High-Sensitive FAM Labeled Aptasensor Based on Fe3O4/Au/g-C3N4 for the Detection of Sulfamethazine in Food Matrix
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Fe3O4/Au/g-C3N4
2.3. Preparation of the Aaptasensor
2.4. Molecular Dynamics Trajectory Analysis
2.5. Aptasensor Selectivity
2.6. Sample Preparation
2.7. Validation of Aptasensor
3. Results and Discussion
3.1. Fluorescence-Quenching Effect between SMZ1S and Fe3O4/Au/g-C3N4
3.2. Optimization of Detection Conditions
3.3. Stability Analysis of Aptamer Target and Selectivity Analysis
3.4. Validation of Aptasensor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; An, Y.; Liu, Z.; Zhou, Y.; Zhang, D. An exploratory study on the simultaneous screening for residues of chloramphenicol, ciprofloxacin and sulphadimidine using recombinant antibodies. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess 2020, 37, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Dibbern, D.; Montanaro, A. Allergies to sulfonamide antibiotics and sulfur-containing drugs. Ann. Allergy Asthma Immunol. Off. Publ. Am. Coll. Allergy Asthma Immunol. 2008, 100, 91–100. [Google Scholar] [CrossRef]
- He, B.; Li, M.; Li, M. Electrochemical determination of sulfamethazine using a gold electrode modified with multi-walled carbon nanotubes, graphene oxide nanoribbons and branched aptamers. Mikrochim Acta 2020, 187, 274. [Google Scholar] [CrossRef] [PubMed]
- Kou, Q.; Wu, P.; Sun, Q.; Li, C.; Zhang, L.; Shi, H.; Wu, J.; Wang, Y.; Yan, X.; Le, T. Selection and truncation of aptamers for ultrasensitive detection of sulfamethazine using a fluorescent biosensor based on graphene oxide. Anal. Bioanal. Chem. 2021, 413, 901–909. [Google Scholar] [CrossRef]
- Shi, H.; Kou, Q.; Wu, P.; Sun, Q.; Wu, J.; Le, T. Selection and Application of DNA Aptamers Against Sulfaquinoxaline Assisted by Graphene Oxide–Based SELEX. Food Anal. Methods 2020, 14, 250–259. [Google Scholar] [CrossRef]
- Su, S.; Zhang, M.; Li, B.; Zhang, H.; Dong, X. HPLC determination of sulfamethazine in milk using surface-imprinted silica synthesized with iniferter technique. Talanta 2008, 76, 1141–1146. [Google Scholar] [CrossRef]
- Peng, D.; Li, Z.; Wang, Y.; Liu, Z.; Sheng, F.; Yuan, Z. Enzyme-linked immunoassay based on imprinted microspheres for the detection of sulfamethazine residue. J. Chromatogr. A 2017, 1506, 9–17. [Google Scholar] [CrossRef]
- Er Demirhan, B.; Demirhan, B. Detection of Antibiotic Residues in Blossom Honeys from Different Regions in Turkey by LC-MS/MS Method. Antibiotics 2022, 11, 357. [Google Scholar] [CrossRef]
- Gao, Z.; Du, X.; Ding, Y.; Li, H. Establishment of a dual-aptasensor for simultaneous detection of chloramphenicol and kanamycin. Food Addit. Contam. Part A Chem. Anal. Control Expo Risk Assess 2021, 38, 1148–1156. [Google Scholar] [CrossRef]
- Song, K.M.; Jeong, E.; Jeon, W.; Jo, H.; Ban, C. A coordination polymer nanobelt (CPNB)-based aptasensor for sulfadimethoxine. Biosens. Bioelectron. 2012, 33, 113–119. [Google Scholar] [CrossRef]
- Yu, Q.; Li, M.; Liu, M.; Huang, S.; Wang, G.; Wang, T.; Li, P. Selection and Characterization of ssDNA Aptamers Targeting Largemouth Bass Virus Infected Cells With Antiviral Activities. Front. Microbiol. 2021, 12, 785318. [Google Scholar] [CrossRef]
- Yan, X.; Wang, Y.; Kou, Q.; Sun, Q.; Tang, J.; Yang, L.; Chen, X.; Xu, W.; Le, T. A novel aptasensor based on Fe3O4/Au/g-C3N4 for sensitive detection of sulfameter in food matrices. Sens. Actuators B Chem. 2022, 353, 131148. [Google Scholar] [CrossRef]
- Zheng, X.; Gao, S.; Wu, J.; Hu, X. A Fluorescent Aptasensor Based on Assembled G-Quadruplex and Thioflavin T for the Detection of Biomarker VEGF165. Front. Bioeng. Biotechnol. 2021, 9, 764123. [Google Scholar] [CrossRef] [PubMed]
- Suo, Z.; Liang, X.; Jin, H.; He, B.; Wei, M. A signal-enhancement fluorescent aptasensor based on the stable dual cross DNA nanostructure for simultaneous detection of OTA and AFB. Anal. Bioanal. Chem. 2021, 413, 7587–7595. [Google Scholar] [CrossRef]
- Jiang, Y.J.; Wang, N.; Cheng, F.; Lin, H.R.; Zhen, S.J.; Li, Y.F.; Li, C.M.; Huang, C.Z. Dual Energy Transfer-Based DNA/Graphene Oxide Nanocomplex Probe for Highly Robust and Accurate Monitoring of Apoptosis-Related microRNAs. Anal. Chem. 2020, 92, 11565–11572. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Chen, S.; Liu, B.; Wu, J.; Zhou, Y.; He, L.; Ding, J.; Liu, J. Intracellular detection of ATP using an aptamer beacon covalently linked to graphene oxide resisting nonspecific probe displacement. Anal. Chem. 2014, 86, 12229–12235. [Google Scholar] [CrossRef]
- Liu, J. Adsorption of DNA onto gold nanoparticles and graphene oxide: Surface science and applications. Phys. Chem. Chem. Phys. 2012, 14, 10485–10496. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, X.; Kou, Q.; Sun, Q.; Wang, Y.; Wu, P.; Yang, L.; Tang, J.; Le, T. An Ultrasensitive Label-Free Fluorescent Aptasensor Platform for Detection of Sulfamethazine. Int. J. Nanomed. 2021, 16, 2751–2759. [Google Scholar] [CrossRef]
- Yang, L.; Ni, H.; Li, C.; Zhang, X.; Wen, K.; Ke, Y.; Yang, H.; Shi, W.; Zhang, S.; Shen, J.; et al. Development of a highly specific chemiluminescence aptasensor for sulfamethazine detection in milk based on in vitro selected aptamers. Sens. Actuators B Chem. 2019, 281, 801–811. [Google Scholar] [CrossRef]
- Liu, G.; Wang, S.; Gondal, M.; Shen, K.; Xu, Q. Enhanced Visible Light Photocatalytic Performance of G-C3N4 Photocatalysts Co-Doped with Gold and Sulfur for Degradation of Persistent Pollutant (Rhodamine B). J. Nanosci. Nanotechnol. 2019, 19, 713–720. [Google Scholar] [CrossRef]
- Tang, J.; Kou, Q.; Chen, X.; Wang, Y.; Yang, L.; Wen, X.; Zheng, X.; Yan, X.; Le, T. A novel fluorescent aptasensor based on mesoporous silica nanoparticles for the selective detection of sulfadiazine in edible tissue. Arab. J. Chem. 2022, 15, 104067. [Google Scholar] [CrossRef]
- Kumari, R.; Kumar, R.; Open Source Drug Discovery Consortium; Lynn, A. g_mmpbsa—A GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 2014, 54, 1951–1962. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yang, L.; Tang, J.; Wen, X.; Zheng, X.; Chen, L.; Li, J.; Xie, Y.; Le, T. An AuNPs-Based Fluorescent Sensor with Truncated Aptamer for Detection of Sulfaquinoxaline in Water. Biosensors 2022, 12, 513. [Google Scholar] [CrossRef] [PubMed]
- Autiero, I.; Ruvo, M.; Improta, R.; Vitagliano, L. The intrinsic flexibility of the aptamer targeting the ribosomal protein S8 is a key factor for the molecular recognition. Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 1006–1016. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Hu, S.; Bao, H.; Xing, K.; Liu, J.; Xia, J.; Lai, W.; Peng, J. Immunochromatographic assay based on time-resolved fluorescent nanobeads for the rapid detection of sulfamethazine in egg, honey, and pork. J. Sci. Food Agric. 2021, 101, 684–692. [Google Scholar] [CrossRef]
- Sun, Y.; Dai, Y.; Zhu, X.; Han, R.; Wang, X.; Luo, C. A nanocomposite prepared from bifunctionalized ionic liquid, chitosan, graphene oxide and magnetic nanoparticles for aptamer-based assay of tetracycline by chemiluminescence. Mikrochim. Acta 2019, 187, 63. [Google Scholar] [CrossRef]
- Preetham, E.; Lakshmi, S.; Wongpanya, R.; Vaseeharan, B.; Arockiaraj, J.; Olsen, R.E. Antibiofilm and immunological properties of lectin purified from shrimp Penaeus semisulcatus. Fish Shellfish. Immunol. 2020, 106, 776–782. [Google Scholar] [CrossRef]
- Zhang, X.; He, K.; Fang, Y.; Cao, T.; Paudyal, N.; Zhang, X.F.; Song, H.H.; Li, X.L.; Fang, W.H. Dual flow immunochromatographic assay for rapid and simultaneous quantitative detection of ochratoxin A and zearalenone in corn, wheat, and feed samples. J. Zhejiang Univ. Sci. B 2018, 19, 871–883. [Google Scholar] [CrossRef]
- Zhang, J.; Li, W.; Zhu, W.; Yang, Y.; Qin, P.; Zhou, Q.; Lu, M.; Cai, Z. Mesoporous graphitic carbon nitride as an efficient sorbent for extraction of sulfonamides prior to HPLC analysis. Mikrochim. Acta 2019, 186, 279. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, W.; Lei, J.; Xu, N.; Gao, F.; Ju, H. Fluorescence quenching of carbon nitride nanosheet through its interaction with DNA for versatile fluorescence sensing. Anal. Chem. 2013, 85, 12182–12188. [Google Scholar] [CrossRef]
Sample | LOD (μg/kg) | Spiked (μg/kg) | Fe3O4/Au/g-C3N4 | HPLC | The Correlations (R2) | ||
---|---|---|---|---|---|---|---|
Recovery (%) | CV (%) | Recovery (%) | CV (%) | ||||
Milk | 0.331 | 50 | 97.5 | 9.5 | 99.3 | 5.7 | 0.9977 |
100 | 97.1 | 4.2 | 99.3 | 5.9 | |||
200 | 103.7 | 3.1 | 101.1 | 3.9 | |||
Egg | 0.489 | 50 | 106.8 | 10.4 | 100.9 | 12.0 | 0.9756 |
100 | 101.1 | 5.9 | 99.0 | 7.1 | |||
200 | 97.7 | 3.4 | 98.5 | 3.7 | |||
Honey | 0.294 | 50 | 91.6 | 6.8 | 104.1 | 5.2 | 0.9894 |
100 | 102.7 | 4.8 | 95.8 | 4.6 | |||
200 | 100.7 | 3.9 | 98.1 | 4.2 | |||
Crucian | 0.518 | 50 | 93.4 | 8.4 | 103.3 | 3.9 | 0.9713 |
100 | 96.9 | 4.8 | 99.6 | 5.3 | |||
200 | 97.6 | 2.8 | 99.6 | 4.3 | |||
Shrimp | 0.556 | 50 | 101.4 | 12.5 | 107.9 | 6.9 | 0.9663 |
100 | 99.0 | 3.0 | 103.9 | 4.1 | |||
200 | 97.4 | 4.4 | 98.8 | 2.6 | |||
Swine | 0.469 | 50 | 98.2 | 13.4 | 99.2 | 7.9 | 0.9153 |
100 | 99.2 | 8.1 | 101.0 | 7.8 | |||
200 | 98.7 | 3.7 | 99.6 | 3.4 | |||
Swine kidney | 0.573 | 50 | 94.8 | 6.6 | 99.0 | 6.1 | 0.9321 |
100 | 94.5 | 4.2 | 98.1 | 4.0 | |||
200 | 103.6 | 3.2 | 101.1 | 3.5 | |||
Chicken | 0.674 | 50 | 93.7 | 5.9 | 98.2 | 10.2 | 0.9459 |
100 | 101.0 | 6.0 | 100.9 | 7.1 | |||
200 | 100.4 | 6.5 | 100.0 | 1.5 | |||
Chicken liver | 0.615 | 50 | 95.7 | 9.5 | 97.6 | 8.3 | 0.9586 |
100 | 98.0 | 4.6 | 106.3 | 3.9 | |||
200 | 96.6 | 3.1 | 99.5 | 2.2 | |||
Cattle | 0.411 | 50 | 96.3 | 3.2 | 101.9 | 6.1 | 0.9995 |
100 | 98.2 | 4.8 | 103.9 | 5.2 | |||
200 | 98.4 | 8.2 | 104.2 | 3.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Yang, L.; Tang, J.; Wen, X.; Chen, X.; Zheng, X.; Chen, L.; Li, J.; Le, T. High-Sensitive FAM Labeled Aptasensor Based on Fe3O4/Au/g-C3N4 for the Detection of Sulfamethazine in Food Matrix. Biosensors 2022, 12, 759. https://doi.org/10.3390/bios12090759
Yan X, Yang L, Tang J, Wen X, Chen X, Zheng X, Chen L, Li J, Le T. High-Sensitive FAM Labeled Aptasensor Based on Fe3O4/Au/g-C3N4 for the Detection of Sulfamethazine in Food Matrix. Biosensors. 2022; 12(9):759. https://doi.org/10.3390/bios12090759
Chicago/Turabian StyleYan, Xueling, Lulan Yang, Jiaming Tang, Xu Wen, Xingyue Chen, Xiaoling Zheng, Lingling Chen, Jiaqi Li, and Tao Le. 2022. "High-Sensitive FAM Labeled Aptasensor Based on Fe3O4/Au/g-C3N4 for the Detection of Sulfamethazine in Food Matrix" Biosensors 12, no. 9: 759. https://doi.org/10.3390/bios12090759
APA StyleYan, X., Yang, L., Tang, J., Wen, X., Chen, X., Zheng, X., Chen, L., Li, J., & Le, T. (2022). High-Sensitive FAM Labeled Aptasensor Based on Fe3O4/Au/g-C3N4 for the Detection of Sulfamethazine in Food Matrix. Biosensors, 12(9), 759. https://doi.org/10.3390/bios12090759