Fluorescent RET-Based Chemosensor Bearing 1,8-Naphthalimide and Styrylpyridine Chromophores for Ratiometric Detection of Hg2+ and Its Bio-Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Optical Spectroscopy
2.3. Equilibrium Constants’ Determination
2.4. Computational Details
2.5. Cells and Their Treatment
2.6. Confocal Microscopy Measurements
3. Results and Discussion
3.1. Synthesis of Chemosensor NI-SP
3.2. Spectroscopic Characterization of the Free Ligand NI-SP
3.3. Complex Formation Studies and Sensing Mechanism
3.4. Characteristics of Intracellular Accumulation, Localization and Retention of NI-SP
3.5. Cellular Imaging of Hg2+ with Probe NI-SP
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Renzoni, A.; Zino, F.; Franchi, E. Mercury Levels along the Food Chain and Risk for Exposed Populations. Environ. Res. 1998, 77, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Malm, O. Gold Mining as a Source of Mercury Exposure in the Brazilian Amazon. Environ. Res. 1998, 77, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Driscoll, C.T.; Mason, R.P.; Chan, H.M.; Jacob, D.J.; Pirrone, N. Mercury as a Global Pollutant: Sources, Pathways, and Effects. Environ. Sci. Technol. 2013, 47, 4967–4983. [Google Scholar] [CrossRef]
- Harris, H.H.; Pickering, I.J.; George, G.N. The Chemical Form of Mercury in Fish. Science 2003, 301, 1203. [Google Scholar] [CrossRef]
- Hodgson, S.; Nieuwenhuijsen, M.J.; Elliott, P.; Jarup, L. Kidney Disease Mortality and Environmental Exposure to Mercury. Am. J. Epidemiol. 2007, 165, 72–77. [Google Scholar] [CrossRef]
- Rice, K.M.; Walker, E.M.; Wu, M.; Gillette, C.; Blough, E.R. Environmental Mercury and Its Toxic Effects. J. Prev. Med. Public Health 2014, 47, 74–83. [Google Scholar] [CrossRef]
- Lee, S.Y.; Bok, K.H.; Kim, C. A Fluorescence “Turn-on” Chemosensor for Hg2+ and Ag+ Based on NBD (7-Nitrobenzo-2-Oxa-1,3-Diazolyl). RSC Adv. 2016, 7, 290–299. [Google Scholar] [CrossRef]
- Zhou, B.; Qin, S.; Chen, B.; Han, Y. A New BODIPY-Based Fluorescent “Turn-on” Probe for Highly Selective and Rapid Detection of Mercury Ions. Tetrahedron Lett. 2018, 59, 4359–4363. [Google Scholar] [CrossRef]
- Lu, H.L.; Wang, W.K.; Tan, X.X.; Luo, X.F.; Zhang, M.L.; Zhang, M.; Zang, S.Q. A New Quinoline-Based Fluorescent Probe for Cd2+ and Hg2+ with an Opposite Response in a 100% Aqueous Environment and Live Cell Imaging. Dalt. Trans. 2016, 45, 8174–8181. [Google Scholar] [CrossRef]
- Mu, H.; Gong, R.; Ma, Q.; Sun, Y.; Fu, E. A Novel Colorimetric and Fluorescent Chemosensor: Synthesis and Selective Detection for Cu2+ and Hg2+. Tetrahedron Lett. 2007, 48, 5525–5529. [Google Scholar] [CrossRef]
- Mashraqui, S.H.; Tripathi, S.A.; Ghorpade, S.S.; Britto, S.R. A Simple and Efficient Dual Optical Signaling Chemodosimeter for Toxic Hg(II). Beilstein J. Org. Chem. 8155 2012, 8, 1352–1357. [Google Scholar] [CrossRef] [PubMed]
- Leng, B.; Zou, L.; Jiang, J.; Tian, H. Colorimetric Detection of Mercuric Ion (Hg2+) in Aqueous Media Using Chemodosimeter-Functionalized Gold Nanoparticles. Sens. Actuators B Chem. 2009, 140, 162–169. [Google Scholar] [CrossRef]
- Bohoyo Gil, D.; Rodriguez-Cáceres, M.I.; del Carmen Hurtado-Sánchez, M.; Muñoz de la Peña, A. Fluorescent Determination of Hg2+ in Water and Fish Samples Using a Chemodosimeter Based in a Rhodamine 6G Derivative and a Portable Fiber-Optic Spectrofluorimeter. Appl. Spectrosc. 2010, 64, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Demchenko, A.P. The Concept of λ-Ratiometry in Fluorescence Sensing and Imaging. J. Fluoresc. 2010, 20, 1099–1128. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, Y.; Qian, X.; Zhang, X.; Xiao, Y.; Qian, X. A Ratiometric Fluorescent Probe Based on FRET for Imaging Hg2+ Ions in Living Cells. Angew. Chem. Int. Ed. 2008, 47, 8025–8029. [Google Scholar] [CrossRef]
- Singh, G.; Reja, S.I.; Bhalla, V.; Kaur, D.; Kaur, P.; Arora, S.; Kumar, M. Hexaphenylbenzene Appended AIEE Active FRET Based Fluorescent Probe for Selective Imaging of Hg2+ Ions in MCF-7 Cell Lines. Sens. Actuators B Chem. 2017, 249, 311–320. [Google Scholar] [CrossRef]
- Li, Y.; Qi, S.; Xia, C.; Xu, Y.; Duan, G.; Ge, Y. A FRET Ratiometric Fluorescent Probe for Detection of Hg2+ Based on an Imidazo[1,2-a]Pyridine-Rhodamine System. Anal. Chim. Acta 2019, 1077, 243–248. [Google Scholar] [CrossRef]
- Panchenko, P.A.; Efremenko, A.V.; Feofanov, A.V.; Ustimova, M.A.; Fedorov, Y.V.; Fedorova, O.A. Ratiometric Detection of Mercury (II) Ions in Living Cells Using Fluorescent Probe Based on Bis(Styryl) Dye and Azadithia-15-Crown-5 Ether Receptor. Sensors 2021, 21, 470. [Google Scholar] [CrossRef]
- Panchenko, P.A.; Arkhipova, A.N.; Fedorova, O.A.; Fedorov, Y.V.; Zakharko, M.A.; Arkhipov, D.E.; Jonusauskas, G. Controlling Photophysics of Styrylnaphthalimides through TICT, Fluorescence and E,Z-Photoisomerization Interplay. Phys. Chem. Chem. Phys. 2017, 19, 1244–1256. [Google Scholar] [CrossRef]
- Szakács, Z.; Rousseva, S.; Bojtár, M.; Hessz, D.; Bitter, I.; Kállay, M.; Hilbers, M.; Zhang, H.; Kubinyi, M. Experimental Evidence of TICT State in 4-Piperidinyl-1,8-Naphthalimide—A Kinetic and Mechanistic Study. Phys. Chem. Chem. Phys. 2018, 20, 10155–10164. [Google Scholar] [CrossRef] [Green Version]
- Demets, G.J.F.; Triboni, E.R.; Alvarez, E.B.; Arantes, G.M.; Filho, P.B.; Politi, M.J. Solvent Influence on the Photophysical Properties of 4-Methoxy-N-Methyl-1,8-Naphthalimide. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2006, 63, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Alexiou, M.S.; Tychopoulos, V.; Ghorbanian, S.; Tyman, J.H.P.; Brown, R.G.; Brittain, P.I. The UV–Visible Absorption and Fluorescence of Some Substituted 1,8-Naphthalimides and Naphthalic Anhydrides. J. Chem. Soc. Perkin Trans. 2 1990, 2, 837–842. [Google Scholar] [CrossRef]
- Fedorova, O.A.; Sergeeva, A.N.; Panchenko, P.A.; Fedorov, Y.V.; Erko, F.G.; Berthet, J.; Delbaere, S. Isomeric Naphthalimides Bearing Pyran Units: Insight into Mutual Relation between Structure and Photochromic Properties. J. Photochem. Photobiol. A Chem. 2015, 303–304, 28–35. [Google Scholar] [CrossRef]
- Arkhipova, A.N.; Panchenko, P.A.; Fedorov, Y.V.; Fedorova, O.A. Relationship between the Photochromic and Fluorescent Properties of 4-Styryl Derivatives of N-Butyl-1,8-Naphthalimide. Mendeleev Commun. 2017, 27, 53–55. [Google Scholar] [CrossRef]
- Gopikrishna, P.; Meher, N.; Iyer, P.K. Functional 1,8-Naphthalimide AIE/AIEEgens: Recent Advances and Prospects. ACS Appl. Mater. Interfaces 2018, 10, 12081–12111. [Google Scholar] [CrossRef]
- Krasnovskaya, O.O.; Malinnikov, V.M.; Dashkova, N.S.; Gerasimov, V.M.; Grishina, I.V.; Kireev, I.I.; Lavrushkina, S.V.; Panchenko, P.A.; Zakharko, M.A.; Ignatov, P.A.; et al. Thiourea Modified Doxorubicin: A Perspective PH-Sensitive Prodrug. Bioconjug. Chem. 2019, 30, 741–750. [Google Scholar] [CrossRef]
- Aderinto, S.O.; Imhanria, S. Fluorescent and Colourimetric 1, 8-Naphthalimide-Appended Chemosensors for the Tracking of Metal Ions: Selected Examples from the Year 2010 to 2017. Chem. Pap. 2018, 72, 1823–1851. [Google Scholar] [CrossRef]
- Panchenko, P.A.; Fedorova, O.A.; Fedorov, Y. V Fluorescent and Colorimetric Chemosensors for Cations Based on 1,8-Naphthalimide Derivatives: Design Principles and Optical Signalling Mechanisms. Russ. Chem. Rev. 2014, 83, 155–182. [Google Scholar] [CrossRef]
- Oshchepkov, A.S.; Oshchepkov, M.S.; Oshchepkova, M.V.; Al-Hamry, A.; Kanoun, O.; Kataev, E.A. Naphthalimide-Based Fluorescent Polymers for Molecular Detection. Adv. Opt. Mater. 2021, 9, 2001913. [Google Scholar] [CrossRef]
- Panchenko, P.A.; Fedorov, Y.V.; Fedorova, O.A.; Izmailov, B.A.; Vasnev, V.A.; Istratov, V.V.; Makeeva, E.A.; Rumyantseva, M.N.; Gaskov, A.M. Hybrid Sensor Materials Based on Tin(IV) Oxide and Crown-Containing 4-Amino-1,8-Naphthalimides. Mendeleev Commun. 2011, 21, 12–14. [Google Scholar] [CrossRef]
- Panchenko, P.A.; Fedorov, Y.V.; Fedorova, O.A. Selective Fluorometric Sensing of Hg2+ in Aqueous Solution by the Inhibition of PET from Dithia-15-Crown-5 Ether Receptor Conjugated to 4-Amino-1,8-Naphthalimide Fluorophore. J. Photochem. Photobiol. A Chem. 2018, 364, 124–129. [Google Scholar] [CrossRef]
- Panchenko, P.A.; Polyakova, A.S.; Fedorov, Y.V.; Fedorova, O.A. Fluorescent Chemosensor for Mercury(II) Cations in an Aqueous Solution Based on 4-Acetylamino-1, 8-Naphthalimide Derivative Containing the N-Phenylazadithia-15-Crown-5-Ether Receptor. Russ. Chem. Bull. 2021, 70, 1939–1945. [Google Scholar] [CrossRef]
- Nad, S.; Kumbhakar, M.; Pal, H. Photophysical Properties of Coumarin-152 and Coumarin-481 Dyes: Unusual Behavior in Nonpolar and in Higher Polarity Solvents. J. Phys. Chem. A 2003, 107, 4808–4816. [Google Scholar] [CrossRef]
- Connors, K.A.; Kenneth, A. Binding Constants: The Measurement of Molecular Complex Stability; Wiley: New York, NY, USA, 1987; Volume 47, ISBN 9780471830832. [Google Scholar]
- Beck, M.T.; Nagypal, I. (Istvan) Chemistry of Complex Equilibria; Horwood Halsted Press: Chichester, UK; New York, NY, USA, 1990; ISBN 9780853121435. [Google Scholar]
- Stewart, J.J.P. Optimization of Parameters for Semiempirical Methods V: Modification of NDDO Approximations and Application to 70 Elements. J. Mol. Model. 2007, 13, 1173–1213. [Google Scholar] [CrossRef] [PubMed]
- Kele, P.; Mezö, G.; Achatz, D.; Wolfbeis, O.S. Dual Labeling of Biomolecules by Using Click Chemistry: A Sequential Approach. Angew. Chemie Int. Ed. 2009, 48, 344–347. [Google Scholar] [CrossRef]
- Janina, K.; Jerzy, P. Three-Cationic Carbocyanine Dyes as Sensitizers in Very Efficient Photoinitiating Systems for Multifunctional Monomer Polymerization. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 4636–4654. [Google Scholar] [CrossRef]
- Selektor, S.L.; Bogdanova, L.B.; Shokurov, A.V.; Panchenko, P.A.; Fedorova, O.A.; Arslanov, V.V. Intra- and Interlayer Energy Transfer in Planar Systems Based on Amphiphilic Naphthalimide Derivatives. Macroheterocycles 2014, 7, 311–320. [Google Scholar] [CrossRef]
- Panchenko, P.A.; Polyakova, A.S.; Fedorov, Y.V.; Fedorova, O.A. Chemoselective Detection of Ag+ in Purely Aqueous Solution Using Fluorescence ‘Turn-on’ Probe Based on Crown-Containing 4-Methoxy-1,8-Naphthalimide. Mendeleev Commun. 2019, 29, 155–157. [Google Scholar] [CrossRef]
- Cao, H.; Chang, V.; Hernandez, R.; Heagy, M.D. Matrix Screening of Substituted N-Aryl-1,8-Naphthalimides Reveals New Dual Fluorescent Dyes and Unusually Bright Pyridine Derivatives. J. Org. Chem. 2005, 70, 4929–4934. [Google Scholar] [CrossRef]
- Kovalska, V.B.; Kryvorotenko, D.V.; Balanda, A.O.; Losytskyy, M.Y.; Tokar, V.P.; Yarmoluk, S.M. Fluorescent Homodimer Styrylcyanines: Synthesis and Spectral-Luminescent Studies in Nucleic Acids and Protein Complexes. Dye. Pigment. 2005, 67, 47–54. [Google Scholar] [CrossRef]
- Chernikova, E.Y.; Berdnikova, D.V.; Fedorov, Y.V.; Fedorova, O.A.; Maurel, F.; Jonusauskas, G. Light-Induced Piston Nanoengines: Ultrafast Shuttling of a Styryl Dye inside Cucurbit [7] Uril. Phys. Chem. Chem. Phys. 2017, 19, 25834–25839. [Google Scholar] [CrossRef] [PubMed]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 0387312781. [Google Scholar]
- Ohkuma, S.; Poole, B. Fluorescence Probe Measurement of the Intralysosomal PH in Living Cells and the Perturbation of PH by Various Agents. Proc. Natl. Acad. Sci. USA 1978, 75, 3327–3331. [Google Scholar] [CrossRef] [PubMed]
- Grynkiewicz, G.; Poenie, M.; Tsien, R.Y. A New Generation of Ca2+ Indicators with Greatly Improved Fluorescence Properties. J. Biol. Chem. 1985, 260, 3440–3450. [Google Scholar] [CrossRef]
- Loock, H.P.; Wentzell, P.D. Detection Limits of Chemical Sensors: Applications and Misapplications. Sens. Actuators B Chem. 2012, 173, 157–163. [Google Scholar] [CrossRef]
- Zhao, M.; Shao, G.K.; Guo, Y.S.; Tang, Y.L.; Liu, J.B.; Guo, D.S. A Reaction-Type Receptor for the Multi-Feature Detection of Hg2+ in Water and Living Cells. New J. Chem. 2020, 44, 12538–12545. [Google Scholar] [CrossRef]
Species | ||||
---|---|---|---|---|
NI1 | 374 | 13.6 | 467 (375) | 0.71 |
NI2 | 370 | 9.7 | 465 (375) | 0.0073 |
SP | 450 | 28.3 | 619 (455) | 0.00039 |
NI-SP | 382; 482 | 14.8; 18.0 | 461; 605 (375) | 0.00094 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panchenko, P.A.; Efremenko, A.V.; Polyakova, A.S.; Feofanov, A.V.; Ustimova, M.A.; Fedorov, Y.V.; Fedorova, O.A. Fluorescent RET-Based Chemosensor Bearing 1,8-Naphthalimide and Styrylpyridine Chromophores for Ratiometric Detection of Hg2+ and Its Bio-Application. Biosensors 2022, 12, 770. https://doi.org/10.3390/bios12090770
Panchenko PA, Efremenko AV, Polyakova AS, Feofanov AV, Ustimova MA, Fedorov YV, Fedorova OA. Fluorescent RET-Based Chemosensor Bearing 1,8-Naphthalimide and Styrylpyridine Chromophores for Ratiometric Detection of Hg2+ and Its Bio-Application. Biosensors. 2022; 12(9):770. https://doi.org/10.3390/bios12090770
Chicago/Turabian StylePanchenko, Pavel A., Anastasija V. Efremenko, Anna S. Polyakova, Alexey V. Feofanov, Maria A. Ustimova, Yuri V. Fedorov, and Olga A. Fedorova. 2022. "Fluorescent RET-Based Chemosensor Bearing 1,8-Naphthalimide and Styrylpyridine Chromophores for Ratiometric Detection of Hg2+ and Its Bio-Application" Biosensors 12, no. 9: 770. https://doi.org/10.3390/bios12090770
APA StylePanchenko, P. A., Efremenko, A. V., Polyakova, A. S., Feofanov, A. V., Ustimova, M. A., Fedorov, Y. V., & Fedorova, O. A. (2022). Fluorescent RET-Based Chemosensor Bearing 1,8-Naphthalimide and Styrylpyridine Chromophores for Ratiometric Detection of Hg2+ and Its Bio-Application. Biosensors, 12(9), 770. https://doi.org/10.3390/bios12090770