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Abstract: Brain disorders such as brain tumors and neurodegenerative diseases (NDs) are accompa-
nied by chemical alterations in the tissues. Early diagnosis of these diseases will provide key benefits
for patients and opportunities for preventive treatments. To detect these sophisticated diseases,
various imaging modalities have been developed such as computed tomography (CT), magnetic reso-
nance imaging (MRI), and positron emission tomography (PET). However, they provide inadequate
molecule-specific information. In comparison, Raman spectroscopy (RS) is an analytical tool that
provides rich information about molecular fingerprints. It is also inexpensive and rapid compared to
CT, MRI, and PET. While intrinsic RS suffers from low yield, in recent years, through the adoption
of Raman enhancement technologies and advanced data analysis approaches, RS has undergone
significant advancements in its ability to probe biological tissues, including the brain. This review
discusses recent clinical and biomedical applications of RS and related techniques applicable to brain
tumors and NDs.

Keywords: Raman spectroscopy; brain disorders; clinical treatment; biomarker identification;
statistical analysis

1. Introduction

The human brain is without doubt one of the most fascinating works of nature. It is the
central organ of the nervous system that controls the essential activities of humans. Brain
disorders arise due to atypical features in brain functional, structural, and biochemical
levels. Many of these diseases, including Alzheimer’s disease (AD), Parkinson’s disease
(PD), Huntington’s disease (HD), and brain tumors represent public health challenges, as
they can have a profound and even debilitating impact on a patient’s life [1–4]. The level of
care required for patients with brain anomalies adds further economic and social burden,
highlighting the importance of developing efficient treatments. As a result, the detection of
these devastating disorders at an early stage represents paramount importance in precision
medicine. Current diagnosis methods are highly reliant on CT, MRI, and PET [5–7]. While
these techniques offer deep tissue imaging capabilities, they suffer from major drawbacks
such as high cost, poor spatial resolution, limited insight into specific molecular information,
and the adverse effects of using ionizing radiation. Therefore, developing fast, non-invasive,
and cost-effective tools remains a central theme in clinical applications.

Numerous developments in laser spectroscopy have enabled significant progression
of vibrational spectroscopy in biological applications. As one special method of various
vibrational spectroscopic techniques, RS has been established as the front runner in the
clinical diagnosis of brain anomalies [8,9]. It is widely accepted as a noninvasive modality
that can provide a wealth of information on the cellular and molecular level due to the
inelastic scattering of incident light. Typically, in RS, light from a monochromatic laser
interacts with the sample’s vibrational modes, resulting in inelastic photon scattering. These
photons are shifted in energy to values different than that of excitation. This is measured
as Raman shift and gives information that is specific to chemical bonds. The resulting
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spectra provide unique information where the Raman shift value provides information
about different molecular species and their relative concentration can be evaluated based
on the strength of different peaks. Thus, RS can provide a vibrational “fingerprint” of
the sample under investigation. More importantly, RS has significant potential in the
diagnosis, progression, and evaluation of treatments for brain disorders [10,11]. This is
mainly due to its ability to differentiate healthy and diseased tissues that can reveal specific
biomarkers based on the stage of the disease. Moreover, RS does not require labeling for
detection. Sometimes the signal generated from biological tissues in spontaneous RS is
relatively weak. In such situations, surface-enhanced Raman scattering (SERS) is useful
in gathering meaningful information [9]. Additionally, this technique can be used in vivo
due to the advancement of fiber-optic probes coupled with portable Raman systems. These
advances in RS in clinical applications have been further augmented by rapid progress in
chemometrics and machine learning (ML) algorithms [5]. Several data analysis methods
and ML models such as principal component analysis (PCA), classical least square fitting
(CLS), partial least square (PLS), and linear discriminant analysis (LDA) allow for the
extraction of hidden information that cannot be accessed through human inspection and
basic statistical methods.

In this review, we attempt to shed further light on significant advances and state-of-
the-art development of RS in clinical applications of brain disorders. We first start our
discussion with the principle of Raman scattering and general spectrometer setup. Then,
we discuss a range of Raman techniques such as resonance Raman spectroscopy (RRS),
SERS, and variations of RS. After that, we include a brief discussion on statistical analysis
tools including ML on Raman spectra as effective tools for biomarker identification of
brain disorders. Then, we present different brain disorders categorized under NDs and
tumors. Finally, we discuss the challenges and prospects of RS for clinical applications of
brain anomalies. We believe that this comprehensive review will stimulate and trigger the
understanding of RS as a potential tool in the diagnosis of brain disorders.

2. The Principles of Raman Spectroscopy and Related Techniques

When a photon of light interacts with matter, it can be scattered either elastically or
inelastically. RS engages the inelastic scattering of light by matter, which was first described
by C.V. Raman early in the 20th century. The Raman effect is observed through Stokes and
anti-Stokes scattering in which the scattered light has either a lower or higher frequency
than that of the incident light, respectively. In the biomedical field, Stokes scattering is the
most dominant pathway, and the signal is relatively weak. Only 1 in 10 million photons
experience Raman scattering. The difference in energy between the incident light and
the Raman scattered light is characteristic of the frequency of the vibrational bond that is
excited. Additionally, Raman scattering requires a change in polarizability. The spectrum of
the scattered photons is represented as the Raman spectrum, and it shows the intensity of
the scattered light as a function of the Raman shift. Raman shift values are an identification
of the target molecule, which reflects specific chemical bonds and constitutions. Thus, every
molecule has a unique spectrum that can be identified as a vibrational fingerprint allowing
for the identification of biological materials such as proteins, lipids, and DNA.

For the measurements of the scattering signal, RS systems are used, which are com-
posed of a light source, the spectrometer, a filter to block the laser line, and a detector
(Figure 1f). Lasers are used to provide monochromatic radiation for the excitation of
molecules. A key consideration of the experimental design is the choice of laser wavelength.
This can depend on various factors such as resonance conditions of the sample, extent
of fluorescence, background signal, the sensitivity of the detectors, and signal-to-noise
ratio (SNR). Objective lenses are used to focus the light on the sample and to collect the
scattered radiation. The scattered light is then analyzed by a spectrometer coupled to a
suitable detector. A set of filters (laser line filter and long pass or notch filter) are used to
remove excitation radiation and Rayleigh scattered light. A diffraction grating is used to
separate useful radiation into constituent wavelengths and is finally detected by a sensitive
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detection system, commonly by a charge-coupled device (CCD). Large datasets are often
required to apply chemometrics and ML analysis to extract meaningful data. Toward this
goal, large sampling areas up to centimeters need to be analyzed with suitable approaches.
This is when Raman mapping is particularly useful. One possibility is to move the laser
or sample in a predetermined pattern to measure the Raman spectrum at every position.
Additional approaches involve expanding the laser focus, laser line, light sheet, and wide-
field illumination. The resulting Raman maps contain chemical and structural information
coupled with spatial information.

Figure 1. Principles of RS: (a) energy level diagram showing Raman scattering, SERS, and RRS.
E0, E1, and Vn show the electronic ground state, an electronic excited state, and vibrational excited
states, respectively. (b) Raman spectrum induced by laser light focused on a sample during Raman
microscopy. (c) Spatial distribution of Raman spectra, also referred to as hyperspectral Raman images,
where Raman images are obtained as distributions of Raman peak intensities. (d) Energy level
diagram of SRS, electronic pre-resonant stimulated Raman scattering (eprSRS), and CARS. (e) SRS
microscopy detects the energy exchange between the pump and probe beams via the vibrational
excitation state as stimulated Raman gain (probe beam) or loss (pump beam) to reconstruct a Raman
image. CARS microscopy uses CARS signals emitted from the sample as the image contrast. Adapted
with permission from Reference [11] © 2021 American Chemical Society. (f) Generic setup for a
Raman microspectroscopy system. Adapted with permission from Reference [12] © 2018 American
Chemical Society.

2.1. Resonance Raman Spectroscopy (RRS)

Spontaneous Raman scattering is inherently weak, and it requires special conditions
to magnify the signal. In RRS, the wavelength of the excitation light is tuned to match
the electronic transitions of the sample under investigation (Figure 1a). Such resonance
conditions result in the enhancement of the signal that could be undetectable under normal
conditions. Additionally, RRS only amplifies Raman scattering from a specific vibrational
mode. In the literature, enhancement up to six orders of magnitude was reported [13]. This
technique allows for the design of an enhancement mechanism without the interference of
foreign moieties. One drawback of RRS is increased fluorescence that can interfere with
the Raman signal. However, this can be minimized by choosing the proper wavelength
for excitation. RRS is becoming a popular tool in identifying NDs and brain cancers. For
example, RRS provides information about protein structures and conformations as well as
healthy and diseased tissues.
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2.2. Surface-Enhanced Raman Spectroscopy (SERS)

While conventional RS provides excellent chemical specificity, it is inherently weak.
One method for enhancing the weak signal is using metallic substrates to take advantage
of the enhanced electric field at the surface of metal nanoparticles caused by localized
surface plasmon resonance (LSPR) [14–16]. Gold and silver nanoparticles are widely used
for SERS experiments, and their properties can be tuned depending on the size, shape,
composition, and dielectric environment of the nanoparticle [17]. SERS is a rapid, sensitive,
and label-free technique that allows for even single-molecule detection. Therefore, it
has clear advantages for diagnostic applications related to NDs. In SERS measurements,
the resulting enhancement is maximized when plasmon frequency is in resonance with
frequency in incident light (Figure 1a). However, other factors need to be considered, such
as nanoparticle clustering and surface adsorption [18].

2.3. Other Variations of Raman Spectroscopy

While spontaneous Raman scattering, SERS, and RRS are available as widely re-
searched techniques, other variations of RS are also used in brain diagnosis. Coherent
anti-stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) are widely
utilized versions of nonlinear RS. The principle behind CARS is to use a pump laser beam
and a Stokes laser beam to produce an anti-Stokes signal (Figure 1d). In CARS, an enhanced
Raman signal is obtained that is orders of magnitude stronger than spontaneous Raman
scattering. SRS is also based on the same principle as CARS to produce resonantly en-
hanced signals (Figure 1d,e). The amplified Raman signals allow for the label-free detection
of target analytes with a high spatial resolution. Tip-enhanced Raman spectroscopy is a
combination of SERS and scanning tunneling microscopy (STM). As a result, it has unique
advantages such as chemical sensitivity and high spatial resolution. Fiber optic probes and
handheld instruments are particularly useful, as they are portable, have small dimensions,
and are easy to use in clinical testing.

3. Statistical and Machine Learning Analysis for Raman Data

Raman spectra measured on brain samples are high-dimensional, complex, and noisy.
To analyze the complicated Raman spectra of brain samples, classical statistical models
are frequently used. In diagnosing various brain diseases, PCA is applied to visualize
sample patterns and to interpret significant Raman peaks. For example, in studying AD,
Fonseca et al. deployed PCA on Raman spectra of mouse brains to visualize the difference
between samples with different ages captured by RS (Figure 2a) [19]. Sevgi et al., visualized
principal components (PCs) to identify important Raman peaks correlated to PD in Rat
brain models (Figure 2b) [20]. Researchers also perform PCA to reduce dimensionality and
extract features before further analysis. Huefner et al. applied PCA on Raman spectra and
used the generated PCs as inputs to diagnose HD with serum samples [21]. In analyzing
molecular processes in brain cancer, Lemoine et al., used 50 PCs produced by PCA and
optimized the performances of the classifier (Figure 2c) [22]. Other researchers also reduce
the dimension of Raman data with PCA in studying various brain tumors, including
gliomas and meningiomas before feeding into the classifiers [23–25]. Other statistical tools
such as t-distributed stochastic neighbor embedding (t-SNE) can also be used to visualize
the differences between Raman spectra of different samples. Wang et al., applied t-SNE to
project the high-dimensional Raman spectra of mouse brains with and without AD into
two-dimensional plots and visualized the clusters [26].

ML is an advanced technique that can recognize patterns and capture minor differ-
ences between data clusters. Therefore, it is an excellent tool for analyzing Raman spectra.
In recent years, ML methods have been thriving in the clinical diagnosis of brain diseases
and the detection of brain cancers. Wang et al., proposed an interpretable ML method
with the support vector machine (SVM) and RS to identify potential biomarkers of AD
in mouse brains [26]. Specifically, they collected Raman spectra on slices of mouse brains
with and without AD, applied SVM to classify AD and non-AD spectra, and identified a
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spectral feature importance map that reveals the importance of each Raman wavenumber
in classifying AD and non-AD spectra (Figure 2d). Desroches et al., also applied SVM to
perform in vivo diagnosis of brain cancer with RS [27]. Morais et al., combined PCA and
SVM and achieved high performance in differentiating meningioma Grade I and Grade
II samples (Figure 2e) [23]. Another popular ML approach is PCA-LDA. Bury et al., iden-
tified different tumor statuses with the LDA-PCA approach and achieved high accuracy
(Figure 2f) [28]. Other researchers also demonstrated that PCA-LDA is efficient in studying
different brain cancers and tumors with Raman spectra [21–24]. Partial least squares dis-
criminant analysis (PLS-DA) is also widely used in investigating brain cancer. Abramczyk
et al., classified Raman spectra of tissue from grade IV medulloblastoma and non-tumors
using PLS-DA [29]. Other researchers performed classifications with PLS-DA and achieved
high accuracy in classifying different tumoral brain tissues [30,31].

Figure 2. Illustration of applicability of statistical and ML methods on RS in brain clinical applications.
(a) Histogram showing the differences between groups by PCA of the Raman spectral of brain
samples. Twelve-month-old wild-type mice WT (black), six-month-old transgenic mice Tg6 (blue),
and twelve-month-old transgenic mice Tg12 (red). Adapted with permission from Reference [19]
© 2021 The Royal Society of Chemistry. (b) Visualization of the loadings of PC7. Positive side
wild-type rat (WT) and negative side transgenic rat (TG) brain samples. Adapted with permission
from Reference [20] © 2021 Frontiers. (c) Raman spectra were processed by both band fitting and
PCA with 50 principal components before being fed into classifiers. Adapted with permission from
Reference [22] © 2019 The Royal Society of Chemistry. (d) Workflow of Raman signals’ data collection,
preprocessing, and ML classification and interpretation to differentiate AD/non-AD Raman spectra
of brain samples. Adapted with permission from Reference [26] © 2022 American Chemical Society.
(e) Receiver operating characteristic (ROC) curve for PCA-QDA. AUC: area under the curve. AUC
values between 0.7 and 0.8 are considered acceptable, between 0.8 and 0.9 are considered excellent,
and above 0.9 are considered outstanding. Adapted with permission from Reference [24] © 2019 The
Royal Society of Chemistry. (f) Confusion matrix for PCA-LDC model classifying: non-tumor brain
tissue (N); low-grade glioma (LG); high-grade glioma (HG); meningioma (Men); metastasis (Met);
lymphoma (Ly). Green is correctly classified, whereas red is incorrectly classified. Adapted with
permission from Reference [28] © MDPI 2019.
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There are many other ML methods applied on Raman spectra of various tissues and
diseases that can be extended to the Raman spectra of brain samples. Perumal et al., applied
logistic regression to evaluate the diagnostic biomarker of ovarian cancer [30]. Tree-based
ML methods are also used in classifying Raman spectra. In classifying the Raman spectra
of the receptor-binding domain of SARS-CoV-2 and MERS-CoV virus, Zhang et al. applied
random forest and XGBoost and achieved accuracies over 95% [18]. Ye et al., also applied
XGBoost to classify Raman spectra of different strains of SARS-CoV-2 [31]. Convolutional
neural networks are also used in classifying Raman spectra of different samples [32–34]. For
example, Ma et al., achieved an accuracy of 92% with 1D-CNN in diagnosing breast cancer.

ML models are also useful in reducing signal noise and enhancing SNR. Variational
autoencoder (VAE) is a convolutional neural network architecture with encoding and
decoding stages [35–37]. The VAE is trained in an unsupervised way that reconstructs
the input spectra. The encoder compresses the input in a latent space. With the lower
dimension of the latent space, the noise is removed during the reconstruction by the decoder.
He et al., applied the VAE to improve the signal-to-noise ratio of Raman spectra and to
significantly increase the accuracy of tumor subtype detection [36].

4. Applications of Raman Spectroscopy in Brain Diseases

The seriousness of brain disorders has led to significant investment into research
that can identify diagnoses, therapies, and preventive pathways of these deadly diseases.
This broad category of brain disorders can vary depending on symptoms and severity.
Out of many diseases that can affect the brain, NDs and brain tumors are more prevalent.
The major hallmark of NDs is protein accumulation. However, abnormal conformational
properties including amyloidosis, tauopathies, α-synucleinopathies, and proteinopathies
are also responsible for the development of NDs. RS has great potential in identifying these
diseases and was successfully applied in clinical studies. Table 1 compares mechanisms,
biomarkers, Raman sensitivity, and diagnose methods other than Raman spectroscopy
for NDs.

Table 1. Mechanisms, biomarkers, Raman sensitivity, and diagnose methods other than Raman
spectroscopy for NDs.

AD PD HD

Mechanism
Aβ Protein misfolding [10]

Hyperphosphorylation of tau
causing aggregation [10,37]

Aggregation of
α-synuclein [10,37]

Expansion of CAG trinucleotides
coding for poly-glutamine

(poly-Q) stretch at the
NH2-terminus of the huntingtin

(Htt) protein [10,37]

Biomarkers

Tau proteins (t-tau, p-tau) [38]
Aβ (Aβ oligomer, Aβ40,

Aβ42) [38]
Neurofilament light

chain (NfL)
Vinisin-like protein 1 (VLP-1)
Neuron-specific enolase (NSE)

Heart fatty acid binding
protein (HFABP)

Glial activation (YKL-40) [6]

α-synuclein [39]
Dopamine [39]
Orexin [40,41]
8-Hydroxy-2′-

Deoxyguanosine [40]
miRNA [42]

Hungtintin protein
Mutant Htt (mHtt) [43]

Polyglutamine [44]
Triglycerides, phospholipids,

Fatty acids [45]
Myelin basic protein

(MBP) [46,47]
Total tau (t-tau) [48]

Melatonin [49]
Cortosol [50,51]

Raman Sensitivity 100 fg/mL for Aβ [52]
10−9 M for Dopamine [53]

100 nM for α-synuclein [54]
10−11 M for Dopamine [55]

1 nM for Dopamine [56]
29 µM for mHtt protein [43]

Diagnose methods other
than Raman Spectroscopy

Mental state examination
Neurological assessment

Brain imaging
techniques [6,37,57]

Mental state examination
Neurological assessment

Brain imaging
techniques [6,37,57]

Mental state examination
Neurological assessment
Brain imaging techniques
Genetic testing [6,37,57]
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The application of Raman techniques to clinical samples and animal models is still
at an early stage and still needs close collaborations between spectroscopists, material
scientists, biomedical engineers, and clinicians, who are required to make the clinical trans-
formation of RS a reality. However, emerging reports have demonstrated the promising
potential of RS in clinical settings [58–61]. The exploitation of Raman techniques in clinical
laboratories is mainly dependent on the availability of portable Raman systems and the
advancements in miniaturization [62,63]. Tanwar et al., and Allakhverdiev et al., described
the clinical applications of Raman spectroscopy on four different avenues including disease
diagnosis, surgical guidance, therapeutic monitoring, and metabolite monitoring [63,64].
The Raman spectrum of biofluids such as urine, saliva, serum, and tears induce many
peaks representative of the plethora of cellular constitutes. Additionally, biomarker identi-
fication of such biofluids has the potential to study various physiological and pathological
processes. Differences between healthy samples and pathologic conditions are exhibited as
peak shifting and different intensities of the Raman spectrum. Additionally, there could be
an emergence of new peaks allowing for precise identification of pathologies. DePaoli et al.,
described three main system types required for the exploitation of RS in neurosurgery [62].
First, there should be availability of single-point RS probes for intact tissue assessment.
Another requirement is access to portable Raman microscopes for histopathological evalua-
tion after tissue resection. Finally, there should be availability of endoscopic imagers for
surgical guidance. In this section, we introduce the state-of-the-art developments of RS in
the diagnosis of the above-mentioned brain anomalies.

4.1. Neurodegenerative Diseases

NDs constitute chronic, progressive, and irreversible diseases that can affect many of
the body’s activities, such as movements, talking, heart function, balance, and breathing.
Some of these diseases include AD, PD, HD, and so on. The diagnosis and treatment of
NDs represent a significant challenge to healthcare specialists, as most of the symptoms
become evident at later stages. Research in NDs is currently undertaken at a rapid pace.
Promising results from various studies have led to improving the understanding of risk
factors associated with this disease. This includes age, family history, susceptibility genes,
lifestyle choices, environmental factors, education, and gender, to name a few. Although
the pathogenesis and the degeneration mechanisms are different for each disease, they
share common characteristics such as protein misfolding and aggregation, enabling RS as a
handy tool in diagnosis. A comprehensive understanding of protein structure is the key to
controlling disease progress. RS of healthy tissue is composed of many constituents, and
when certain pathologic conditions arise, there will be a change in Raman shift values and
intensities of the peaks. This provides a unique pathway to identify biomarkers related to
NDs with the aid of chemometrics.

4.1.1. Alzheimer’s Disease (AD)

AD is the most prevalent neurodegenerative disorder associated with weight loss,
memory deficits, and cognitive decline. Various studies support the finding that the
accumulation of Amyloid-β (Aβ) in the brain is responsible for the progression of AD.
Additionally, tau proteins are responsible for the initiating event of AD. RS and related
methods have evolved as sensitive methods for biomarker screening of AD.

(a) Fundamental Investigations Related to AD

Conventional RS has been applied to the investigation of biomarkers related to the
progression of AD using post-mortem human brain tissues and biofluids. SRS has been
applied in studying amyloid plaques in AD. A recent work by Ji et al. reported three-color
SRS imaging of amyloid plaques of AD [65]. The researchers were able to distinguish
misfolded and normal proteins by measuring the spectral shifts of the amide-I bands
(Figure 3a). The results revealed an approximately 10 cm−1 blue shift of the amide-I band,
which was obvious in both frozen and fresh tissue samples. In another work, Lochocki
used the SRS-based multimodal technique to detect amyloid deposits in snap-frozen AD
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human brain tissue [66]. The SRS results revealed the transformation of protein to a
β-sheet structure.

In an early report, Sudworth et al. utilized RS in combination with PCA analysis to
discriminate AD disease status in terms of protein conformation changes [67]. A similar
study conducted by Hu and coworkers verified for the first time that Raman signatures
from the brain hippocampus could help to explore the pathogenesis of AD [68]. They
injected Aβ25–35 into the hippocampus CA1 regions of rats, and an experimental procedure
was carried out using a 785 nm laser for spectral acquisition. To rule out the effects
from injection itself, the researchers also carried out continuous monitoring of the detailed
spectral changes. Compared with the spectra of normal rats, that of AD rats is characterized
by signature peaks and normalized intensity differences. For example, a shoulder Raman
peak at 1670 cm−1 assigned to the C=O stretching vibration of the β sheet secondary
structure has been used to distinguish AD and healthy samples. Additionally, normalized
intensities of Raman peaks at 1065, 1088, 1130, 1300, and 1440 cm−1 are dominated in AD
samples demonstrating hallmarks in the progress of AD, such as Aβ deposition, increase
in cholesterol, and increase in slightly hyperphosphorylated tau.

Michael et al. reported the utility of RS as a beneficial technique to analyze eye lens
diseases caused by protein aggregation [69,70]. The study showed that protein aggregates
of the hippocampus and cortical cataracts of eye lenses have significantly different Raman
profiles. More recently, Popp and coworkers carried out biochemical characterization of
retinal neurodegeneration of an AD model by ex vivo Raman investigations [71]. Inves-
tigated samples captured the layered structure of the retina using a spatial resolution of
2 µm in Raman-based imaging. This finding was further supported by the hematoxylin
and eosin (H&E) staining procedure. The layers were identified based on Raman signa-
ture peaks attributed to nucleic acids, Rhodopsin, lipids, and proteins (Figure 3b,c). For
targeted in vivo applications, with a focus on AD detection, en face Raman imaging was
processed, revealing important biochemical information. The study revealed that an early-
state biochemical change in the protein composition precedes more conventional late-stage
structural changes and pathological pathways of AD. Furthermore, researchers achieved
85.9% accuracy in chemometric analysis.

Two-dimensional (2D) materials are layered crystalline materials characterized by a
list of exotic properties. The family of 2D materials includes graphene, transition metal
dichalcogenides (TMDs), hexagonal boron nitride (h-BN), black phosphorous (BP), MXenes,
etc., [72–75]. They are highly applicable in optical bioimaging, therapy, and tissue engi-
neering [76,77]. These fascinating materials have been explored in the landscape of NDs
and other brain disorders [57,78–80]. Choi et al. demonstrated the reliability of graphene
oxide (GO)-hybrid nano arrays as the SERS-sensing substrate for detecting 10−4 to 10−9 M
concentrations of dopamine [53]. Very recently, our group reported that rapid biomarker
screening of AD could aid timely and effective treatment measures [25]. Briefly, we utilized
graphene-assisted RS and ML techniques to differentiate mouse brains with and without
AD. We collected data from three different brain regions: the cortex, hippocampus, and
thalamus. In the case of graphene in contact, it exhibited much higher SNR for all three
brain regions. We explained the results based on exceptional properties of graphene such
as high thermal conductivity and fluorescence quenching capability. More importantly,
using ML interpretation, we identified three molecules (triolein, phosphatidylcholine, and
actin) that are positively correlated with AD and two molecules (cytochrome and glycogen)
that are negatively correlated to AD.

SERS can also help provide molecular fingerprints of brain tissues. Liu and coworkers
used black phosphorous and a gold nanoparticle nanohybrid (BP-AuNPs) as a SERS
substrate to understand the molecular composition of various encephalic regions [81].
SERS measurements were achieved through Balb/c mice and 785 nm excitation. Spectra
were collected from four encephalic regions (cerebral cortex, hippocampus, thalamus, and
hypothalamus) showing spectral differences among different regions. The different spectra
obtained by subtracting the left and right hemispheres of four encephalic regions provide
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insight into variation in the local biochemical environments. In another study, Demeritte
and colleagues designed core-shell nanoparticles modified with GO for selective separation
and label-free identification of AD biomarkers. Here, Aβ was magnetically separated
from the whole blood sample and achieved a detection limit of 100 fg/mL [52]. It has
been shown that metal ions, especially Fe3+, Cu2+, and Zn2+, have a significant impact on
Aβ aggregation [82,83]. The link between metal ions and disordered proteins in NDs is
well known and widely studied using SERS. Zhou et al. reported the potential of SERS
spectra to reveal real-time imaging of Aβ aggregation under different conditions [84]. In
their study, AuNPs synthesized in situ with Aβ monomer and fresh mouse brain were
used as a template to understand the role of metal ions on Aβ aggregation. Their results
mentioned that Cu2+ and Zn2+ ions of low concentration promote fibril formation, while
Fe3+ and Zn2+ of high concentration inhibit fibril formation (Figure 3d). Other Raman
techniques on biomarker detection of AD and the dynamical behavior of Aβ aggregation
are progressing gradually, offering valuable insight for the clinical transformation of RS in
disease prevention [85–87].

Mild cognitive impairment (MCI) is a condition often misdiagnosed with early-stage
AD typically characterized by subjective memory impairment and modest deficit in main
cognitive domains [88]. The advanced stage of AD is associated with severe cognitive
decline. Individuals with MCI are memory impaired but have no functional decline and
do not meet the requirements for dementia [89]. This early stage of AD could lead to
worsening of the clinical diagnosis, prolonging the diagnosis period of AD for treatment
procedures. Therefore, identifying biomarkers for this pre-symptomatic stage of AD will be
the key to successful treatments. It has been reported that brain glucose uptake is reduced
by 9% in patients with MCI, allowing for biomarker identification [88].

(b) Clinically Applied Investigations Related to AD

The diagnosis accuracy of neurodegenerative diseases can be significantly enhanced
using RS. Most of the published studies rely on the comparison of Raman features of healthy
donors with that of infected patients. Diagnosis of AD is associated with the abnormal
formation of amyloid plaques and neurofibrillary tangles. Therefore, many researchers
developed Raman-based strategies to detect such proteins aggregated in biofluids and
tissue samples. For example, Lochocki et al., employed RS to study Aβ deposition in AD
tissue sections from post-mortem patients [90]. Additionally, Ryzhikova et al., suggested
that early detection of AD is possible using RS investigation of CSF [91]. In that study,
researchers resolved AD diagnosis with 84% sensitivity and specificity. In another study,
the same researchers revealed the applicability of blood serum for AD diagnostics [92].
Moreover, Carlomagno et al. used multivariate statistical analysis of human serum for AD
disease evaluation [93].

RS is one of the most popular methods for profiling cellular metabolites such as neuro-
transmitters. Imbalances in neurotransmitters are directly correlated to NDs such as AD
and PD. As metabolite monitoring is an important aspect in clinical studies, significant
research progress has been made for spatial localization of neurotransmitters in living
cells [94]. Manciu et al., revealed the clinical potential of RS for the detection and moni-
toring of neurotransmitters [95]. The study carried out real-time detection of serotonin,
adenosine, and dopamine in vitro. Recently, Fu et al., used an animal model for label-
free imaging of acetylcholine using SRS [96]. The authors used vibrational signatures of
acetylcholine at 720 cm−1 to quantify its local concentration directly at the neuromuscu-
lar junctions of the frog cutaneous pectoris muscle. SERS has been used to monitor the
concentrations of various neurotransmitters and fibrilization of AD-responsible proteins.
SERS measurements have been previously reported for the detection of several neuro-
transmitters, including dopamine, melatonin, serotonin, GABA, and acetylcholine [97–100].
These neurotransmitters are particularly important, as they are useful as biomarkers for the
diagnosis and monitoring of neurological diseases. More recently, Moody et al., carried
out a comprehensive study of SERS detection using seven neurotransmitters to establish
optimal detection conditions such as type of metal and wavelength [101]. Additionally,
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they used PCA analysis to decompose large datasets and to identify spectral patterns. For
serotonin, GABA, and glutamate, the best limit of detection (LOD) was achieved with silver
nanoparticles as a SERS substrate at an excitation wavelength of 633 nm. On the other hand,
for melatonin, dopamine, epinephrine, and norepinephrine, the best LOD was achieved
using gold nanoparticles (AuNPs) at an excitation wavelength of 785 nm. In a different
study, Ende et al., demonstrated physicochemical trapping of neurotransmitters based on
AuNPs and polyvinylpyrrolidone (PVP) to detect molecules that are weakly affinitive to
gold [102]. Additionally, Lee et al., reported the spread spectrum SERS (ss-SERS) technique
to detect neurotransmitters at the attomolar level, opening opportunities for early diagnosis
of neurological disorders [103]. Experimental results showed improvement in the SNR of
more than three orders of magnitude. Such an exceptional SNR enhancement allows for
the ultrasensitive detection of neurotransmitters.

Figure 3. Utility of Raman spectroscopic techniques in diagnosis of AD. (a) SRS images of fresh
mouse brain sections at (A) 1658, (B) 1670, and (C) 1680 cm−1. (D) Three color images showing
the distribution of lipids (green), proteins (blue) and amyloid plaque (pink) in the mouse brain
tissue. (E) SRS spectra of the 1600–1720 cm−1 region, showing a 10 cm−1 shift of the amide I band.
Adapted with permission from Reference [65] © American Association for the Advancement of
Science. Overall mean spectra based on the two groups, wild-type (WT) (red) and AD mice (black),
of the en face Raman measurements used for the (b) classification model and (c) the cross sections.
Adapted with permission from Reference [71] © 2020 American Chemical Society. (d) SERS imaging
of Aβ40 in brain tissues where (i) Bright-field of tissue slices from 2-month-old APP/PS1 transgenic
mice treated with: (A) control diet, (B) Cu2+, and (C) Fe3+, Zn2+ of (D) low and (E) high concentration
incubated with our SERS platform for 90 min. SERS imaging of Aβ40 in hippocampus of tissue slices:
(A) control diet, (B) Cu2+, and (C) Fe3+, Zn2+ of (D) low and (E) high concentration. (ii) represents
I1268 and (iii) represents I1244. (iv) SERS spectra of Aβ40 in hippocampus of tissue slices from 2-
month-old APP/PS1 transgenic mice treated with: (A) control diet, (B) Cu2+, and (C) Fe3+, Zn2+ of
(D) low and (E) high concentration. Adapted with permission from Reference [84] © 2020 American
Chemical Society.



Biosensors 2023, 13, 27 11 of 26

Clinical evaluation of suspected MCI patients has similarities to that for AD including
but not limited to the history of the patient, mental status examination, and medical labo-
ratory tests. Cerebrospinal fluid (CSF) measures of Aβ and tau are useful as biomarkers
in predicting the progression from MCI to AD [89]. Hansson et al. revealed the potential
of CSF concentrations of Aβ1–42, total tau (t-tau), and tau phosphorylated at threonine
181 (p-tau) in predicting the progression from MCI to AD [104]. Cennamo et al. demon-
strated SERS of tear fluid as a potential source of a biomarker to differentiate AD- and
MCI-affected patients [105]. They used 18 AD-affected and 7 MCI-affected patients includ-
ing both men and women. Spectral differences were characterized in different regions
attributed to lactoferrin and lysozyme protein components. Additionally, researchers used
PCA analysis to discriminate AD- and MCI-affected patients. In another study, Raman
spectroscopy was used to analyze saliva samples collected from AD and MCI individuals
and achieved greater than 99% accuracy [106]. In the end, researchers proved that RS in
combination with ML is successful as an accurate diagnostic method in the early stages
of AD.

4.1.2. Parkinson’s Disease (PD)

After AD, PD is the second most common ND. Weight loss and behavioral abnor-
malities are common symptoms of PD. The neuropathological hallmark of PD includes
abnormal deposition of a protein called α-synuclein and dopamine deficiency [107]. The
native form of α-synuclein is intrinsically disordered, and it undergoes a transition of the
structure due to PD [108].

(a) Fundamental Investigations Related to PD

RS has been utilized to characterize the secondary structure of α-synuclein and its
aggregation. Raman optical activity (ROA) is a chiroptical spectroscopic technique useful
in identifying the secondary structure of proteins. This technique is based on the difference
in scattering intensities between left and right circularly polarized light. Mensch et al.,
used ROA with conventional RS to detect the transition of α-synuclein from a disordered
form to α-helical or β-sheet forms [109]. They used increasing concentrations of fluorinated
alcohols to induce aggregation of α-synuclein and identified states that act as intermediates
for aggregation and β-sheet-rich oligomers. It is of great importance to understand the
aggregation process of α-synuclein, as it is an important drug discovery target for PD.
Toward that goal, RS was utilized to identify differences in normal and fibril states of
α-synuclein. Maiti et al., used a three-component band fitting (α-helix ~1650–1656 cm−1,
β-sheet ~1664–1670 cm−1, and unordered ~1680 cm−1) of the amide I region to investigate
the secondary structure during aggregation of α-synuclein [110]. The results estimated
that 48% of the secondary structure is composed of α-helix. In a follow-up study, the
same research group carried out further analysis of the α-synuclein amide I region during
fibrillation [111]. Data revealed that the transition of a monomer to aggregate is a complex
phenomenon that results from the interplay between various processes (Figure 4b). The
results have validated that one of the intermediates a-synuclein aggregation possesses
a-helical conformation. Additionally, an increase in β-sheet content and a decrease in the
disorder of protein were observed during aggregation.

In particular, the SERS study on α-synuclein is scarce. In an early study, Zhang and
coworkers designed a liquid core photonic crystal fiber (LCPCF) and SERS-based sensor for
α-synuclein detection [112]. More recently, SERS-based microfluidic testing chips have been
constructed for the investigation of the transient species of α-synuclein at physiological
concentration [54]. Briefly, optical tweezers were used to tune the separation of two
silver nanoparticle-coated silica microbeads, allowing for precise control of the hotspot.
The 200 parallel SERS measurements of 1 µM α-synuclein solution are characterized by
unique Raman fingerprints attributed to α-helix and β-sheets (Figure 4a). Further, this
method allowed for a LOD of α-synuclein as low as 100 nM. Since dopamine deficiency is
a neuropathological hallmark of PD, several studies have applied SERS to the detection
of dopamine. An et al., used AuNPs immobilized on a glass substrate for the detection of
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dopamine and obtained a detection limit of 1 nM [55]. The Raman spectrum of dopamine
displayed broad bands at 1267, 1331, 1158, 1478, 1578, and 1584 cm−1 with peaks at 1267 and
1478 cm−1 identified as phenolic carbon–oxygen and phenyl C=C stretches, respectively.
The Fe3O4/Ag nanocomposite has been successfully applied for the determination of
dopamine in artificial cerebrospinal fluid and mouse striatum [113]. Many studies have
demonstrated SERS as a facial-sensing strategy for dopamine. An in-depth discussion of
SERS as a detection method for dopamine is out of the scope of this review, and readers are
encouraged to read other articles on this topic [114,115].

(b) Clinically Applied Investigations Related to PD

The strategy of collecting biochemical information at the structural level of biological
organization is applicable in other NDs such as PD. SERS has been used to probe the
dopamine, human dopamine transporter, and dopamine–human dopamine transporter
(DA-hDAT) interactions in live cells [116]. The analysis of experimental results revealed
that Raman wavenumbers of 807 and 1076 cm−1 are crucial for the DA-hDAT interactions.
These peaks are attributed to bound states of dopamine molecules in the human dopamine
transporter. Furthermore, analysis of physiological dopamine concentration in complex
biological fluids was also reported as an alternative diagnostic test for PD [117]. For
example, Phung et al. reported 86% lower dopamine concentration for patients with
drug-induced Parkinsonism compared with the level in a healthy human body [56]. The
average dopamine concentrations of the two groups were 2.31 × 10−8 and 3.24 × 10−9 M
for healthy and infected samples. Further, the results demonstrated the detection of
dopamine concentration as low as 10−11 M (Figure 4d,e). These findings highlight the
applicability of the SERS technique as an ultrasensitive detection platform to diagnose
PD through dopamine, as its concentration in samples is relatively low. In another study,
Schipper and coworkers developed an innovative platform for plasma metabolomics for
biomarker studies of PD [118]. In that study, the researchers demonstrated that RS and
near-IR spectroscopy (NIRS) of plasma differentiate individuals with idiopathic from
healthy samples with ~75% accuracy. This finding was based on significant variations in
oxidative stress sensitivity bands in comparison with the control. Additionally, the study
mentioned that reactive oxidative species (ROS) modify the proteins, lipids, and other
cellular substrates in plasma. Carlomagno et al. used the saliva of PD patients to create
an automatic classification model [119]. In that study, Raman spectroscopic analysis was
applied to the saliva of 23 PD patients and 33 healthy samples. Acquired data were further
analyzed using ML techniques. The proposed method highlights the potential to determine
PD onset and progression, monitor therapies, and rehabilitation efficiency.

Brain disorders affect the normal functions of the retinal layers and their subsections.
Many studies have shown that PD has a direct correlation with visual dysfunctions, in-
cluding color discrimination, visual activity, contrast sensitivity, blurred image, motion
perception, and loss of vision [120]. Mammadova et al., used RS to investigate retinal
pathology in a transgenic mouse model (TgM83) expressing the human A53T α-synuclein
mutation [121]. In that work, α-synuclein was shown to accumulate in the inner and outer
retina of 8-month-old TgM83 transgenic mice, expressing A53T human α-synuclein under
the control of the Prnp promoter. Phospho-α-synuclein was only present in the outer
nuclear layer. In addition, TgM83 transgenic mics showed increased microglial activation
followed by increased GFAP immunoreactivity. Bedoni and coworkers examined saliva
from PD, AD, and amyotrophic lateral sclerosis (ALS) patients showing key spectral differ-
ences [122]. In this study, RS was used to detect biomarkers of ALS compared not only to
controls but also to PD and AD patients (Figure 4c). They mentioned that this approach
can drastically shorten diagnosis times that lead to precise and quick diagnoses of the most
dangerous neurogenerative diseases. Overall, the above findings suggest that different
Raman techniques correlate well with clinical trials offering an easy and user-friendly tool
for disease diagnosis.
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Figure 4. Applicability of different Raman techniques in diagnosis of PD. (a) Mapping of 200 SERS
spectra of 1µM alpha-synuclein solution obtained from two AgNP-coated beads trapped at 20 nm
with 1 s acquisition time. The color bar shows the normalized intensities from low (dark blue) to high
(red). The blue arrow represents the amide I band at around 1653 cm−1, the red arrow represents
the amide I band at around 1664 cm−1, and the black arrow represents the amide I band at around
1671 cm−1. Adapted with permission from Reference [54] © 2021 Nature Portfolio. (b) Structural
changes of α-synuclein during aggregation. Raman spectra (A–D) reveal a narrowing of the amide I
band with an increase in intensity of the peak∼1670 cm−1, indicating an increase in β-sheet structures
with aggregation. (E) ThT fluorescence spectra only show a large increase in fluorescence on filament
addition, despite the high level of β-sheet detected in the protofilament sample by RS. (F) Spheroidal
oligomers were observed at 21 days of incubation, with protofilaments at 32 days and filaments at
42 days of incubation. Adapted with permission from Reference [111] © 2006 Elsevier. (c) Average
Raman spectra with SD of (A) ALS, (B) PD, (C) AD and (D) control groups. Adapted with permission
from Reference [122] © 2020 Nature Portfolio. (d) Raman spectra of plasma dopamine extracted
from the blood samples of healthy subjects and patients and (e) plasma dopamine levels of all blood
plasma samples using the SERS technique. Adapted with permission from Reference [56] © 2018
Royal Society of Chemistry.

4.1.3. Huntington’s Disease (HD)

HD is a progressive ND that belongs to the category of autosomal-dominant disorders.
This is caused by the expansion of CAG trinucleotides coding for the poly-glutamine
(poly-Q) stretch at the NH2-terminus of the huntingtin (Htt) protein. Thus, mutated Htt is
the cause of HD. Patients with HD characteristically lose weight and are observed with
motor, psychiatric, and cognitive abnormalities. Similar to AD and PD, its pathogenesis is
related to the aggregation and accumulation of misfolded proteins in peripheral nerves.
HD has no cure, and most of the diagnoses are performed by genetic testing. Therefore,
finding suitable biomarkers for the detection and identification of the onset of HD could be
beneficial and enable therapeutic intervention.
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(a) Fundamental Investigations Related to HD

RS has been used for the quantification and visualization of aggregated proteins
and other aspects of HD. Miao et al., reported a novel platform for live-cell imaging
of aggregates by combining SRS microscopy with Gln-d5 labeling [43]. This combined
approach facilitated measuring absolute concentrations of sequestered mutant Htt and
other proteins within the same aggregate. It has been demonstrated more recently that UV
resonance Raman spectroscopy (UVRRS) is useful to monitor polyglutamine backbone,
side chain hydrogen bonding, and fibrillization [44]. CARS microscopy has been used to
image polyglutamine aggregate structures in vitro and in vivo [123].

(b) Clinically Applied Investigations Related to HD

SERS and spontaneous RS of serum were used to identify disease progression of
HD [20]. The study mentioned that there are significant differences corresponding to
genotype and gender in serum samples of HD patients and healthy controls. For HD
patients, Raman bands at 1245 and 1667 cm−1 are dominant, indicating higher content of
β-sheet protein structures present in the HD serum compared to healthy controls (Figure 5).
Peripheral fibroblasts are useful as a potential model for HD. In this regard, RS has also
been used to identify living fibroblast (skin) cells from an HD patient with an accuracy
of 95% [124]. Raman spectrum from HD patients revealed that more β-sheet proteins
are present at 1220 cm−1. This is consistent with the finding that the aggregation of the
protein from the mutated huntingtin gen, is known to take a beta-sheet form. Additionally,
there are other differences in HD patients, including reduction in the amount of lipids
and cholesterol.

Figure 5. Illustration of applicability of Raman techniques in diagnosis of HD. Average RS (a) and
SERS (b) spectra of serum from healthy control subjects (blue lines) and HD patients (red line) as
well as their standard deviations ((c,d), respectively). The different spectra of the averages for RS
(black line, (e)) and SERS (black line, (f)) are within the standard deviation (c,d) of the average spectra
(a,b). Yellow marked regions indicate important peaks. Adapted with permission from Reference [20]
© 2020 Royal Society of Chemistry.

In another study, RS and partial least squares analysis was used in the discrimination
of peripheral cells affected by HD [45]. Significant differences were observed in the low
wavenumber region (400 to 1800 cm−1). HD patients showed differences in the Raman
peaks at 428 and 701 cm−1, which is indicative of cholesterol and cholesterol esters, in
comparison to control samples. Additionally, differences were seen at 1045, 1073, and
1130 cm−1 regions corresponding to triglycerides, phospholipids, fatty acids, and proteins.
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For healthy samples, three peaks are prominent (548, 1331, and 1685 cm−1), which were
missing in HD patients. Those peaks were attributed to cholesterol, phospholipids, and
proteins. Overall, this study is an excellent example demonstrating biological fluids as
useful biomarkers for HD diagnosis. All these findings clearly illustrate that Raman-
based techniques are excellent tools in the early diagnosis of HD paving a path toward
clinical translation.

4.2. Brain Tumors

Brain tumors account for 90% of all central nervous system tumors and occur due
to the growth of malignant cells in tissues of the brain. Advances have been made using
different techniques such as PET, ultrasound (US), MRI, and optical coherence tomography
(OCT) to provide structural information and surgical planning of brain tumors [125–127].
Such conventional methods have limitations, including the inability to capture tumor
heterogeneity, low sensitivity, and low resolution. Therefore, there is an urgent need to
develop new methods that can detect tumor presence non-invasively. Over the past couple
of decades, research efforts have leveraged the benefits of Raman techniques for brain
tumor diagnosis. The brain contains many Raman active species, allowing it to be an
efficient and non-invasive technique in brain cancer detection. In addition, RS strategies
for label-free spectroscopic analysis of brain tumors have allowed for accurate diagnosis of
brain tumors and assessment of surgical outcomes.

(a) Fundamental Investigations Related to Brain Tumor

Detection of brain cancer-specific biomarkers in the blood is somewhat challenging
due to the limited exchange of biomolecules. The development of SERS-based nanosensors
has recently been shown to address this issue, which enables deep brain cancer surveil-
lance [128] (Figure 6a). More recently, Premachandran et al., reported a Ni-NiO-based SERS
platform for the detection of blood-based molecules that helps to accurately detect the
presence of primary and secondary tumors [129]. The developed hybrid SERS substrate
helps to combine electromagnetic enhancement from metallic Ni as well as chemical en-
hancement due to the charge transfer mechanism. Detection is based on Raman molecular
profiles of sera with a minimal working volume of 5 µL. Raman spectrum of brain cancer
revealed signature peaks assigned to lipids, fatty acids, and proteins. The specificity of the
developed platform for cancer detection was further revealed by comparing molecular fin-
gerprints of brain cancer sera with that of breast, lung, and colorectal cancers (Figure 6d,e).
Additionally, the developed method could identify the exact tumor location based on
species such as glycogen, phosphatidylinositol, nucleic acids, and lipids. Kircher et al.
reported a combination of SERS, PA, and MRI to visualize brain tumor margins with high
precision using Au nanotags functionalized with Gd organometallic complexes [130]. This
approach of combining endoscopic, photoacoustic, and Raman imaging capabilities would
open a possibility of clinical translation of the MPR approach (magnetic resonance imaging–
photoacoustic imaging–Raman imaging nanoparticle). Li and coworkers developed a
surface-enhanced resonance Raman scattering (SERRS) probe using gold nanostars and
IR-783 dye [131]. The developed SERRS probe demonstrated an ultrahigh detection limit of
5 pM in an aqueous solution.

Prasad and coworkers utilized CARS to monitor the intense upregulation of protein
and lipid synthesis signals in microglia cells [132]. Their results demonstrate the activation
of microglia in the presence of bacterial liposaccharide due to the action of proteins and
lipids, further verifying the potential of CARS in the detection of neurological diseases.
Koljenovic et al. showed that fiber-optic Raman probes used to collect Raman-scattered
light in the high wavenumber spectral region (2400–3800 cm−1) can be used to characterize
porcine brain tissue ex vivo [133]. The authors evaluated coronal plain sections of seven
pig brains. Based on the biochemical differences revealed by Raman spectra, they were
able to distinguish adjacent brain structures. In a different study, this group examined
20 unfixed cryosections of glioblastoma by RS for separating vital and necrotic tissues [134].
Spectral signatures resembled that of cholesterol and cholesterol esters consistent with



Biosensors 2023, 13, 27 16 of 26

the increased presence of cholesterol in necrotic tissues. Cluster analysis revealed 100%
diagnostic accuracy.

(b) Clinically Applied Investigations Related to Brain Tumor

Several Raman techniques were investigated in guiding brain tumor diagnosis. For
instance, spontaneous Raman scattering could be useful in identifying tumor margins,
tumor infiltration zones, brain edema, and tumor recurrence [130,135–137]. Jermyn et al.,
reported the use of RS for the intraoperative detection of brain cancer in a clinical trial of
humans [138]. Their hand-held contact RS probe technique could distinguish a normal
brain from dense cancer and a normal brain invaded by cancer cells, with a sensitivity
of 93% and a specificity of 91% (Figure 6b,c). This RS system’s success in clinical utility
was enabled by an optical probe to maximize photon collection efficiency. Minimizing
the volume of residual cancer is an important factor in clinical practices. This study esti-
mated the cellular resolution of the Raman probe, with the detection of as few as 17 cancer
cells/0.0625 mm2, further verifying the utility of this technique in rapid cancer detection.
The presence of cancer cells was detected using lipid bands (700 to 1142 cm−1), nucleic
acid bands (1540 to 1645 cm−1), and the phenylalanine band in proteins (1005 cm−1).
With subsequent studies, researchers were able to commercialize the optical probe for
clinical translation [139–141]. A similar probe was reported that combines RS, intrinsic
fluorescence spectroscopy, and diffuse reflectance spectroscopy that is translatable to the
diagnosis of other cancers [142]. Recently, an imaging needle was developed for intraoper-
ative detection of blood vessels during neurosurgery in humans [143]. In another study,
Kircher and coworkers demonstrated the potential of SERS and optoacoustic tomography
for intraoperative brain tumor delineation, thereby improving surgical care [144]. The
authors mentioned that the proposed dual-modal concept is suitable for clinical translation
due to the acceptable illumination energy used throughout the experiment. Using SERS,
guiding brain tumor resection is also possible. The breakthrough demonstration reported
by Kircher’s group showed instrumentation that can aid in brain tumor resection [145].
They used a hand-held Raman scanner to target glioblastoma tissues intraoperatively in
genetically engineered mouse animal models. In another work, Hollon et al., demonstrated
stimulated Raman histology as a powerful technique for near real-time intraoperative
brain tumor diagnosis [146]. By combining convolutional neural network (CNN) with
stimulated Raman histology, researchers were able to achieve 100% classification accuracy.
By leveraging recent developments in deep learning to train CNN on more than 2.5 million
SRH images, researchers were able to predict brain tumor diagnosis in the operating room
in under 150 s, which is significantly faster than conventional techniques. The outcome
of this clinical trial demonstrates how stimulated Raman histology as a complementary
pathway for tissue diagnosis can improve the care of brain tumor patients. Overall, the
above-mentioned findings create the possibility of translating Raman-based techniques
from the laboratory to the clinic.

Recent progress with the use of CARS for discerning healthy cells from tumor cells
is highly promising. Galli et al., used a combination of CARS, two-photon excited fluo-
rescence, and green fluorescence protein (GFP) labeling to identify glioblastoma tumors
and infiltrates [137]. In this study, human tissue samples were collected during brain
surgeries. The cell morphology and chemical contrast provided by CARS allowed for
tumor recognition and localization of infiltrating tumor cells. Uckermann et al., employed
CARS for the detection of different human brain tumors in a mouse model [147]. Here,
C-H molecular vibration was used as a probe to distinguish the lipid content of the sample
since all brain tumors have significantly low lipid content (Figure 6f). SRS has shown the
capacity to reveal features of tumor tissues similar to the standard H&E stain method [148].
Camelo-Piragua and coworkers demonstrate an SRS-based technique in a clinical operating
room to improve the surgical care of brain tumor patients [149]. Here, they developed a
portable, fiber-laser-based SRS microscopy system for rapid intraoperative tissue process-
ing. Additionally, a clinical SRS microscope has been designed and utilized in operating
rooms [150]. In this report, researchers developed a method based on stimulated Raman
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histology to avoid time-, labor-, and resource-intensive standard H&E histology. This
method was able to produce 2 × 2 mm SRH images at the bed site within 90–120 s.

Figure 6. Illustration of applicability of Raman techniques in diagnosis of brain tumors. (a) Schematic
showing the overall design of the experiments starting from nanoparticle preparation to intravenous
infusion, surgical resection, and analyses. Adapted with permission from Reference [128] © 2019
American Chemical Society. (b) Experimental setup diagram with the 785 nm NIR laser and the
high-resolution CCD spectroscopic detector used with the Raman fiber optic probe. (c) The probe
(Emvision, LLC) used to interrogate brain tissue during surgery. Inset shows the excitation of dif-
ferent molecular species, such as cholesterol and DNA, to produce the Raman spectra of cancer
versus normal brain tissue. Adapted with permission from Reference [138] © 2015 Science. (d) SERS
spectra of sera from brain, breast, lung, and colorectal cancer. (e) Raman spectral profiles of serum of
brain cancer patients and serum of metastasized brain cancer. Adapted with permission from Refer-
ence [129] © 2022 American Chemical Society. (f) (A) CARS image of a human U87MG glioblastoma
in a mouse brain and (B) CARS image of a separate small glioblastoma island in a mouse brain. Single
cell nuclei appear as dark structures in the tumor denoted by arrows. Adapted with permission from
Reference [147] © 2014 Public Library of Science.

A recent study by Bury et al., analyzed 29 brain tissue samples that had been obtained
during surgery [27]. Using gold nanoparticles as a SERS substrate and a handheld Raman
device, researchers were able to differentiate tumor types from fresh brain tissue. Another
clinically relevant study by Ji et al., used SRS to identify human brain tumor infiltration
in surgical specimens from 22 neurosurgical patients [151]. By constructing two-color
images based on Raman intensity ratios, they were able to identify structures that were
lipid or protein rich. They reported a sensitivity of 97.5% and a specificity of 98.5% of
detecting tumor infiltration. In an alternative approach, Desroches et al., developed an
instrument using a core needle biopsy probe for detecting dense human brain tumor [26].
This instrument can be used in situ during surgery and has minimal impact on the flow
of clinical procedure. Using high wavenumber Raman spectroscopy, cancer cells were
detected with 80% sensitivity and 90% specificity. In a follow-up work, the same researchers
developed a navigation-guided fiber optic Raman probe that allows surgeons to interrogate
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brain tissue in situ at the tip of the biopsy needle prior to tissue removal [152]. Feature
engineering was used to develop a new representation for spectral data tailored for brain
tissue diagnosis in a clinical setting [21]. This method was based on a dataset of 547 in vivo
Raman spectra of 65 patients. In contrast to conventional imaging techniques used for
tumor diagnosis, the spectroscopic signatures provided by Raman techniques provide
additional information about molecular information regarding tissues and cell-to-cell
heterogeneity. Raman mapping in combination with the PLS method was used to predict the
tumor amount in dura and meningioma obtained from 20 patients during a neurosurgical
procedure [153]. Raman spectra of dura is characterized by higher collagen content while
lipid content of meningioma is significantly higher. Results of this work opened an avenue
for the development of an in vivo Raman spectroscopy method for real-time guidance of
meningioma resection. Leblond and coworkers reported optimum conditions of a Raman
spectroscopy setup suitable for neurosurgery [139]. They demonstrated that SNR increased
as the camera temperature decreased and integration time increased. Additionally, they
revealed that external sources of light such as a microscope light, operating room lights,
LCD screens, and daylight leakage impaired the ability of accurate Raman measurements
of the sample. Overall, different Raman techniques are now steadily becoming popular
and applicable in the clinical diagnosis of brain disorders.

5. Conclusions and Future Prospects

In the past few years, with the advances in spectroscopic tools and nanoscience, the
diagnosis of brain disorders has made great progress. RS can assist in uncovering pathways
of brain disorder progression. Several studies have demonstrated the capability of RS
for identifying tissue classification of different areas of the brain as well as identifying
different variants of brain pathologies. The applicability of Raman spectroscopic techniques
in the diagnosis of brain disorders continuously expands due to their effectiveness. The
current interest of researchers is to establish a place for RS in standard clinical practices.
The translation of RS toward clinics has been amplified due to technological advancements
alongside continued research breakthroughs that highlight clinical applications.

Despite the remarkable work presented in this review in the field of RS in clinical
applications of brain disorders, there remain several challenges that stand in the way of
clinical transition. It has been known to the scientific community that RS has suffered from
drawbacks such as weak signals, long acquisition times, fluorescence from biological sam-
ples, time-consuming data processing, and costs. Remarkable progress has been made over
the past decades to address these challenges with the help of advancements in instruments
and ML techniques. To enhance weak signals and improve SNR, several complementary
techniques such as SERS, RRS, and SRS are useful. Additionally, instrumental design is
heading toward gathering data with high resolution, high accuracy, and fast acquisition
times. The consistency of the sample measurements is pivotal for the transition from
benchtop to bedside. It involves the establishment of profound spectral databases and
the need for inter-system calibration. Calibration should be performed using National
Institute of Standards and Technology (NIST)-approved reference materials. Additionally,
one of the translational hurdles involves the variable results from different Raman setups.
Therefore, attention should be focused on defining methodologies and developing ML
models and chemometric methods to account for undesirable variations. The roadmap of
the translation of RS into clinical studies also involves clinical trials, regulatory approval,
FDA guidelines, and market assessment. The key to obtaining sufficient data and their
interpretation is based on suitable animal models to study biomarker identification and
disease progression. Sometimes it could be challenging to measure the Raman signal in
the presence of extraneous light sources. Therefore, engineering solutions based on proper
light filtering can be used to minimize this effect in clinical settings. Overall, close collabo-
rations between spectroscopists, material scientists, biomedical engineers, and clinicians
are required to make the clinical transformation of RS into a reality.
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There are still challenges in deploying ML methods in practical clinical diagnosis. One
of the challenges is to select a proper model. The Raman spectra are high-dimensional
and with noise. Therefore, the models can be easily overfitted with overcomplex ML
models. To achieve high accuracy in classification and to prevent overfitting, the complexity
of the model must be carefully selected with experts and cross-validation techniques.
In addition, the ML frameworks should be modified specifically for Raman spectra to
recognize the patterns and correlation of Raman peaks. Another challenge of ML methods
is interpretability. Many complex ML models can achieve high performance in classification,
while the interpretation of these models is hard. The ML methods act as black boxes
and cannot understand the problem. However, in clinical diagnosis, the robustness and
interpretation of diagnosis are critical. The lack of transparency in classification and
diagnosis limits the practical deployment of the technique. To resolve the interpretability
of ML methods, linear models are preferred since they are easy to explain. Some feature
selection techniques can be potentially extended and applied to rationalize the decision-
making process in analyzing clinical Raman spectra in brain diseases and cancers.

We anticipate the future development of RS in clinical trials of NDs on several
fronts. At present, 2D materials are rarely used in conjunction with Raman techniques
for biomarker detection and disease progression on brain disorders. Therefore, exploring
various disciplines of 2D material-assisted RS is an effective approach for future directions.
On the way of moving forward with 2D material-assisted RS, several factors need to be
carefully researched, such as material performances, stability in a biological medium, large-
scale production, and biosafety. In this regard, surface functionalization of 2D materials that
improve biocompatibility and colloidal stability needs to be thoroughly investigated. Re-
search also needs to focus on integrating RS with other spectroscopic techniques to design
multimodal techniques that can provide additional and complementary information on
clinical settings. Spectroscopic identification can be somewhat challenging when multiple
analytes are present in complex biofluids. To overcome this issue, Raman techniques can
be hyphenated with separation techniques such as liquid chromatography. Additionally,
the focus should be aimed at the simultaneous detection of multiple biomarkers. Future
Raman-based devices should be automated as much as possible to minimize the burden
on the clinical community. In the future, ML–Raman techniques may further improve the
accuracy and reduce the time and cost in the early diagnosis of various brain diseases and
cancers. With the ability to analyze a large number of spectra and recognize the pattern, ML
technologies can also be further developed to rapidly identify biomarkers and, therefore,
facilitate drug development. The availability of open Raman datasets, open-source libraries,
and high-performance computing resources will also accelerate the progress in applying
different existing ML methods and developing new ML algorithms in analyzing clinical
Raman spectra. We envision that the future of precision medicine in clinics will be based
on robotics. Therefore, necessary steps should be taken to design Raman-based techniques
with robots. Overall, the rapid development of Raman-based techniques and ML capabili-
ties is continuously pushing the boundaries in clinics to improve patients’ well-being. We
hope this review will open a new avenue to this burgeoning field.
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