
Citation: Qiu, L.; Liu, X.; Zhu, L.;

Luo, L.; Sun, N.; Pei, R. Current

Advances in Technologies for Single

Extracellular Vesicle Analysis and Its

Clinical Applications in Cancer

Diagnosis. Biosensors 2023, 13, 129.

https://doi.org/10.3390/

bios13010129

Received: 15 December 2022

Revised: 31 December 2022

Accepted: 10 January 2023

Published: 12 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biosensors

Review

Current Advances in Technologies for Single Extracellular Vesicle
Analysis and Its Clinical Applications in Cancer Diagnosis
Lei Qiu 1,2, Xingzhu Liu 2, Libo Zhu 2, Liqiang Luo 1, Na Sun 2,3,* and Renjun Pei 2,3

1 Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
2 Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and

Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
3 School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
* Correspondence: nsun2013@sinano.ac.cn

Abstract: Extracellular vesicles (EVs) have been regarded as one of the most potential diagnostic
biomarkers for different cancers, due to their unique physiological and pathological functions.
However, it is still challenging to precisely analyze the contents and sources of EVs, due to their
heterogeneity. Herein, we summarize the advances in technologies for a single EV analysis, which
may provide new strategies to study the heterogeneity of EVs, as well as their cargo, more specifically.
Furthermore, the applications of a single EV analysis on cancer early diagnosis are also discussed.
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1. Introduction

Extracellular vesicles (EVs) are actively produced by most types of cells, which have
been categorized into three subgroups, based on their biological origin [1,2], release
pathway [3] and size [4], including apoptotic vesicles (50–5000 nm) [5], microvesicles
(100–1000 nm) [6,7] and exosomes (30–100 nm). EVs can be isolated from various bio-
logical fluids with minimal invasion, such as salivary [8], plasma [9], urine [10], breast
milk [11] and seminal plasma [12], which has sparked considerable interest in cancer re-
search. There are various cargos in EVs, including proteins [13], enzymes [14], DNA [15],
mRNA [16], non-coding ribonucleic acid (ncRNA) and lipids, cytokines and growth factor
receptors [17–20]. Importantly, tumor cell-derived EVs can induce the deterioration of non-
malignant tissues [21] by modulating the tumor’s microenvironment, making it a potential
circulating biomarker for cancer diagnosis [22–24], staging [25], treatment monitoring [26]
and prognosis [27].

In the past decade, various methods for EV detection have been developed, but many
of them focused on EV quantification or characterization in bulk [28]. For example, small-
angle X-ray scattering (SAXS) has been used to reveal the details of the EV’s phospholipid
bilayer structures and encapsulated transmembrane proteins [29,30]. However, it is limited
to bulk analysis methods to reveal the high heterogeneity of the exosomes. As EVs are a
group of heterogeneous particles, they have been considered to play an important role in
tumor development. Moreover, there is also a huge challenge for the clinical application of
EV detection in cancer diagnosis with a high degree of sensitivity, especially in early stages
when only a small amount of EVs can be found in the liquid biopsy samples [31]. Recent
studies suggest that single EV analysis techniques may provide a powerful tool to explore
the diversity of EVs and address these challenges [32–34]. This review article summarizes
the recent advances in the single EV analysis technology from the perspective of different
analysis strategies, followed by a discussion on the applications of the single EV analysis
technology in the field of cancer diagnosis.
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2. Current Advances in the Single EV Analysis Techniques
2.1. Electron Microscopy-Based Methods for the Single EV Morphology Characterization

To reveal the morphology of the single EV, transmission electron microscopy (TEM) [35],
cryo-EM [36] as well as atomic force microscopy (AFM) [37] have been widely used to
observe EVs in different conditions. In fact, it was in the 1960s [38] that EVs were first-
time observed under an EM when they were described as “platelet dust”. In the 1980s,
Pan et al. [39,40] described EVs as small dense bodies observed under TEM with a size
of 50 nm (Figure 1A) and demonstrated that the transferrin receptor was externalized in
these vesicles. EVs exhibit a saucer-like structure under TEM caused by the collapse of the
samples during sample drying treatment, while cryo-EM can completely preserve their
original morphology, as they were imaged in their native aqueous status without fixation.
In addition, cryo-EM enables the precise observation of the EV morphology and hetero-
geneity [41]. Poliakov et al. [42] reported the detailed structures of small exosome-like
vesicles isolated from human seminal fluid for the first time (Figure 1B). They analyzed
301 cryo-EM images of vesicles purified by a sucrose gradient, and described their mor-
phological characteristics in detail, including multiplicity, shape, external features and the
overall density of the vesicles.
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[43]. Copyright 2018, Royal Society of Chemistry. 

Figure 1. Electron microscopy-based methods for the single EV morphology characterization.
(A) TEM image of small dense bodies labeled with gold nanoparticles released from multivesic-
ular elements. Reprinted with permission from [40]. Copyright 1985, Rockefeller University Press.
(B) Morphological characteristics of exosome-like vesicles observed by cryo-EM. Dashed white ar-
rows are showing dark depositions, solid white arrows are showing secondary vesicles. Reprinted
with permission from [42]. Copyright 2008, Wiley-Liss, Inc. (C) A 3D-force map of exosomes showing
round-shaped objects. An exosome marked by a white arrow was used for the force mapping analysis.
The exosome samples were isolated by ultracentrifugation. Reprinted with permission from [43].
Copyright 2018, Royal Society of Chemistry.

In order to accurately analyze EVs in three dimensions, AFM was utilized to disclose
the structural and nanomechanical features of EVs. Yurtsever et al. [43] found distinct local
domains on the surface of exosomes using 3D-AFM (Figure 1C). The exosome samples were
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prepared by ultracentrifugation and a MagCapturerm exosome isolation kit. They revealed
that exosomes have an elastic modulus ranging from 50 MPa to 350 MPa. Moreover, they
also found that the exosome mechanical properties are related to the malignancy of tumor
cells and confirmed that the increased elastic modulus of exosomes derived from metastatic
tumor cells contained rich specific proteins related to the elastic fiber formation. These
findings are important for future studies on exosome biofunctions and provide a different
strategy for using exosomes as cancer diagnostic biomarkers. Ye et al. [44] employed AFM
to investigate the physical properties of single EVs released by cancer cells. The EV samples
were prepared by ultracentrifugation. The relationship between the tumor malignancy
and the EV size was explored. The EVs of greater malignancy and smaller size exhibit
an increased stiffness and osmotic pressure but a lower bending modulus, establishing a
relationship between the tumor malignancy and EV nanomechanical signatures.

2.2. Enumeration Techniques for Single EVs

Since EVs are a group of nano- to micro-sized particles varying from 30 nm to 5000 nm,
it is still difficult to accurately enumerate pure EVs. One of the most widely used tech-
niques for the enumeration of mono-dispersed nanoparticles is dynamic light scattering
(DLS) [45,46]. DLS detects the scattered light intensity from particles undergoing the Brow-
nian motion in a solution that fluctuates over time (Figure 2A). The particle size is measured
indirectly, based on the movement of the particles, so the resolution of the DLS [47] is lim-
ited when applied to characterize the polydisperse sample with heterogeneous EVs in size.
A nanoparticle tracking analysis (NTA) [48,49] also utilizes the properties of the Brownian
motion, as well as light scattering, to estimate the particle size in a solution. The scattered
light from the particles is captured by a digital camera (Figure 2B), and then computer
software is used to analyze the Brownian motion of each particle. This particle-by-particle
analysis eliminates the inherent limitation in the DLS. Due to the unique advantage, the
NTA has been favorably evaluated when used for the EV characterization.

Resistive pulse sensing (RPS) [50] is an efficient technique for the particle enumeration
and size measurement in electrolyte solutions, based on the Coulter counter principle.
A tiny insulating aperture is submerged in an electrolyte solution containing suspended
particles. When a particle passes through the orifice, the changes, in terms of the ion
current pulse, can be detected. The size of the particles that can be detected is determined
by the diameter of the aperture. The use of RPS for single EV counting [51] attracts
considerable interest. To improve the feasibility of the particle detection and the flexibility
of the pore size, tunable resistive pulse sensing (TRPS) [52] was then proposed, and the
pore size can be reversibly adjusted, which enables the flexible detection of single particles
of different sizes (Figure 2C). Yet, the EV characterization using TRPS is still suffering
from the heterogeneity problem and the unknown buffer components in the biological
samples [53]. De Vrij et al. [54] spiked the internal control beads into EV samples for a
variation correction, enabling the quantification of EVs in biological samples by a scanning
ion occlusion sensing (SIOS) technology without EV labeling. This method provides a
valuable strategy to the TRPS approach for the EV quantification.

Despite the fact that the NTA and RPS have been requested for the EV characterization,
they are still unable to accurately determine the EV size, due to the existence of complicated
background nanoparticles in the EV samples, including lipoproteins and protein aggregates.
Flow cytometry might be an ideal method for the EV analysis at the single particle level, to
obtain more specific information. However, conventional flow cytometry was designed
for the microparticle characterization, such as cells, which may be not suitable for the
nano-sized EVs. Van der Vlist et al. [55] reported a protocol to set up a high-resolution
flow cytometry for the individual nano-sized vesicle analysis. In this method, the cell-
derived vesicles are labeled with bright fluorescent, then an optimized configuration of
the flow cytometer was employed for the flow cytometric analysis. The high-resolution
flow cytometer enables the precise identification and analysis for the nano-sized vesicles,
as small as 100 nm in diameter. Yan’s group [56,57] built a high-sensitivity flow cytometer
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(HSFCM) (Figure 3A) that achieved a limit of detection for single gold nanoparticles of 7 nm.
They then employed the HSFCM for the single EV detection that can detect EVs between
40 nm and 200 nm in diameter with an analysis rate of 10,000 particles/min (Figure 3B,C).
HSFCM offers a sensitive way to measure the size of single EVs and analyze the surface pro-
teins, which might considerably enhance the understanding of the cell-cell communication
mediated by EVs and facilitate the development of new diagnostic techniques.
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Figure 3. A high-resolution flow cytometry for the individual EV analysis. (A) Schematic diagram of
a laboratory-built HSFCM system by Yan’s group. Reprinted with permission from [56]. Copyright
2014, American Chemical Society. (B) Histogram of the particle size for the EV sample by HSFCM
(n = 10,720). Reprinted with permission from [57]. Copyright 2018, American Chemical Society.
(C) Detection of the side scattering (SSC) of PBS (red) and EVs (black), collected by HSFCM over
2 min each. Reprinted with permission from [57]. Copyright 2018, American Chemical Society.

Lately, droplet technology [58] has been used for the counting of single EVs, show-
ing a dramatic improvement in the detection sensitivity. Liu et al. [59] reported an im-
munosorbent test for the digital validation of the target EVs (Figure 4A). Briefly, EVs were
first captured on the magnetic beads and labeled with a reporter which generates a flu-
orescent signal. These beads were then encapsulated separately into droplets with just
one bead enclosed in each droplet. The droplet-based single-exosome-counting enzyme-
linked immunoassay (droplet digital ExoELISA) achieved a limit of detection, down to
10 exosomes/µL in an absolute counting way for the single exosomes. Compared with
the signal amplification method of the ELISA, the signal amplification method of DNA in
an in vitro amplification, may be more stable. They successfully quantified EVs in serum
samples using a droplet digital ExoELISA. Yang et al. [60] developed a droplet-based
extracellular vesicle analysis (DEVA) assay (Figure 4B), which enables the quantification of
EV subpopulations with a high throughput of 20 million droplets per minutes, which is
100 times greater than microfluidic systems. Notably, a LOD of 9 EVs/µL was achieved
when processing EVs in the PBS samples. The application of the droplet digital technology
provides a completely new way that allows for the ultrasensitive EV detection.

2.3. Techniques for the Single EV Molecular Analysis

The techniques for the molecular analysis of bulk EVs have been widely reported,
such as the western blot (WB) and the enzyme linked immunosorbent assay (ELISA), but it
is limited in the analysis of the surface proteins or nucleic acids for the single EVs, due to
the low detection sensitivity and the heterogeneity of the single EVs. Here, we summarize
the advances of the current technologies developed for the molecular analysis at the single
EV level.
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2.3.1. High-Sensitivity Flow Cytometer

Although there is an intrinsic limitation on the detectable size for flow cytometry, when
directly detecting exosomes, it has been extensively used in studying the surface marker
on exosomes through various instrumentation development, as well as exosome labeling
strategies. Shen et al. [32] designed a probe with switchable conformations that recognizes
CD63, to visualize individual EVs (Figure 5A). The anti-CD63 aptamer was introduced in
the probe for the target recognition, and a trigger domain was designed for initiating the
DNA growth via the hybridization chain reaction (HCR). Thereby, the DNA nanostructures
resulting from the target-initiated engineering (TIE) could enlarge the labeled EVs, making
them detectable by a confocal fluorescence microscope. A simultaneous analysis of the
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dual surface marker expression on a single EV was also demonstrated in this study. The
multiparameter analysis for the single EVs could also been achieved by using imaging
flow cytometry (IFCM) (Figure 5B) [61]. IFCM facilitates the analysis of the surface protein
profiles of CD9, CD63 and CD81 on glioblastoma EVs. They found that the number and
proportion of CD63+ and CD81+ EVs in cancer patients, were significantly increased.
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Figure 5. Flow cytometry-based techniques for the single EV molecular analysis. (A) Single EV anal-
ysis using FCA, achieved by the target-initiated engineering of the DNA nanostructures. Reprinted
with permission from [32]. Copyright 2018, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
(B) Representative IFCM for the tetraspanin profiles on different EVs. White arrowheads indicate
fluorescence positive single EVs and mark an example of a triple positive EV (GS-60) as well as an
example of a single positive EV (SK-MEL28). White arrows indicate fluorescence positive events that
do not appear as EV-like structures in TEM. Reprinted with permission from [61]. Copyright 2019,
Taylor & Francis Group.

2.3.2. Raman Spectroscopy-Based Technique

Surface-enhanced Raman scattering (SERS) [62] is a potent surface-sensitive approach
that can analyze the molecular spectral signals, even at the level of a single molecule, by
a multi-orders-of-magnitude amplification. Tirinato et al. [63] used SERS to analyze the
healthy cell-derived EVs and tumor cell-derived EVs, with a super-hydrophobic nanostruc-
tured substrate, that can control diluted solutions precisely. Tumor cell-derived exosomes,
exhibiting a richer RNA content, can be differentiated from healthy cell-derived exosomes
specifically. Raman tweezers microspectroscopy (RTM), which combines optical trapping
with Raman probing, provides genuine Raman fingerprints of the sample’s constituent
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biomolecules. Kruglik et al. [64] demonstrated the utility of RTM in defining different
subpopulations of exosomes. Notably, RTM provides a universal molecular signature
for different EV subpopulations at the single-EV level. A Raman-enabled nanoparticle
trapping analysis (R-NTA), proposed by Dai et al. [65], presented another method to access
the chemical composition at the level of a single particle in a label-free way (Figure 6A).
They demonstrated the power of the R-NTA platform to characterize the morphology, as
well as the chemical heterogeneity of the nanoparticles. Carney et al. [66] described the
first application of the multispectral optical tweezers (MS-OTs) for the individual vesicle
molecular profiling. This platform has the unique capability to multiplexing quantify the
compositional difference across the EV groups (Figure 6B).

Biosensors 2023, 13, x FOR PEER REVIEW 9 of 24 
 

nanoparticle trapping analysis (R-NTA), proposed by Dai et al. [65], presented another 
method to access the chemical composition at the level of a single particle in a label-free 
way (Figure 6A). They demonstrated the power of the R-NTA platform to characterize the 
morphology, as well as the chemical heterogeneity of the nanoparticles. Carney et al. [66] 
described the first application of the multispectral optical tweezers (MS-OTs) for the indi-
vidual vesicle molecular profiling. This platform has the unique capability to multiplexing 
quantify the compositional difference across the EV groups (Figure 6B).  

 
Figure 6. Raman-based methods for the single EV molecular analysis. (A) Raman−enabled nanopar-
ticle trapping analysis (R−NTA) for the EV analysis, by using morphology and chemical infor-
mation. Reprinted with permission from [65]. Copyright 2020, American Chemical Society. (B) A 
multispectral optical tweezers (MS−Ots) for the single vesicle molecular fingerprinting. Reprinted 
with permission from [66]. Copyright 2017, American Chemical Society. 

Figure 6. Raman-based methods for the single EV molecular analysis. (A) Raman−enabled nanopar-
ticle trapping analysis (R−NTA) for the EV analysis, by using morphology and chemical information.
Reprinted with permission from [65]. Copyright 2020, American Chemical Society. (B) A multi-
spectral optical tweezers (MS−Ots) for the single vesicle molecular fingerprinting. Reprinted with
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2.3.3. Single Particle Interferometric Imaging Sensing (SP-IRIS) Technology

Single particle interferometric imaging sensing (SP-IRIS) [67–71] is of performance
with the single-molecule detection capability. It enables the nanoparticle size measurement
of 70 nm from complex biological samples, at low concentrations [72,73]. Recently, the
potential of SP-IRIS on the single EV characterization, has been explored [74,75]. EVs are
first isolated using immune recognition, and then the surface proteins and the RNA/DNA
contents of the target EV are quantified. The technique has been shown to fractionate
subpopulations of exosomes with specific markers, allowing for a better understanding on
their heterogeneity (Figure 7) [76]. An et al. [77] performed a preliminary screening of the
common EV biomarkers CD9, CD63 and CD81 tetramers, using SP-IRIS. It was found that
the CD81 expression levels were significantly higher in all EV samples, compared to CD9
and CD63.
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Figure 7. Schematic representation of the single particle interferometric imaging sensing (SP-IRIS)
detection process. (A) Detection principle of SP-IRIS technique. (B) SP-IRIS signal for polystyrene
nanoparticles (50–200 nm). (C) Image of a SP-IRIS chip. (D) Microarray of immobilized capture
probes. (E) SP-IRIS image of a capture probe. Reprinted with permission from [76]. Copyright 2016,
Springer Nature.

2.3.4. Atomic Force Microscope—Infrared Spectroscopy (AFM-IR)

Taking advantage of the high-resolution of AFM, individual EVs can be probed for
the identification of their nanoscale composition [78–80]. The quantitative differences
analyzed at the single-vesicle level between the normal and patient’s exosomes have been
reported using high-resolution AFM [81]. Dazzi et al. [82–84] developed a technique
coupling AFM and IR spectroscopy (AFM-IR) (Figure 8A), which enabled thenanoscale
chemical component analysis [85,86]. AFM-IR offers the tremendous potential to detect
the biomolecules inside individual EVs without labeling. The height images from AFM
and AFM-IR spectra allow for the direct comparison of two different EV populations
(Figure 8B), which can be accomplished on a single EV [87–89]. In addition, the IR maps
for the different EVs enable AFM-IR to generate specific fingerprints for individual EVs.
AFM-IR is currently the most sensitive technique to investigate the heterogeneity across
individual EVs and also EV subpopulations.
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EVs (blue) and CMSC29 EVs (red). Reprinted with permission from [89]. Copyright 2018, Royal
Society of Chemistry.

2.3.5. Droplet Digital Polymerase Chain Reaction (ddPCR) Technology

The Weissleder group [90–92] exploited the application of the antibody-based immuno-
droplet digital polymerase chain reaction (iddPCR) for the protein analysis on single EVs.
Followed by the PCR amplification, individual droplets with target EVs in them were
imaged by fluorescence microscopy for the EV quantification (Figure 9A). To specify
the limitation from the fluorescence readout, they proposed an antibody-DNA barcode-
based immunosequencing method (seiSEQ) [91]. The EVs attached with Ab-DNA are
subsequently encapsulated into 70 µm droplets along with barcoded beads (Figure 9B),
where the PCR amplifies the DNA barcode signals, enabling the multiplexing of the protein
profile in individual EVs with a high specificity. Banijamali et al. [93] further developed a
droplet barcode sequencing technology to analyze multiple proteins without barcoded gel
beads (Figure 9C). The droplet digital technology has also been employed to amplify and
characterize single EV nucleic acids. The traditional method for the EV nucleic acid analysis
requires the EV lysis, followed by the quantitative real-time PCR (qPCR) or ddPCR in a
population-based analysis. Pasini et al. [94] have reported that the droplet-based method
enabled the detection of nucleic acid biomarkers in a single EV, which may explore more
information on the specific EV subset that contains specific biomarkers.

Additionally, there are several further innovative strategies that have been proposed
for the EV molecular analysis. Huang et al. [95] demonstrated a single EV counting system
using lanthanide-doped upconversion nanoparticles (UCNPs). They showed the significant
potential of the UCNPs to “digitally” quantify the surface proteins on the individual EVs,
which provides an approach to monitor the EV heterogeneity changes during the tumor’s
progression [96]. Dittrich’s team [97] fabricated a microfluidic platform that can capture,
quantify and classify the EVs released by a single cell. Each detected EV can be assigned to
one of 15 unique populations through multicolor immunostaining. This study revealed the
presence of highly heterogeneous phenotypes of EVs from one single cell.

In summary, we listed the comparison of the different analysis techniques for single
particles, described below in Table 1.
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Table 1. Comparison of the different vesicle analysis techniques.

Technology Advantages Disadvantages Time Required
per Measurement Limit of Detection Ref.

DLS Rapid; Samples are reusable
Not suitable for polydispersed
particles; High sample purity

required
10 min 105 EVs µL−1 [47]

NTA Rapid; Samples are reusable High sample purity required 10 min 105 EVs µL−1 [49]

TRPS
Suitable for polydispersed

Samples;
Single particle detection

Influenced by membrane pore
size, shape and vesicle surface

property;
Membrane clogging

Few minutes 102 EVs µL−1 [52]

nFCM Single particle detection; Rapid High cost Few minutes 104 EVs µL−1 [57]
Digital droplet

Technology
Single particle detection; Low

detection limit Time-consuming 30 min 10 EVs µL−1 [59]
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Figure 9. Droplet digital technique for the single EV molecular analysis. (A) Schematic of the
droplet-based single EV detection. Labeled EVs are detected in the form of fluorescent droplets.
Reprinted with permission from [90]. Copyright 2020, WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim. (B) DNA sequence composition on the barcoded beads and antibodies used for seiSEQ.
Reprinted with permission from [91]. Copyright 2021, American Chemical Society. (C) Droplet
barcode sequencing principle for the multiplexing protein analysis assays for the quantification of
the surface proteins on individual vesicles. Reprinted with permission from [93]. Copyright 2022,
Taylor & Francis Group.

3. Clinical Applications of the Single EV Analysis in Early Cancer Detection

EVs have been considered as a tumor marker produced by tumor cells or other cells, in
response to tumors throughout the development, occurrence and proliferation of malignant
tumors, reflecting the existence and progression of tumors. It is crucial to detect the very
limited signal in the early stages of cancer amid the noise of normal human biology. The
single EV analysis provides a promising method for developing tumor markers, due to
its unique sensitivity and specificity. In this section, we highlight several applications of
the single EV analysis, including the subpopulation analysis, protein profiling and genetic
analysis. An overall summary is shown in Table 2.
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Table 2. Clinical applications of the single EV analysis in early cancer detection.

EV
Analysis Target Type Multiplexing Biomarkers Cancer Type Sources Patient

Number Detection Methods Diagnostic
Performance Year Ref.

subpopulation protein no CD147 (+) EVs Colorectal
cancer Plasma N = 37 nFCM CRC vs. HD,

ROCAUC = 0.932 2018 [57]

subpopulation protein no GPC-1 (+) exosomes Breast cancer Serum N = 12 droplet digital
ExoELISA N/D 2018 [59]

subpopulation protein yes
CD63/EpCAM/MU

C1-triple-positive
EVs

Breast cancer Plasma N = 14 surface plasmon
resonance (SPR)

BrCa vs. HD,
accuracy = 91% 2020 [98]

subpopulation protein yes
CD9-CD63 (+) EVs,

PD-L1-CD63 (+)
EVs

Large B-cell
lymphoma Plasma N = 164

single molecule
array technology

(SiMoa)

LBCL vs. HD
ROCAUC = 0.99 2021 [22]

subpopulation protein yes

CD63 (+) EVs,
THBS2 (+) EVs,
VCAN (+) EVs,

TNC (+) EVs

Lung cancer Plasma N = 22 SERS ROCAUC = 0.85 2022 [99]

subpopulation protein yes

5 EV subsets of
LMP1, LMP2A,
PD-L1, EGFR,

EpCAM

Nasopharyngeal
cancer Plasma N = 42 nFCM

NPC vs. HD,
accuracy = 96.3%.

NPC vs. NPG,
accuracy = 83.1%.

2022 [100]

subpopulation protein no EGFR (+) EVs,
CA19-9 (+) EVs

Pancreatic
cancer Plasma N = 5

quantitative single
molecule

localization
microscopy
(qSMLM)

N/D 2019 [101]

subpopulation protein no LRG-1 (+) EVs,
GPC-1 (+) EVs

Pancreatic
cancer Serum N = 15 SERS

ROCAUC= 0.95,
sensitivity = 90.0%,
specificity = 86.7%

2022 [102]

subpopulation protein yes KRASmut and/or
P53mut positive EVs

Pancreatic
cancer Plasma N = 16 high-resolution

microscopy
early stage PDAC,
accuracy = 15/16 2022 [103]

protein protein no CD47 Breast cancer Serum N = 60 micro flow
cytometry (MFC) N/D 2016 [104]

protein protein no MUC5AC

Intraductal
papillary
mucinous
neoplasms

Plasma N = 133 FCM Sensitivity = 82%,
specificity = 100% 2020 [105]
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Table 2. Cont.

EV
Analysis Target Type Multiplexing Biomarkers Cancer Type Sources Patient

Number Detection Methods Diagnostic
Performance Year Ref.

protein protein yes PD-L1, CD9, CD63 Breast cancer Plasma N = 36
total internal

reflection
fluorescence (TIRF)

N/D 2021 [106]

protein protein yes CD9-CD63,
EpCAM-CD63

Colorectal
cancer Plasma N = 163

single molecule
array technology

(SiMoa)

CD9-CD63, AUC = 0.96;
EpCAM-CD63, AUC =

0.90;
2020 [107]

protein protein yes HER2, GPC-1,
EpCAM, EGFR

Pancreatic
cancer,

Breast cancer
Serum N = 7,

N = 7

DNA points
accumulation for

imaging in
nanoscale

topography
(DNA-PAINT)

PaCa, accuracy =100%
BrCa, accuracy = 100% 2019 [108]

RNA RNA no PSA mRNA Prostate
cancer Serum N = 42

DNA
tetrahedron-based

thermophoretic
assay (DTTA)

PCa vs. benign
prostatic hyperplasia

ROCAUC = 0.93
2021 [109]

RNA, protein RNA,
protein yes miR-21, PD-L1 Lung cancer Plasma N = 34 high-throughput

Nano-bio Chip N/D 2020 [110]

RNA, protein RNA,
protein yes

PD-1, PD-L1,
PD-1 mRNA,
PD-L1 mRNA

Lung cancer Serum N = 54
total internal

reflection
fluorescence (TIRF)

Accuracy = 93.2% 2022 [111]
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3.1. Subpopulation Analysis

The single EV analysis provides a powerful tool to explore the diversity and hetero-
geneity of EVs that help to understand their precise role in the development of tumors,
which will ultimately promote the analysis of EVs as a diagnostic marker. Hu et al. [100]
quantified the concentrations of five EV subsets by examining the expression of the surface
proteins (LMP1, LMP2A, PD-L1, EGFR and EpCAM) on individual EVs in plasma samples,
using nanoflow cytometry (nFCM)-based single particle enumeration (Figure 10). The clini-
cal utility of LMP1(+) and LMP2A(+) EVs was investigated for the diagnostic capacity of
the NPC and NPG patients, and an accuracy of 82.6% was achieved. They then developed
a five-marker sum signature that could discriminate the NPC patients from both healthy
people (accuracy = 96.3%) and NPG patients (accuracy = 83.1%), respectively, significantly
surpassing the traditional VCA-IgA assay.
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Figure 10. Phenotypic analysis of the plasma EVs for the detection of nasopharyngeal carcinoma.
The exosome samples were isolated from plasma by ultracentrifugation. Reprinted with permission
from [100]. Copyright 2022, American Chemical Society.

In Weissleder’s recent study [103], they performed multiplexed protein measurements
in individual EVs and a composition analysis of the putative cancer markers in pancreatic
cancer (Figure 11). In a blinded study, KRASmut and P53mut proteins were detectable in
15 of 16 patients with stage I PDAC by the single EV analysis (sEVA) approach, which is
typically in <0.1% of vesicles. They estimated that the sEVA approach had a detection limit
of 0.1 cm3 tumor volume for the PDAC patients, which is below the capability of clinical
imaging. Compared to the bulk-based EV analysis, the single EV analysis could exclude the
contamination from plasma proteins, ensuring a more specific and accurate detection. The
development of a single EV-based quantitative analysis platform provides a more sensitive
tool to explore the application potential in cancer detection.
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(B) A separate fluorochrome defined EV in each positive case. (C) Analysis of KRASmut and P53mut

in EVs from clinical samples. Reprinted with permission from [103]. Copyright 2022, American
Association for the Advancement of Science.

3.2. Protein Profiling

EV proteins could reflect the status of a tumor, providing important information
on the tumor biology. Xiao et al. [106] analyzed the tetraspanin expression profiles on
EVs that were dual stained by fluorescent antibodies, and identified their cellular ori-
gin. They found a substantial association between the CD63 and PD-L1 expression in the
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EVs from breast cancer patients with a Pearson correlation coefficient of 0.72 (Figure 12).
Chen et al. [108] developed a DNA points accumulation for imaging in the nanoscale to-
pography (DNA-PAINT) based quantitative platform, and profiled four surface biomarkers
on single exosomes (HER2, GPC-1, EpCAM and EGFR). The exosomes were first isolated
from the serum samples by a precipitation method. These DNA-PAINT methods could
detect pancreatic cancer and breast cancer blindly with an accuracy of 100%. Multiple
protein profiling for single EVs provided a more promising diagnostic potency in early
cancer detection.
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Figure 12. Intelligent probabilistic system for the single EV analysis facilitating the tracing cellular
origin. (A) Schematic illustration for the analysis of healthy and tumor EVs, using the single EV
analysis. (B) TIRFM images of the mixed EV samples. (C) Phenotyping of the EVs in clinical plasma
samples. (D,E) Correlation analysis of the PD−L1, CD63 and CD9 expressions for EVs from clinical
cancer plasma samples (D) and healthy plasma samples (E). Reprinted with permission from [106].
Copyright 2021, American Chemical Society.

3.3. RNA Analysis

The benefit from the protection of the EV membranes, the reserved RNA inside them
is stable and contains rather intact information, compared to the circulating RNA. Studies
on the tumor EV-derived RNA may reveal the molecular mechanism of the specific RNAs
in tumor development. Zhou et al. [110] developed a Nano-bio Chip Integrated System for
Liquid Biopsy (HNCIB) system to detect proteins and RNA in EVs, simultaneously, at the
level of the single vesicles. This HNCIB system could differentiate the patients with lung
adenocarcinoma (LUAD) from healthy donors by detecting the up-regulated expression
of the EVs’ cargo biomarkers (Figure 13). They then used machine learning methods to
improve the detection accuracy in the image processing.
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Figure 13. Measurement of the different EV cargo biomarker expressions. Representative images and
analysis of the (A) EV miR-21, (B) EV PD-L1 mRNA and (C) EV PD-L1 membrane protein. Reprinted
with permission from [110]. Copyright 2020, American Association for the Advancement of Science.

4. Conclusions and Outlook

Although EVs have been considered as one of the most promising biomarkers that
carry rich diagnostic information, there are still two critical challenges in EV-based cancer
detection: (i) the ultra-low amount and purity in early stage and (ii) high heterogeneity.
Consequently, the development of more accurate methods for the EV characterization is
highly in demand. We reviewed the current development of the single EV technologies
for the EV physical characterization, EV counting and EV molecular profiling, in light of
clinical requirements. Microscopy-based methods, including TEM, cryo-EM and AFM, are
commonly employed for EV study. New strategies, such as nFCM and droplet techniques,
enabled the specific EV enumeration at a single particle level, which would dramatically
increase the sensitivity of the tumor-derived EV detection. In order to reveal the hetero-
geneity of EVs, more efforts are focused on the improvement on the molecular analysis
for the individual EVs. The feasibility of the protein profiling and RNA/DNA testing has
been demonstrated by several techniques. Especially, the advances in the multiplexing
protein profile on the single EV pave the way to the high throughput analysis of the tumor
EVs with a high sensitivity and specificity. Despite the advances, translating them into
clinical application remains difficult. The reliability is a serious issue, because of the lack
of normalization on the clinical sample pretreatment and the data analyses. Repeatability
and more clinical validation would be necessary for the future development of emerging
technologies for the single EV analysis.
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