, it is desirable to capture
a high variance ratio in the first few leading PCs. From the figure, we can see that over
90% of the variance in the data is captured by using just 50 features. On the other hand,
using only two principal components only captures 55% of the variance, or put differently,
loses 45% of the variance in the original dataset. For visualization purposes, the first
two components for both PCA and UMAP were plotted for comparison in Figure 3a,b,
respectively, with red symbols depicting positives and cyan symbols depicting negative
cases. In both cases, some degree of separation can be seen, but significant regions of
overlap between positive and negative cases exist. For instance, for PCA in Figure 3a,
positive cases are concentrated between PC2 = −2.5 and 2.5, but below 2.5, positive and
negative cases co-exist in close proximity. The imperfect separation of the two classes
should come as no surprise since only 55% of the variance in the data was captured by
two PCs. Some degree of overlap can also be seen in Figure 3b, suggesting that even
when nonlinear projections are employed, the dimensionality required to find reasonable
separation boundaries between positive and negative cases is higher than two.
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Therefore, to select the optimum number of reduced variables that enable easy separa-
tion of the classes, various numbers of components (ranging from 2 to 20) were retained
and used as input features for the classifier. Figure 4a shows that for PCA, the mean
k-fold accuracy (computed by averaging the performance across all folds) increased as the
number of PCs increased, and there was no significant increases in the mean validation
accuracy after 11 PCs. Thus, 11 was selected as the number of PCs that gives the model
satisfactory information to classify our dataset. Figure 4b shows the mean accuracy versus
UMAP number of dimensions; the average k-fold accuracy peaks at four dimensions and
gradually declines when increased from this point. Therefore, four was selected as the
optimal number of reduced dimensions for the model. Furthermore, a grid search process
was used to find the optimal number of neighbors and minimum distance. Using the
accuracy score as the search objective, optimal values of 10 and 0.1 were found for the
number of neighbors and minimum distance, respectively.

Biosensors 2022, 12, x FOR PEER REVIEW 7 of 13 
 

 
(a) (b) 

Figure 3. (a) 2D scatter plot of first and second principal components from PCA (b) 2D scatter plot 
of first and second components from UMAP. 

Therefore, to select the optimum number of reduced variables that enable easy sepa-
ration of the classes, various numbers of components (ranging from 2 to 20) were retained 
and used as input features for the classifier. Figure 4a shows that for PCA, the mean k-
fold accuracy (computed by averaging the performance across all folds) increased as the 
number of PCs increased, and there was no significant increases in the mean validation 
accuracy after 11 PCs. Thus, 11 was selected as the number of PCs that gives the model 
satisfactory information to classify our dataset. Figure 4b shows the mean accuracy versus 
UMAP number of dimensions; the average k-fold accuracy peaks at four dimensions and 
gradually declines when increased from this point. Therefore, four was selected as the 
optimal number of reduced dimensions for the model. Furthermore, a grid search process 
was used to find the optimal number of neighbors and minimum distance. Using the ac-
curacy score as the search objective, optimal values of 10 and 0.1 were found for the num-
ber of neighbors and minimum distance, respectively. 

 
(a) (b) 

Figure 4. (a) Comparison of different number of principal components from PCA with the model’s 
mean accuracy across 10 folds (b) Comparison of different number of components from UMAP with 
the model’s mean accuracy across 10 folds. 

The GPC model was tested separately for the reduced set of variables obtained from 
PCA and UMAP. The kernel (or covariance function) selected for both the PCA-GPC and 
UMAP-GPC models was the Matérn kernel, which requires the selection of a length scale, 
l, and a smoothness-controlling parameter, ν. For the PCA case, l was chosen as 6.51, while 
ν was 1.5. For the UMAP-GPC the parameters chosen were l = 0.646 and ν = 1.5. The 
model’s accuracy, precision, recall, F1-score, and AUC have been summarized in Tables 1 
and 2. The table shows that UMAP-GPC and PCA-GPC result in similar accuracies and 

Figure 4. (a) Comparison of different number of principal components from PCA with the model’s
mean accuracy across 10 folds (b) Comparison of different number of components from UMAP with
the model’s mean accuracy across 10 folds.

The GPC model was tested separately for the reduced set of variables obtained from
PCA and UMAP. The kernel (or covariance function) selected for both the PCA-GPC and
UMAP-GPC models was the Matérn kernel, which requires the selection of a length scale, l,
and a smoothness-controlling parameter, ν. For the PCA case, l was chosen as 6.51, while ν

was 1.5. For the UMAP-GPC the parameters chosen were l = 0.646 and ν = 1.5. The model’s
accuracy, precision, recall, F1-score, and AUC have been summarized in Tables 1 and 2. The
table shows that UMAP-GPC and PCA-GPC result in similar accuracies and F1 scores, while
for precision and recall, the UMAP-GPC model produces higher values when compared to
PCA-GPC.

In order to further evaluate the model’s performance, the AUC (Area Under the Curve)
ROC (Receiver Operating Characteristics) curve was also created. AUC represents the
degree of distinction between classes in our data, i.e., how well our model can predict each
individual class correctly. The greater the AUC, the better the model distinguishes between
positive and negative classes. Furthermore, Tables 1 and 2 show the mean AUC to be 0.941
and 0.929 for the PCA and UMAP models, respectively, indicating that the model is able to
predict the class labels with minimum error. Figure 5a,b shows the ROC of one-fold chosen
randomly from the 10-folds (fold 9 for PCA-derived variables), alongside the confusion
matrix. We see that the model predicted 9 out of the 10 negative classes correctly and 9
out of the 10 positive classes when using the PCA-derived variables. Similarly, Figure 6a,b
shows the ROC and confusion matrix for fold 10 based on the UMAP-derived variables.
As in Figure 5a,b for the PCA-derived variables, we see that the model correctly predicts
90% of all positive and negative samples.
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Table 1. Results from the 10-fold validation of GPC model with 7 PCs.

Folds Accuracy Precision Recall F1 Score ROC_AUC

Fold 1 0.800 1.000 0.600 0.750 0.920

Fold 2 0.900 0.900 0.900 0.900 0.980

Fold 3 1.000 1.000 1.000 1.000 1.000

Fold 4 0.750 0.727 0.800 0.762 0.860

Fold 5 0.700 0.750 0.600 0.667 0.810

Fold 6 0.950 1.000 0.900 0.947 0.970

Fold 7 0.850 1.000 0.700 0.824 0.920

Fold 8 0.800 0.875 0.700 0.778 0.950

Fold 9 0.900 0.900 0.900 0.900 0.990

Fold 10 0.900 1.000 0.800 0.889 0.980

Mean 0.855 0.915 0.740 0.842 0.941

Table 2. Result from 10-Fold validation of GPR model with 4 UMAP Dimensions.

Folds Accuracy Precision Recall F1 Score ROC_AUC

Fold 1 0.800 1.000 0.600 0.750 0.920

Fold 2 0.900 0.900 0.900 0.900 0.980

Fold 3 1.000 1.000 1.000 1.000 1.000

Fold 4 0.750 0.727 0.800 0.762 0.860

Fold 5 0.700 0.750 0.600 0.667 0.810

Fold 6 0.950 1.000 0.900 0.947 0.970

Fold 7 0.850 1.000 0.700 0.824 0.920

Fold 8 0.800 0.875 0.700 0.778 0.950

Fold 9 0.900 1.000 0.800 0.889 0.900

Fold 10 0.900 1.000 0.800 0.889 0.980

Mean 0.855 0.925 0.780 0.841 0.929
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Tables 3 and 4 show the prediction probability score and uncertainty for the test
predictions. Given a random variable X with observations {x1, x2, . . . , xn}, the uncertainty
is estimated using the Shannon entropy, defined as

H(X) = −
n

∑
i=1

P(xi)logP(xi) (1)

Table 3. Test predictions, prediction probability and uncertainty for GPR model with PCA. The
misclassified samples are highlighted in red.

Samples Class 1 prob Class 2 prob True Class Predicted Class Uncertainty

1 0.500 0.500 1 0 1.00

2 0.376 0.624 1 1 0.95

3 0.245 0.755 1 1 0.80

4 0.608 0.392 0 0 0.97

5 0.196 0.804 1 1 0.71

6 0.689 0.311 0 0 0.89

7 0.822 0.178 0 0 0.68

8 0.179 0.821 1 1 0.68

9 0.732 0.268 0 0 0.84

10 0.231 0.769 1 1 0.78

11 0.257 0.743 1 1 0.82

12 0.238 0.762 1 1 0.79

13 0.341 0.659 1 1 0.93

14 0.466 0.534 0 1 1.00

15 0.760 0.240 0 0 0.80

16 0.654 0.346 0 0 0.93

17 0.870 0.130 0 0 0.56

18 0.686 0.314 0 0 0.90

19 0.463 0.537 1 1 1.00

20 0.764 0.236 0 0 0.79
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Table 4. Test predictions, prediction probability and uncertainty for GPR model with UMAP. The
misclassified samples are highlighted in red.

Samples Class 1 prob Class 2 prob True Class Predicted Class Uncertainty

1 0.707 0.293 0 0 0.87

2 0.760 0.240 0 0 0.80

3 0.361 0.639 1 1 0.94

4 0.840 0.160 0 0 0.63

5 0.480 0.520 1 1 1.00

6 0.696 0.304 0 0 0.89

7 0.777 0.223 0 0 0.77

8 0.832 0.168 0 0 0.65

9 0.351 0.649 1 1 0.93

10 0.165 0.835 1 1 0.65

11 0.452 0.548 1 1 0.99

12 0.587 0.413 0 0 0.98

13 0.466 0.534 0 1 1.00

14 0.187 0.813 1 1 0.70

15 0.329 0.671 1 1 0.91

16 0.789 0.211 0 0 0.74

17 0.544 0.456 1 0 0.99

18 0.611 0.389 0 0 0.96

19 0.285 0.715 1 1 0.86

20 0.336 0.664 1 1 0.92

The Shannon entropy measures the amount of information in X and ranges from
zero to one [36], with a value of one indicating high uncertainties and a value of zero
indicating high confidence. It is desirable that a model produces high Shannon entropies
(low confidence) when it misclassifies a sample, and low uncertainties when it produces
an accurate label. Tables 3 and 4 show that this is the case with both PCA-GPC and
UMAP-GPC—the uncertainty estimates for inaccurate predictions are relatively high,
compared to the rest. In Figure 7, we also visualized the model’s decision boundary
for a special case with only two components, due to difficulties of visualization with
higher dimensions. In the figure, the size of the circle point correlates with the prediction
confidence (i.e., small symbols indicate low confidence). The plots show that points closer
to the decision boundary and misclassified points have very small sizes, implying low
confidence and high uncertainty. As mentioned above, this is useful because when the
classifier misclassifies a prediction, it signals that the prediction was highly uncertain. In
practice, a cutoff uncertainty level can be recommended, above which the result from the
GPC model cannot be trusted and the patient is referred for further testing.
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4. Conclusions

In this paper, we proposed an approach based on dimensionality reduction and a
probabilistic Gaussian process classification model to classify COVID-19 data obtained
from SERS. Both linear PCA-based dimensionality reduction and a stochastic nonlinear
UMAP dimensionality reduction technique were compared. A hyperparameter search
process revealed the optimal number of dimensions for UMAP was four, while PCA
performed best when 11 principal components were utilized. Using the optimal number of
dimensions, both techniques resulted in similar model accuracies and comparable ROC-
AUC curves. Even though the dataset used in this study was relatively sparse, the results
obtained are promising. For PCA, the leave-out validation accuracy was 85.5%, while
the average precision was 91.5%. Similarly, UMAP-based reduction resulted in a mean
accuracy and precision of 85.5 and 92.5%, respectively. It is reasonable to assume that
the model’s performance would be substantially better if a larger dataset was used for
training. Since GPC provides a probability (ranging from 0–100%) that a given sample is
positive or negative, rather than offering hard class labels, we were able to estimate the
uncertainty of the model’s predictions by computing the Shannon entropies. For both PCA-
and UMAP-based models, we showed that the uncertainties for misclassified samples were
the highest (1.0). In practice, when such samples with high uncertainties are detected,
patients can be recommended for further PCR testing to confirm or disprove the diagnosis.
Furthermore, the proposed framework can be utilized to provide high throughput testing
in settings where speed and reliability are critical. The proposed approach is also promising
for use in miniaturized point of care devices, as opposed to the use of specialized laboratory
testing as done in PCR. A spectra containing specific biochemical markers can be collected
in as little as a few minutes, while the machine learning inference (PCA or UMAP, followed
by GPC) to predict the occurrence of a positive or negative sample can be performed in
as little as a few seconds. Overall, the result from this study demonstrates the potential of
SERS and machine learning algorithms to effectively diagnose COVID-19 infection with an
uncertainty measure to inform medical decisions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios12080589/s1, Figure S1: Raman spectra of SARS-CoV-2 RNA;
Figure S2: Raman spectra of Au NP and ASO; Figure S3: SERS spectra of Au-ASO, and Au-ASO-
SARS-CoV-2 RNA. To compare the relative enhancement in SERS, the Raman spectra of SARS-CoV-2
is also included in the figure.
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