Detection of 3,4-Methylene Dioxy Amphetamine in Urine by Magnetically Improved Surface-Enhanced Raman Scattering Sensing Strategy
Abstract
:1. Introduction
2. Experimental Methods
2.1. Materials
2.2. Instrumentation
2.3. Preparation of ITO/Au Two-Dimensional Substrate
2.4. Synthesis of Fe3O4@Au Nanoparticles
2.5. Magnetically Improved SERS Detection
2.6. Pretreatment of Actual Samples
3. Results and Discussion
3.1. Characterization of Materials
3.2. Optimization of Self-Assembly for ITO/Au
3.3. SERS Performance of Sandwich Structure of ITO/Au and Fe3O4@Au
3.4. Sensing Optimization
3.5. SERS Detection of MDA
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hahn, R.Z.; Augusto do Nascimento, C.; Linden, R. Evaluation of Illicit Drug Consumption by Wastewater Analysis Using Polar Organic Chemical Integrative Sampler as a Monitoring Tool. Front. Chem. 2021, 9, 596875. [Google Scholar] [CrossRef] [PubMed]
- Beyrer, C.; Malinowska-Sempruch, K.; Kamarulzaman, A.; Kazatchkine, M.; Sidibe, M.; Strathdee, S.A. Time to act: A call for comprehensive responses to HIV in people who use drugs. Lancet 2010, 376, 551–563. [Google Scholar] [CrossRef]
- Stone, D.M.; Stahl, D.C.; Hanson, G.R.; Gibb, J.W. The effects of 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyamphetamine (MDA) on monoaminergic systems in the rat brain. Eur. J. Pharmacol. 1986, 128, 41–48. [Google Scholar] [CrossRef]
- Catalogue of psychotropic drugs, National Medical Products Administration. 11 November 2013. Available online: https://www.nmpa.gov.cn/directory/web/nmpa/xxgk/fgwj/gzwj/gzwjyp/20131111120001419.html (accessed on 1 August 2022).
- Controlled Substances Act, Section 812, 21 U.S.C., §801, Title 21 Code of Federal Regulations, Part 1300-End. Available online: https://www.dea.gov/drug-information/csa (accessed on 1 August 2022).
- Pentney, A.R. An Exploration of the History and Controversies Surrounding MDMA and MDA. J. Psychoact. Drugs 2001, 33, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Herndon, J.M.; Cholanians, A.B.; Lau, S.S.; Monks, T.J. Glial cell response to 3,4-(+/-)-methylenedioxymethamphetamine and its metabolites. Toxicol. Sci. Off. J. Soc. Toxicol. 2013, 138, 130–138. [Google Scholar] [CrossRef]
- Gunn, J.A.; Gurd, M.R.; Sachs, I.J.J.o.P. The action of some amines related to adrenaline: Methoxy-phenylisopropylamine. J. Physiol. 1939, 95, 485. [Google Scholar] [CrossRef]
- Davis, W.M.; Hatoum, H.T.; Waters, I.W. Toxicity of MDA (3,4-methylenedioxyamphetamine) considered for relevance to hazards of MDMA (Ecstasy) abuse. Alcohol Drug Res. 1987, 7, 123–134. [Google Scholar]
- Pieprzyca, E.; Skowronek, R.; Czekaj, P. Toxicological Analysis of Cases of Mixed Poisonings with Synthetic Cathinones and Other Drugs of Abuse. J. Anal. Toxicol. 2021, 1–8. [Google Scholar] [CrossRef]
- Maurer, H.H.; Bickeboeller-Friedrich, J.; Kraemer, T.; Peters, F.T. Toxicokinetics and analytical toxicology of amphetamine-derived designer drugs (‘Ecstasy’). Toxicol. Lett. 2000, 112–113, 133–142. [Google Scholar] [CrossRef]
- Schifano, F. A bitter pill. Overview of ecstasy (MDMA, MDA) related fatalities. Psychopharmacology 2004, 173, 242–248. [Google Scholar] [CrossRef]
- Schifano, F.; Corkery, J.; Deluca, P.; Oyefeso, A.; Ghodse, A.H. Ecstasy (MDMA, MDA, MDEA, MBDB) consumption, seizures, related offences, prices, dosage levels and deaths in the UK (1994–2003). J. Psychopharmacol. 2005, 20, 456–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Easton, N.; Fry, J.; O’Shea, E.; Watkins, A.; Kingston, S.; Marsden, C.A. Synthesis, in vitro formation, and behavioural effects of glutathione regioisomers of alpha-methyldopamine with relevance to MDA and MDMA (ecstasy). Brain Res. 2003, 987, 144–154. [Google Scholar] [CrossRef]
- Dacosta, J.; Chasin, A. Determination of MDMA, MDEA and MDA in urine by high performance liquid chromatography with fluorescence detection. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2004, 811, 41–45. [Google Scholar] [CrossRef]
- Woźniak, M.K.; Wiergowski, M.; Aszyk, J.; Kubica, P.; Namieśnik, J.; Biziuk, M. Application of gas chromatography–tandem mass spectrometry for the determination of amphetamine-type stimulants in blood and urine. J. Pharm. Biomed. Anal. 2018, 148, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Elboraie, M.Z.; Elbashir, A.A.; Eid, E.E.M.; Aboul-Enein, H.Y. Dispersive solid-phase extraction for simultaneous determination of four amphetamines drugs in urine using gas chromatography–mass spectrometry. J. Iran. Chem. Soc. 2022, 19, 753–762. [Google Scholar] [CrossRef]
- Williams, M.; Martin, J.; Galettis, P. A Validated Method for the Detection of 32 Bath Salts in Oral Fluid. J. Anal. Toxicol. 2017, 41, 659–669. [Google Scholar] [CrossRef] [PubMed]
- Agius, R.; Nadulski, T. Utility of ELISA screening for the monitoring of abstinence from illegal and legal drugs in hair and urine. Drug Test. Anal. 2014, 6, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Naomi Oiye, É.; Midori Toia Katayama, J.; Fernanda Muzetti Ribeiro, M.; Oka Duarte, L.; de Castro Baker Botelho, R.; José Ipólito, A.; Royston McCord, B.; Firmino de Oliveira, M. Voltammetric detection of 3,4-methylenedioxymethamphetamine (mdma) in saliva in low cost systems. Forensic Chem. 2020, 20, 100268. [Google Scholar] [CrossRef]
- Florea, A.; De Jong, M.; De Wael, K. Electrochemical strategies for the detection of forensic drugs. Curr. Opin. Electrochem. 2018, 11, 34–40. [Google Scholar] [CrossRef]
- Anzar, N.; Suleman, S.; Parvez, S.; Narang, J. Biosensing advances for the rapid detection of Rape drug. Process Biochem. 2021, 113, 113–124. [Google Scholar] [CrossRef]
- Miike, L.; Hewitt, M. Accuracy and Reliability of Urine Drug Tests. U. Kan. L. Rev. 1987, 36, 641. [Google Scholar]
- Nguyen, T.A.H.; Pham, T.N.M.; Ta, T.T.; Nguyen, X.T.; Nguyen, T.L.; Le, T.H.H.; Koenka, I.J.; Sáiz, J.; Hauser, P.C.; Mai, T.D. Screening determination of four amphetamine-type drugs in street-grade illegal tablets and urine samples by portable capillary electrophoresis with contactless conductivity detection. Sci. Justice 2015, 55, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.L.; Suo, L.L.; Gao, Q.; Feng, Y.Q. Determination of eight illegal drugs in human urine by combination of magnetic solid-phase extraction with capillary zone electrophoresis. Electrophoresis 2011, 32, 2099–2106. [Google Scholar] [CrossRef]
- Durrani, M.; Malik, A.; Mansoor, M. Significance of salivary biomarkers as a drug monitoring aid. MOJ Curr. Res. Rev. 2018, 1, 27–28. [Google Scholar]
- Lawrence, J. Advantages and limitations of HPLC in environmental analysis. Chromatographia 1987, 24, 45–50. [Google Scholar] [CrossRef]
- Koklu, A.; Wustoni, S.; Guo, K.; Silva, R.; Salvigni, L.; Hama, A.; Diaz-Galicia, E.; Moser, M.; Marks, A.; McCulloch, I.; et al. Convection Driven Ultrarapid Protein Detection via Nanobody-Functionalized Organic Electrochemical Transistors. Adv. Mater. 2022, e2202972. [Google Scholar] [CrossRef] [PubMed]
- Mirzajani, H.; Cheng, C.; Vafaie, R.H.; Wu, J.; Chen, J.; Eda, S.; Aghdam, E.N.; Ghavifekr, H.B. Optimization of ACEK-enhanced, PCB-based biosensor for highly sensitive and rapid detection of bisphenol a in low resource settings. Biosens. Bioelectron. 2022, 196, 113745. [Google Scholar] [CrossRef] [PubMed]
- Braham, M.Y.; Franchi, A.; Cartiser, N.; Bévalot, F.; Bottinelli, C.; Fabrizi, H.; Fanton, L. Fatal 4-MEC Intoxication: Case Report and Review of Literature. Am. J. Forensic Med. Pathol. 2021, 42, 57–61. [Google Scholar] [CrossRef]
- Alder, R.; Hong, J.; Chow, E.; Fang, J.; Isa, F.; Ashford, B.; Comte, C.; Bendavid, A.; Xiao, L.; Ostrikov, K.; et al. Application of Plasma-Printed Paper-Based SERS Substrate for Cocaine Detection. Sensors 2021, 21, 810. [Google Scholar] [CrossRef]
- Nuntawong, N.; Eiamchai, P.; Somrang, W.; Denchitcharoen, S.; Limwichean, S.; Horprathum, M.; Patthanasettakul, V.; Chaiya, S.; Leelapojanaporn, A.; Saiseng, S.; et al. Detection of methamphetamine/amphetamine in human urine based on surface-enhanced Raman spectroscopy and acidulation treatments. Sens. Actuators B Chem. 2017, 239, 139–146. [Google Scholar] [CrossRef]
- Rana, V.; CañAmares, M.V.; Kubic, T.; Leona, M.; Lombardi, J.R. Surface-enhanced Raman spectroscopy for trace identification of controlled substances: Morphine, codeine, and hydrocodone. J. Forensic Sci. 2011, 56, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Hakonen, A.; Wu, K.; Stenbæk Schmidt, M.; Andersson, P.O.; Boisen, A.; Rindzevicius, T. Detecting forensic substances using commercially available SERS substrates and handheld Raman spectrometers. Talanta 2018, 189, 649–652. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Xu, X.; Qiu, G.; Ye, W.; Li, Y.; Harris, R.A.; Jiang, C. Group-Targeting SERS Screening of Total Benzodiazepines Based on Large-Size (111) Faceted Silver Nanosheets Decorated with Zinc Oxide Nanoparticles. Anal. Chem. 2021, 93, 3403–3410. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Zhang, B.; Han, F.-Y.; Qin, Z.-N.; Feng, Y.-Q.; Hu, J.-M.; Shen, A.-G. On-Site and Quantitative Detection of Trace Methamphetamine in Urine/Serum Samples with a Surface-Enhanced Raman Scattering-Active Microcavity and Rapid Pretreatment Device. Anal. Chem. 2020, 92, 13539–13549. [Google Scholar] [CrossRef]
- Yu, B.; Ge, M.; Li, P.; Xie, Q.; Yang, L. Development of surface-enhanced Raman spectroscopy application for determination of illicit drugs: Towards a practical sensor. Talanta 2019, 191, 1–10. [Google Scholar] [CrossRef]
- Muehlethaler, C.; Leona, M.; Lombardi, J.R. Review of Surface Enhanced Raman Scattering Applications in Forensic Science. Anal. Chem. 2016, 88, 152–169. [Google Scholar] [CrossRef]
- Ahmed, S.R.; Chand, R.; Kumar, S.; Mittal, N.; Srinivasan, S.; Rajabzadeh, A.R. Recent biosensing advances in the rapid detection of illicit drugs. TrAC Trends Anal. Chem. 2020, 131, 116006. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Yang, J.; Zhou, L.; Song, G.; Lu, F.; You, L.-J.; Li, J.-M. Rapid and ultrasensitive surface enhanced Raman scattering detection of hexavalent chromium using magnetic Fe3O4/ZrO2/Ag composite microsphere substrates. Colloids Surf. A Physicochem. Eng. Asp. 2021, 610, 125414. [Google Scholar] [CrossRef]
- Jun, B.H.; Mi, S.N.; Kim, J.; Kim, G.; Kang, H.; Kim, M.S.; Seo, Y.T.; Baek, J.; Kim, J.H.; Park, J. Multifunctional Silver-Embedded Magnetic Nanoparticles as SERS Nanoprobes and Their Applications. Small 2010, 6, 119–125. [Google Scholar] [CrossRef]
- Neng, J.; Harpster, M.H.; Wilson, W.C.; Johnson, P.A. Surface-enhanced Raman scattering (SERS) detection of multiple viral antigens using magnetic capture of SERS-active nanoparticles. Biosens. Bioelectron. 2013, 41, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.; Xu, F.; Wang, L. A review of the preparation and application of magnetic nanoparticles for surface-enhanced Raman scattering. J. Mater. Sci. 2018, 53, 8677–8698. [Google Scholar] [CrossRef]
- Yang, T.; Guo, X.; Wang, H.; Fu, S.; Yu, J.; Wen, Y.; Yang, H. Au Dotted Magnetic Network Nanostructure and Its Application for On-Site Monitoring Femtomolar Level Pesticide. Small 2014, 10, 1325–1331. [Google Scholar] [CrossRef] [PubMed]
- Frens, G. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nat. Phys. Sci. 1973, 241, 20. [Google Scholar] [CrossRef]
- Butler, D.; Pravda, M.; Guilbault, G.G. Development of a disposable amperometric immunosensor for the detection of ecstasy and its analogues using screen-printed electrodes. Anal. Chim. Acta 2006, 556, 333–339. [Google Scholar] [CrossRef]
Spiked MDA (μg/mL) | SERS (μg/mL) | Recovery (%) | LC-MS (μg/mL) | Recovery (%) |
---|---|---|---|---|
1 | 0.9804 | 98.04 | 1.0260 | 102.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Teng, X.; Cao, J.; Fan, Y.; Liu, X.; Guo, X.; Xu, Y.; Wen, Y.; Yang, H. Detection of 3,4-Methylene Dioxy Amphetamine in Urine by Magnetically Improved Surface-Enhanced Raman Scattering Sensing Strategy. Biosensors 2022, 12, 711. https://doi.org/10.3390/bios12090711
Wang Y, Teng X, Cao J, Fan Y, Liu X, Guo X, Xu Y, Wen Y, Yang H. Detection of 3,4-Methylene Dioxy Amphetamine in Urine by Magnetically Improved Surface-Enhanced Raman Scattering Sensing Strategy. Biosensors. 2022; 12(9):711. https://doi.org/10.3390/bios12090711
Chicago/Turabian StyleWang, Yue, Xinyan Teng, Jiaying Cao, Yilei Fan, Xinling Liu, Xiaoyu Guo, Yu Xu, Ying Wen, and Haifeng Yang. 2022. "Detection of 3,4-Methylene Dioxy Amphetamine in Urine by Magnetically Improved Surface-Enhanced Raman Scattering Sensing Strategy" Biosensors 12, no. 9: 711. https://doi.org/10.3390/bios12090711
APA StyleWang, Y., Teng, X., Cao, J., Fan, Y., Liu, X., Guo, X., Xu, Y., Wen, Y., & Yang, H. (2022). Detection of 3,4-Methylene Dioxy Amphetamine in Urine by Magnetically Improved Surface-Enhanced Raman Scattering Sensing Strategy. Biosensors, 12(9), 711. https://doi.org/10.3390/bios12090711