
Citation: Shi, H.; Che, Y.; Rong, Y.;

Wang, J.; Wang, Y.; Yu, J.; Zhang, Y.

Visual/Photoelectrochemical Off-On

Sensor Based on Cu/Mn Double-

Doped CeO2 and Branched Sheet

Embedded Cu2O/CuO Nanocubes.

Biosensors 2023, 13, 227. https://

doi.org/10.3390/bios13020227

Received: 23 November 2022

Revised: 27 January 2023

Accepted: 2 February 2023

Published: 4 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biosensors

Article

Visual/Photoelectrochemical Off-On Sensor Based on Cu/Mn
Double-Doped CeO2 and Branched Sheet Embedded
Cu2O/CuO Nanocubes
Huihui Shi 1, Yanfei Che 1, Yumeng Rong 1, Jiajun Wang 1, Yanhu Wang 2, Jinghua Yu 1 and Yan Zhang 1,3,*

1 School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
2 Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences),

Jinan 250014, China
3 Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE,

Qingdao University of Science and Technology, Qingdao 266042, China
* Correspondence: chm_zhangyan@hotmail.com

Abstract: An integrated dual-signal bioassay was devised to fulfil thrombin (TB) ultrasensitive detection
by integrating visualization with the photoelectrochemical technique based on G-quadruplex/hemin.
During the process, branched sheet embedded copper-based oxides prepared with illumination
and alkaline condition play a vital role in obtaining the desirable photocurrent. The switchover
of photoelectrochemical signal was realized by the adjustable distance between electron acceptor
G-quadruplex/hemin and interface materials due to dissociation of the Cu/Mn double-doped cerium
dioxide (CuMn@CeO2)/DNA caused by the addition of TB. Then, CuMn@CeO2 transferred onto
visual zones triggered catalytic reactions under the existence of 3,3′,5,5′-tetramethylbenzidine and
hydrogen peroxide, making a variation in color recognized by the naked eye and providing visual
prediction. Under optimized conditions, this bioassay protocol demonstrated wide linear ranges
(0.0001–50 nM), high selectivity, stability, and reproducibility. More importantly, the proposed
visual/photoelectrochemical transduction mechanism platform exhibits a lower background signal
and more reliable detection results, which also offers an effective way for detecting other proteins
and nucleic acids.

Keywords: photoelectrochemical; colorimetric; thrombin; paper-based device; Cu2O/CuO; CuMn@CeO2

1. Introduction

Thrombin (TB), as a member of the serine protease group, has been identified to be
expressed in various cardiovascular diseases including cerebral ischemia and infarction.
Considering the importance of TB assays, an efficient sensing strategy for fast and sensitive
TB detection is highly desired [1,2]. Up to now, numerous analytical methods were re-
ported, including chemiluminescence [3], electrochemiluminescence [4,5], fluorescence [6],
electrochemistry [7,8], and photoelectrochemistry (PEC) [9,10]. Among these protocols,
PEC, as an emerged analytical method with high sensitivity and a low background signal,
has received substantial attention [11,12]. However, most of them relied on a signal out-
put model, which still need to be improved to decrease the influence of systematic error.
To achieve a more accurate and reliable analysis, an alternative method is to combine a
naked-eye colorimetric strategy with the PEC transduction mechanism.

As an essential portion in colorimetric reaction and the PEC process, nanomateri-
als with catalytic and photoactive activity have a great impact on the obtained signal
strength [13–16]. Cerium oxide (CeO2), simultaneously existing Ce3+ and Ce4+ oxidation
states on the lattice surface, could catalyze 3,3′,5,5′-tetramethylbenzidine (TMB) to convert
colorless to blue with assistance of H2O2 due to oxygen vacancy [17,18]. However, the
capacity is relatively low to be used for low-concentration analytes detection. It is a good
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method to dope CeO2 with metal to expand their application as colorimetric reaction
probes [19,20]. As a consequence, double-doped CeO2 (CuMn@CeO2) was prepared with
superior catalytic performance for more accurate detection. Furthermore, to obtain a desir-
able PEC signal, a cuprous oxide–cupric oxide (Cu2O/CuO) composite was introduced as a
photoactive material owing to its abundance, affordable price, environmental acceptability,
and low band-gap energy [21,22]. The fabrication process was carried out under normal
temperature and pressure, with low-cost and high-quality products. The introduction of
an external stimulus can promote the reduction process significantly, and the obtained
Cu2O in such a strong redox photochemical surrounding possessed the intrinsic superior-
ity to endure photocorrosion in a kinetically more favorable way [23]. Furthermore, the
well-designed overall architecture of the branched sheet embedded nanocubic Cu2O/CuO
complex not only provides more active sites and a larger surface area, but also helps
Cu2O to overcome its high carrier recombination caused by short electron diffusion length
(20–100 nm) [24,25].

Apart from desirable initial PEC performance, an efficient electron transfer-regulated
strategy is also of vital importance in broadening the application range of the PEC sys-
tem [9,26]. G-quadruplex/hemin, which forms between single-stranded guanine-rich
aptamer and hemin, has been utilized to act as an electron acceptor and mediate the cat-
alytic reduction of dissolved oxygen [9,27]. Thus, this special structure could be employed
as an effective way to realize off-on transformation in the PEC detecting process. In addition,
to operate the whole process, an easy-to-operate platform was necessary. Cellulose paper,
owning virtues of unique structure, low cost, large specific surface area, and portability, has
aroused widespread interest [28–30]. Concretely, it is easy to be folded to satisfy diverse
demand when applied as micro-reactors. Combined with the abovementioned factors, an
integrated paper-based platform was fabricated to functionalize the working electrode and
implement a multi-module microfluidic device.

Hence, a dual-signal output paper-based sensing strategy integrating the PEC tech-
nique with visualization in two spatially separated working areas, gold nanoparticles
(AuNPs)-modified PEC working electrodes (PWE) and visual areas, was proposed for TB
detection (Scheme 1). Concretely, TMB and H2O2 were applied on the visual areas for chro-
mogenic reactions, while branched sheet-like nanocubic Cu2O/CuO and hemin-DNA1 were
applied on the PWE surface with excellent PEC performance due to G-quadruplex/hemin.
With addition of Cu/Mn-doped cerium dioxide/DNA2 (CuMn@CeO2-DNA2), the specific
double-stranded structure based on hybridization of DNA1 and DNA2 and steric hindrance
of CuMn@CeO2 could dramatically decrease the photocurrent, thus the “signal-off” trend
for PEC signal can be triggered. After that, with the application of TB, DNA2 could hy-
bridize with TB, causing free CuMn@CeO2-DNA2. Then, the released CuMn@CeO2 could
catalyze H2O2 on visual areas, forming the hydroxyl radical that can make TMB effectively
develop colors, which offers visual prediction for thrombin concentration. Meanwhile,
due to a DNA2-TB binding event, dissociation of CuMn@CeO2 facilitated the electrons
transfer and G-quadruplex/hemin could accept electrons from the illuminated Cu2O/CuO,
resulting in the increase of PEC intensity and switchover from off to on mode of the PEC
signal. Such a distance-based PEC sensing system between electron acceptor and interface
materials endows detection methods with lower background signal. Accordingly, the
paper-based analytical device with a dual-signal output sensing mechanism was success-
fully fabricated, which could be introduced as quantitative platform for screening of other
proteins and nucleic acids.
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Scheme 1. Schematic illustration of (A) off−on switchover of PEC areas and (B) visual detection
of TB.

2. Experimental Section
2.1. Design of Paper-Based Device

The prepared whole device was made with four units: detection tab, photoreaction
auxiliary tab, fluid transfer tab, and electrode tab, as depicted in Figure 1A,B. Two working
zones (8 mm in diameter) for the establishment of the sensing platform were patterned
on the detection tab (I for PEC system, II for chromogenic reaction). In order to form a
densely distributed nanosized oxide layer, more growth solution that exceeded the capacity
of a single working area was required. Thus, the photoreaction auxiliary tab, where the
white area was designed to be hollow while the green area is hydrophobic, was added to
the device to hold more solutions in the light reaction process after folding (Figure 1C).
When the device was folded as shown in Figure 1D, the branch channel (3.0 mm × 5.0 mm)
on the fluid transfer tab is favorable to connect two working zones which are ready for
fluid transfer. The carbon working electrode (WE) was printed on the back of the detection
zone, while the carbon counter electrode (CE) and Ag/AgCl reference electrode (RE) are on
the hydrophilic zone (8 mm in diameter) of the electrode tab. Finally, a three-dimensional
device for visual and PEC detection was successfully constructed after the electrode tab
folded under the detection tab, as displayed in Figure 1E.

2.2. Preparation of CuMn@CeO2-DNA2

Firstly, 0.1 g CuMn@CeO2 (the synthesis process can be found in the Supporting
Information) was redispersed in 10 mL ethanol and stirred for 30 min. Then, 0.1 mL
3-aminopropyltriethoxysilane was injected into the above solution and refluxed at 70 ◦C
for 90 min. After the obtained solution was centrifugated and washed with ethanol and
deionized water, 100 µL glutaraldehyde (1%, w/w) was added to activate the amino groups
on the CuMn@CeO2 surface. To obtain CuMn@CeO2-modified DNA2, 15 µL of DNA2 was
first added in the dispersed 2 mL CuMn@ CeO2 solution with stirring for 12 h at 4 ◦C.
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Next, the above solution was diluted with 25 mM Tris-HCl and 0.3 M NaCl, followed
by centrifugation at 12,000 rpm for 10 min to remove unconjugated DNA. The resultant
CuMn@CeO2-DNA2 was stored at 4 ◦C when not in use.
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Figure 1. Schematic layout of (A) prepared device and (B) the fabricated device with screen−printed
electrodes. Assembly illustration of prepared device during (C) photoreaction, (D) fluid transfer, and
(E) sensing platform.

2.3. Fabrication of Dual-Signal Sensing Platform

PWE were prepared as shown in the Supporting Information. In order to achieve a
desirable PEC signal, nanocubic Cu2O was first coated on PWE by the light-induced pho-
tochemical synthesis approach [23]. Briefly, 1 mL as-prepared copper tungstate (CuWO4)
solution (0.15 M, the preparation process can be found in the Supporting Information)
was coated onto PWE by a spin coater, then 50 µL solution containing 0.3 M NaOH and
0.1 M glucose was dropped onto the surface of PWE with a photoreaction auxiliary unit.
Next, the assembled photochemical reaction device was irradiated by a 300W Xe lamp for
60 min and then rinsed with distilled water. After that, the electrode dealt with 50 µL 0.2 M
NaOH for 30 min. Subsequently, 50 µL chitosan aqueous solution (0.08 wt%) in 1% acetic
acid was applied onto the working electrode and reacted for 60 min. After drying, 5 wt%
glutaraldehyde was added to activate the electrode, and the final electrode was denoted
as PWE/Cu2O/CuO. Finally, 20 µL acetic acid (pH 4.5), 20 mM TMB, and 20 µL of 0.5 M
H2O2 were dropped onto the II visual area.

2.4. Analysis Process of TB

The dual-signal mechanism detection was performed by the following procedure.
Firstly, 50 µL of 1 µM DNA1 and 1 µM hemin was dropped onto the PWE and kept for
80 min, followed by adding 50 µL of 1 µM CuMn@CeO2-DNA2. After the PEC electrode
was incubated with different concentrations of TB for 50 min, the device was folded as
depicted in Figure 1D and the above mixed solution’s fluid flow from PWE to the II visual
zone could be generated along the hydrophilic channel on the fluid transfer tab. The
electrode was carefully cleaned with 0.01 M phosphate buffer saline (PBS, pH 7.4) after
each step. Finally, color variance could be signaled and the PEC signal was recorded by a
three-electrode system (−0.1 V).
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3. Results and Discussion
3.1. Structure Characterization

The morphology evolution of nanomaterials was investigated by scanning electron
microscope (SEM) as illustrated in Figure 2. Clearly, it could be found that intercon-
nected fibers of the bare sample zone displayed porous architecture with high surface area
(Figure 2A), which provided a special micro-environment for AuNPs’ growth. Pyknotic
AuNPs were modified onto the cellulose by an in situ growth technique and they were
distributed onto the fibers’ surface uniformly (Figure 2B). Moreover, the conductivity of the
paper-based electrode was measured by a four-probe tester (Agilent U1251B multimeter),
with the results shown in Figure S1. Significantly, PWE displayed lower resistance (0.385 Ω)
than that of new clean FTO (2.017 Ω) and ITO (1.337 Ω). Then, deposition of Cu2O/CuO
on the PWE was conducted by an in situ synthesis approach with two steps. To better
survey the preparation process of the Cu2O, samples were gathered at diverse stages of
photochemical reaction time. At first, layered substances (Figure S2A) with a particle struc-
ture were clearly observed adsorbing on the surface of the PWE. After 15 min irradiation,
a small amount of crystals similar to microcubes were sparsely distributed on the fibers
(Figure S2B). To additionally probe the existing elements, energy-dispersive X-ray spec-
troscopy (EDS) and element mapping analysis were performed. Clearly, it could be seen
that peaks of tungsten are observed in the EDS spectra (Figure S3) for working electrodes
and Figure S2B1–B4 reveals that Cu, W, O, and C elements were uniformly distributed on
the fibers. Hence, layered substances were presumed to be CuWO4. In addition, with the in-
crease of illumination time, the distribution of cubes became more and more intensive until
it reached optimum at the photoreaction time of 60 min (Figures S2C,D and 2D). Only Cu,
O, and C peaks were collected for PWE/Cu2O (Figure 2C) and they were evenly distributed
on the fibers (Figure 2E). The fact that no spectrum pertaining to the tungsten element was
found in EDS patterns of electrodes with 60 min photoreaction time demonstrated that
CuWO4 was gradually converted to oxides of microcubes with the increasement of photore-
action time. The more microscopic morphology of cubes was observed by zoom-in SEM
with ~400 nm diameter (inset in Figure 2D). Moreover, there was a sparse distribution of
cubes on the PWE (Figure S2E) without the photoreaction auxiliary unit for photochemical
processes, verifying that the existence of the photoreaction auxiliary unit was necessary.
The separate working electrode only has a growth fluid capacity of 50 µL, whereas the
electrode with the photoreaction auxiliary unit could hold up to 1.0 mL. Moreover, the SEM
image of the working electrode without illumination showed unsatisfactory performance
(Figure S2F), illustrating the necessity of illumination. In the subsequent reaction process
under alkaline condition, Cu2O in cubes was gradually partly transformed into intersecting
sheet CuO (Figure 2F).

The phase structure and the crystallization details of the sample were further re-
searched with X-ray diffraction (XRD) and Raman spectroscopy. A peak at 22.89◦ gathered
from the original working zone of the paper-based device was assigned to (002) planes of
cellulose [31], as depicted in Figure 3A. For PWE, four additional peaks at 38.18, 44.39, 64.58,
and 77.55◦ were well-matched with characteristic peaks of Au NPs (JCPDS 04-0784). Except
for naked papers and Au NPs peaks, other distinguishable peaks in curve c could be well-
indexed to the pristine cubic phase of Cu2O shown in Figure S4A. The PWE/Cu2O/CuO
electrode exhibited apparent diffractions of cubic Cu2O and additional diffraction peaks
at 35.49◦ of CuO, illustrating successful preparation of Cu2O/CuO. Furthermore, Raman
spectra of above electrodes were shown in Figure 3B. Similar to that of cellulose paper, no
obvious characteristic peaks were recorded in the Raman pattern of PWE. After the first pho-
toreaction, three peaks were collected for the Cu2O-functionalized PWE. Peaks at 217 and
636 cm−1 resulted from the second-order Raman-allowed mode and the red-allowed mode
of Cu2O, meanwhile another presented at 413 cm−1 corresponding to the four-phonon
mode. Both Cu2O and CuO peaks were recorded simultaneously for PWE/Cu2O/CuO.
Apart from the peak of Cu2O at 217 cm−1, the other three peaks at 280, 326, and 617 cm−1
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were assigned to Ag, Bg, and Bg mode of CuO. All these peaks exhibited sharpness,
indicating preferable crystallization of the synthesized materials.
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X-ray photoelectron spectroscopy experiments were further operated to gain chemical
composition information of the PWE/Cu2O and PWE/Cu2O/CuO. As shown in Figure 3C,
the presence of Cu, O, and Au elements could be attributed to the product of the photo-
chemical reaction and conductive Au NPs. To explore the chemical state of the Cu element,
the Cu 2p core-level spectra of PWE/Cu2O and PWE/Cu2O/CuO were compared as
displayed in Figure 3D. For Cu2O-modified PWE, the characteristic peaks at the binding
energies of 932.8 and 952.6 eV were associated with the Cu 2p3/2 and Cu 2p1/2 of Cu2O,
respectively [32]. As a contrast, PWE/Cu2O/CuO showed two additional obvious peaks at
934.8 and 954.6 eV, which corresponded to Cu 2p3/2 and Cu 2p1/2 of CuO. Additionally,
three weak satellite peaks at 940.8, 943.8, and 962.3 eV originated from multiple excitations
in copper oxides and were attributed to the open 3d9 shell of Cu2+ in CuO [33]. As shown in
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Figure 3E, the peak at 529.9 eV was related to the lattice oxygen from both Cu2O and CuO
phases and the other peak at 531.8 eV marked the surface hydroxyl group, which was con-
sistent with the reported literature [34]. Moreover, Au 4f 7/2 and Au 4f 5/2 peaks presented
at 84.3 and 87.9 eV were observed (Figure 3F), which were similar to the counterpart for the
standard Au (0) [35]. Moreover, the solution’s color change in the whole process was also
favorable evidence for the successful preparation of Cu2O/CuO (Figure S4B). All of these
results matched each other, demonstrating the successful fabrication of PWE/Cu2O/CuO.

3.2. Ce-Based Materials Characterization

The SEM technique was characterized to explore the morphology of the beacon in
colorimetric reactions. Obviously, uniform-size nanospheres with a rough surface were
found and the average size of CuMn@CeO2 was around 60 nm (Figure 4A). To probe the
elements, EDS and mapping were conducted, with the results displayed in Figure 4B,C,
respectively. It could be observed that Ce, Cu, Mn, and O elements were collected and
they were evenly distributed in the nanospheres. Furthermore, the main peak of CeO2
in Raman spectra at about 463 cm−1 was attributed to the F2g Raman mode (Figure 4D).
Compared with that of pure CeO2, the peak shifts to lower frequency at around 459 cm−1,
indicating occurrence of defects in the CeO2 lattice structure after doping with Cu and
Mn metals [36]. Meanwhile, additional peaks at 368 and 544 cm−1 were collected, which
correspond to oxygen vacancies for CuMn@CeO2, confirming that extra oxygen vacancies
existed in CuMn@CeO2 with excellent catalytic performance.
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Additionally, steady-state kinetic constants measurement experiments were carried
out to verify catalytic performances of CuMn@CeO2 (Figure 4E,F). During the process,
TMB and H2O2 concentration were variables. Obtained data were fitted by the Michaelis–
Menten kinetic equation, v = (vmax × [S])/(Km + [S]), where a smaller Km value means
a higher affinity of enzyme to substrate. Compared with that of horseradish peroxidase
(Km(H2O2) = 3.7 mM, Km(TMB) = 0.434 mM), the values for CuMn@CeO2 towards H2O2
and TMB were 0.15 mM and 0.12 mM, indicating that CuMn@CeO2 had a stronger affinity
for H2O2 and TMB than enzyme and provided accessible active sites for analytes.

3.3. EIS and PEC Behavior

Electrochemical impedance spectroscopy (EIS) was an effective technique to verify
the manufacturing procedure of the sensing platform [37]. As magnified in Figure 5A,
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PWE showed a small electron-transfer resistance (Ret) due to great conductivity of AuNPs
(curve a). With the nanomaterial modification progress, the Ret increased dramatically for
PWE/Cu2O and PWE/Cu2O/CuO (curves b and c) due to low conductivity of Cu2O and
CuO. As expected, the Ret showed an upward trend when hemin-DNA1 and CuMn@CeO2-
DNA2 were attached onto the PWE surface in turn (curves d and e). It could be explained
as the steric hindrance of hemin-DNA1 and CuMn@CeO2-DNA2 that prevented the charge-
transfer rate of redox. Furthermore, the transient photocurrent responses of modified
PWE were monitored. As revealed in Figure 5B, PWE/Cu2O/CuO (curve b) displayed an
obvious enhancement of PEC recovery compared with PWE/Cu2O (curve a) due to the
heterojunction formation of Cu2O/CuO. Significantly, PEC performance of a paper-based
electrode with greater immobilization capacity for photoelectric materials caused by special
three-dimensional interlaced fibers was superior to FTO/ITO-based electrodes (Figure S5).
As the electrode incubated with hemin-DNA1, the value of photocurrent increased dra-
matically due to the presence of G-quadruplex/hemin (curve c). With the addition of
CuMn@CeO2-DNA2, a reduced photocurrent was acquired (curve d) caused by enhanced
steric hindrance and reduced electron transfer efficiency, indicating that the biosensor was
successfully prepared as expected.
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Figure 5. (A) EIS spectra of (a) PWE, (b) PWE/Cu2O, (c) PWE/Cu2O/CuO, (d) PWE/
Cu2O/CuO/hemin−DNA1, and (e) PWE/Cu2O/CuO/hemin−DNA1/CuMn@CeO2−DNA2 in
5 mM [Fe(CN)6]3−/4− solution containing 0.1 M KCl. (B) Photocurrent responses of (a) PWE/
Cu2O, (b) PWE/Cu2O/CuO, (c) PWE/Cu2O/CuO/hemin−DNA1, and (d) PWE/Cu2O/
CuO/hemin−DNA1/CuMn@CeO2−DNA2 in 0.01 M PBS solution.

3.4. Analytical Performance

The well-designed signal output paper-based device was employed to realize the quan-
titative detection by analyzing the PEC signals and color intensity with the variety of TB con-
centrations. Excellent catalytic performances toward H2O2 of CuMn@CeO2 can offer visual
prediction for analytes. Under optimal conditions (Figure S6), color intensity and photocur-
rent witnessed an upward trend along with the elevated concentration of TB, and a dynamic
range was obtained from 0.0001 to 50 nM (Figure 6A,B). Meanwhile, the excellent linear
relationship between logarithmic value of TB concentrations (Figure 6C) and photocur-
rent response could be fitted and the linear regression was −∆IPEC (µA) = 2.30 lgc + 10.99
(R = 0.994), and the detection limit was calculated as 0.035 pM (S/N = 3). Compared with
single-signal readout strategies (Table 1), the paper-based visual/PEC biosensor exhibited
apparent merits in wide response range and dual-signal sensing mode, providing a more
accurate and effective method for TB detection.

3.5. Specificity, Stability, and Reproducibility

To further assess the feasibility of the present protocol, three significant criterions
for biosensors, the selectivity, stability, and reproducibility, were explored. The specificity
of the dual-signal bioassay was investigated by incubation with 0.1 nM TB, human im-
munoglobulin G (HIgG), carcinoembryonic antigen (CEA), bovine serum albumin (BSA),
and their mixture. The highest photocurrent response was obtained for samples containing
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TB (Figure 7A), demonstrating gratifying specificity. The stability of the as-prepared sensing
device was measured by applying 0.1 nM TB as samples and monitoring the photocurrent
responses intermittently (every 2 days). As expected, experimental results revealed accept-
able stability (Figure 7B). Furthermore, the reproducibility was investigated by testing five
independent electrodes, and the relative standard deviation of photocurrent response was
4.3%, demonstrating acceptable precision and repeatability.
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Table 1. Comparison of the biosensor with other analytical strategies.

Method Materials Liner Range (nM) Detection Limit (pM) References

Electrochemiluminescence Graphene oxide and carbon nanotubes 0.001–5 0.23 [38]
Electrochemical Au NPs 0.005–50 1.1 [39]
Electrochemical Au electrode and methylene blue 0.005–1 1.7 [40]
Fluorescence Zinc selenide quantum dots 0.1–20 25 [41]
PEC Au-ZnO Nanoflowers 0.001–30 0.37 [7]
Visual/PEC Cu2O/CuO and CuMn@CeO2 0.0001–50 0.035 This work
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Figure 7. (A) Photocurrent of the bioassay in the presence of 0.1 nM sample. (B) Photocurrent
responses of constructed PEC sensing platform with 0.1 nM TB.

4. Conclusions

Herein, Cu/Mn-doped CeO2 and branched sheet embedded Cu-based nanocubes
were prepared for fabrication of an effective visual/PEC paper-based sensing platform
to obtain sensitive analysis of TB. The rapid chromogenic reactions were achieved by the
release of CuMn@CeO2 with the addition of TB, which provides a simple visual prediction.
Meanwhile, the presence of TB led to dissociation of CuMn@CeO2 and the electrons-
acceptable distance of G-quadruplex/hemin, which then contributed to the switchover
of the original PEC signal caused by branched sheet embedded nanocubic Cu2O/CuO.
Undoubtedly, such dual-signal output strategy with good performance was capable of
making detection results more sensitive and accurate. Additionally, it was anticipated
that the approach shows potentiality in designing numerous biosensors with excellent
performance for analytes detection.
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