Microfluidic Biosensors for Point-of-Care Nucleic Acid Amplification Tests
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilson, D.S.; Szostak, J.W. In vitro selection of functional nucleic acids. Annu. Rev. Biochem. 1999, 68, 611–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, T.; Lu, J.; Yu, T.; Long, Y.; Liu, G. Advances in nucleic acid amplification techniques (NAATs): COVID-19 point-of-care diagnostics as an example. Biosens. Bioelectron. 2022, 206, 114109. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Zhang, F.; Sang, Y.; Katouzian, I.; Jafari, S.M.; Wang, X.; Li, W.; Wang, J.; Mohammadi, Z. Screening, identification, and application of nucleic acid aptamers applied in food safety biosensing. Trends Food Sci. Technol. 2022, 123, 355–375. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, F.; Li, Q.; Wang, L.; Fan, C. Isothermal amplification of nucleic acid. Chem. Rev. 2015, 115, 12491–12545. [Google Scholar] [CrossRef] [PubMed]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Hofer, U. POCT for drug-resistant gonorrhea. Nat. Rev. Microbiol. 2021, 19, 406. [Google Scholar]
- Wang, Y.; Li, B.; Tian, T.; Liu, Y.; Zhang, J.; Qian, K. Advanced on-site and in vitro signal amplification biosensors for biomolecule analysis. TrAC Trends Anal. Chem. 2022, 149, 116565. [Google Scholar] [CrossRef]
- Song, Q.; Sun, X.; Dai, Z.; Gao, Y.; Gong, X.; Zhou, B.; Wu, J.; Wen, W. Point-of-care testing detection methods for COVID-19. Lab Chip 2021, 21, 1634–1660. [Google Scholar] [CrossRef] [PubMed]
- Kubina, R.; Dziedzic, A. Molecular and serological tests for COVID-19 a comparative review of SARS-CoV-2 coronavirus laboratory and point-of-care diagnostics. Diagnostics 2020, 26, 434. [Google Scholar] [CrossRef] [PubMed]
- Zamani, M.; Furst, A.L.; Klapperich, C.M. Strategies for engineering affordable technologies for point-of-care diagnostics of infectious diseases. Acc. Chem. Res. 2021, 54, 3772–3779. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Han, F.; Zhao, B.; Xu, Y.; Zhao, X.; Pu, X.; Du, Y.; Zhang, Q.; Zhang, X.; Zhang, W.; et al. Rapid, visual, and equipment-free point-of-care testing for Staphylococcus aureus by direct recombinase polymerase amplification with SYBR Green I. Acta Biochim. Biophys. Sin. 2021, 53, 1250–1253. [Google Scholar] [CrossRef] [PubMed]
- Shimazu, R.; Tominuro, K.; Ni, Y.; Malegori, C.; Hamedpour, V.; Hiruta, Y.; Oliveri, P.; Merkx, M.; Citterio, D. Microfluidic thread-based analytical devices for point-of-care detection of therapeutic antibody in blood. Sens. Actuators B Chem 2022, 352, 131002. [Google Scholar] [CrossRef]
- Misawa, K.; Yamamoto, T.; Hiruta, Y.; Yamazaki, H.; Citterio, D. Text-displaying semiquantitative competitive lateral flow immunoassay replying on inkjet-printed patterns. ACS Sens. 2020, 5, 2076–2085. [Google Scholar] [CrossRef] [PubMed]
- Macchia, E.; Kovacs-Vajna, Z.M.; Loconsole, D.; Sarcina, L.; Redolfi, M.; Chironna, M.; Torricelli, F. A handheld intelligent single-molecule binary bioelectronics system for fast and reliable immunometric point-of-care testing. Sci. Adv. 2022, 8, eabo0881. [Google Scholar] [CrossRef]
- Sachdeva, S.; Davis, R.W.; Saha, A.K. Microfluidic point-of-care testing: Commercial landscape and future direction. Front. Bioeng. Biotechnol. 2021, 8, 602659. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Ji, J.; Ji, F.; Wu, S.; Tian, Y.; Jin, B.; Li, Z. Recombinase polymerase amplification integrated with microfluidics for nucleic acid testing at point of care. Talanta 2022, 240, 123209. [Google Scholar] [CrossRef]
- Xing, G.; Ai, J.; Wang, N.; Pu, Q. Recent progress of smartphone-assisted microfluidic sensors for point of care testing. TrAC Trends Anal. Chem. 2022, 157, 116792. [Google Scholar] [CrossRef]
- Sun, P.; Niu, K.; Du, H.; Li, R.; Chen, J.; Lu, X. Sensitive electrochemical biosensor for rapid screening of tumor biomarker TP53 gene mutation hotspot. Biosensors 2022, 12, 658. [Google Scholar] [CrossRef] [PubMed]
- Iwanaga, M. Rapid detection of attomolar SARS-CoV-2 nucleic acids in all-dielectric metasurface biosensors. Biosensors 2022, 12, 987. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trinh, K.T.L. Microfluidic Biosensors for Point-of-Care Nucleic Acid Amplification Tests. Biosensors 2023, 13, 5. https://doi.org/10.3390/bios13010005
Trinh KTL. Microfluidic Biosensors for Point-of-Care Nucleic Acid Amplification Tests. Biosensors. 2023; 13(1):5. https://doi.org/10.3390/bios13010005
Chicago/Turabian StyleTrinh, Kieu The Loan. 2023. "Microfluidic Biosensors for Point-of-Care Nucleic Acid Amplification Tests" Biosensors 13, no. 1: 5. https://doi.org/10.3390/bios13010005
APA StyleTrinh, K. T. L. (2023). Microfluidic Biosensors for Point-of-Care Nucleic Acid Amplification Tests. Biosensors, 13(1), 5. https://doi.org/10.3390/bios13010005