A Lightweight Deep Learning Based Microwave Brain Image Network Model for Brain Tumor Classification Using Reconstructed Microwave Brain (RMB) Images
Abstract
:1. Introduction
- According to the authors’ knowledge, this is the first study to propose a lightweight classification model called microwave brain image network” (MBINet) to classify RMB tumor images using a new machine learning paradigm called the Self-organized operational neural network (Self-ONN) architecture.
- The proposed MBINet model is implemented and investigated on the RMB tumor images to classify the brain images into six classes: non-tumor (NT), single benign tumor (BT), single malignant tumor (MT), double benign tumor (BBT), double malignant tumor (MMT), and single benign and single malignant tumor (BMT).
- The Implementation of a sensor-based microwave brain imaging (SMBI) system with a fabricated tissue-imitating brain phantom model to investigate the imaging performance for generating the RMB tumor image dataset.
- A new Self-ONN model, MBINet, four other Self-ONN models, two conventional CNN models, and three pretrained models (DenseNet201, ResNet50, and ResNet101) are investigated on the RMB tumor images to classify six classes to show the usefulness of the suggested MBINet classification model.
- The proposed MBINet model is compared with the seven most recent state-of-the-art models to verify the classification outcomes.
2. Stacked Antenna Sensor-Based Microwave Brain Imaging (SMBI) System Development and Image Reconstruction Process
2.1. Design and Development Process of the Sensor-Based Stacked Antenna
2.2. Phantom Model Fabrication Process and SMBI System Implementation Process
2.3. Illustration of RMB Image Samples
3. Methodology and Materials
3.1. Preparation of Image Dataset
3.2. Data Preprocessing and Augmentation Process
3.3. Experiments
3.4. Proposed Microwave Brain Image Network (MBINet) Model—Brain Tumor Classification Model
Experimental Analysis of the Classification Models
3.5. Evaluation Matrix for the Classification Model
4. Results and Discussion
4.1. Raw RMB Image Classification Performances
4.2. Receiver Operating Characteristics (ROC) Analysis
4.3. Performance Analysis
5. Conclusions and Future Directions
5.1. Research Shortfalls and Future Improvement
5.2. Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Wyant, Y.; Ogoro, R.A.C. Key Statistics for Brain and Spinal Cord Tumors. Available online: https://www.cancer.org/cancer/brain-spinal-cord-tumors-adults/about/key-statistics.html (accessed on 7 September 2021).
- Chaturia Rouse, H.G.; Ostrom, Q.T.; Kruchko, C.; Barnholtz-Sloan, J.S. Brain Tumor Facts. Available online: https://braintumor.org/brain-tumors/about-brain-tumors/brain-tumor-facts (accessed on 20 November 2022).
- Tariq, M.; Siddiqi, A.A.; Narejo, G.B.; Andleeb, S. A cross sectional study of tumors using bio-medical imaging modalities. Curr. Med. Imaging 2019, 15, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, H.A.; Yu, H.J.; Miller, C.G. Medical imaging modalities. In Medical Imaging in Clinical Trials; Springer: Berlin/Heidelberg, Germany, 2014; pp. 3–26. [Google Scholar]
- Chakraborty, S.; Chatterjee, S.; Ashour, A.S.; Mali, K.; Dey, N. Intelligent computing in medical imaging: A study. In Advancements in Applied Metaheuristic Computing; IGI Global: Hershey, PA, USA, 2018; pp. 143–163. [Google Scholar]
- Frangi, A.F.; Tsaftaris, S.A.; Prince, J.L. Simulation and synthesis in medical imaging. IEEE Trans. Med. Imaging 2018, 37, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Adamson, E.B.; Ludwig, K.D.; Mummy, D.G.; Fain, S.B. Magnetic resonance imaging with hyperpolarized agents: Methods and applications. Phys. Med. Biol. 2017, 62, R81. [Google Scholar] [CrossRef] [PubMed]
- Cazzato, R.L.; Garnon, J.; Shaygi, B.; Koch, G.; Tsoumakidou, G.; Caudrelier, J.; Addeo, P.; Bachellier, P.; Namer, I.J.; Gangi, A. PET/CT-guided interventions: Indications, advantages, disadvantages and the state of the art. Minim. Invasive Ther. Allied Technol. 2018, 27, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, M.A.; Ibrahim, T.S.; Ouwerkerk, R. MR imaging: Brief overview and emerging applications. Radiographics 2007, 27, 1213–1229. [Google Scholar] [CrossRef]
- Alqadami, A.S.; Bialkowski, K.S.; Mobashsher, A.T.; Abbosh, A.M. Wearable electromagnetic head imaging system using flexible wideband antenna array based on polymer technology for brain stroke diagnosis. IEEE Trans. Biomed. Circuits Syst. 2018, 13, 124–134. [Google Scholar] [CrossRef]
- Dougeni, E.; Faulkner, K.; Panayiotakis, G. A review of patient dose and optimisation methods in adult and paediatric CT scanning. Eur. J. Radiol. 2012, 81, e665–e683. [Google Scholar] [CrossRef]
- Jones, K.M.; Michel, K.A.; Bankson, J.A.; Fuller, C.D.; Klopp, A.H.; Venkatesan, A.M. Emerging magnetic resonance imaging technologies for radiation therapy planning and response assessment. Int. J. Radiat. Oncol. 2018, 101, 1046–1056. [Google Scholar] [CrossRef]
- Hossain, A.; Islam, M.T.; Almutairi, A.F.; Singh, M.S.J.; Mat, K.; Samsuzzaman, M. An octagonal ring-shaped parasitic resonator based compact ultrawideband antenna for microwave imaging applications. Sensors 2020, 20, 1354. [Google Scholar] [CrossRef]
- Hossain, A.; Islam, M.T.; Chowdhury, M.E.; Samsuzzaman, M. A grounded coplanar waveguide-based slotted inverted delta-shaped wideband antenna for microwave head imaging. IEEE Access 2020, 8, 185698–185724. [Google Scholar] [CrossRef]
- Mobashsher, A.; Bialkowski, K.; Abbosh, A.; Crozier, S. Design and experimental evaluation of a non-invasive microwave head imaging system for intracranial haemorrhage detection. PLoS ONE 2016, 11, e0152351. [Google Scholar] [CrossRef]
- Tobon Vasquez, J.A.; Scapaticci, R.; Turvani, G.; Bellizzi, G.; Joachimowicz, N.; Duchêne, B.; Tedeschi, E.; Casu, M.R.; Crocco, L.; Vipiana, F. Design and experimental assessment of a 2D microwave imaging system for brain stroke monitoring. Int. J. Antennas Propag. 2019, 2019, 8065036. [Google Scholar] [CrossRef]
- Hossain, A.; Islam, M.T.; Islam, M.T.; Chowdhury, M.E.; Rmili, H.; Samsuzzaman, M. A planar ultrawideband patch antenna array for microwave breast tumor detection. Materials 2020, 13, 4918. [Google Scholar] [CrossRef]
- Islam, M.S.; Islam, M.T.; Hoque, A.; Islam, M.T.; Amin, N.; Chowdhury, M.E. A portable electromagnetic head imaging system using metamaterial loaded compact directional 3D antenna. IEEE Access 2021, 9, 50893–50906. [Google Scholar] [CrossRef]
- Mobashsher, A.T.; Abbosh, A.M.; Wang, Y. Microwave system to detect traumatic brain injuries using compact unidirectional antenna and wideband transceiver with verification on realistic head phantom. IEEE Trans. Microw. Theory Tech. 2014, 62, 1826–1836. [Google Scholar] [CrossRef]
- Salleh, A.; Yang, C.; Alam, T.; Singh, M.; Samsuzzaman, M.; Islam, M. Development of microwave brain stroke imaging system using multiple antipodal vivaldi antennas based on raspberry Pi technology. J. Kejuruterran 2020, 32, 39–49. [Google Scholar]
- Stancombe, A.E.; Bialkowski, K.S.; Abbosh, A.M. Portable microwave head imaging system using software-defined radio and switching network. IEEE J. Electromagn. RF Microw. Med. Biol. 2019, 3, 284–291. [Google Scholar] [CrossRef]
- Chew, K.M.; Yong, C.Y.; Sudirman, R.; Wei, S.T.C. Bio-signal processing and 2D representation for brain tumor detection using microwave signal analysis. In Proceedings of the 2018 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), Penang Island, Malaysia, 28–29 April 2018; pp. 303–309. [Google Scholar]
- Rezaeieh, S.A.; Zamani, A.; Abbosh, A. 3-D wideband antenna for head-imaging system with performance verification in brain tumor detection. IEEE Antennas Wirel. Propag. Lett. 2014, 14, 910–914. [Google Scholar] [CrossRef]
- Rodriguez-Duarte, D.O.; Vasquez, J.A.T.; Scapaticci, R.; Crocco, L.; Vipiana, F. Brick-shaped antenna module for microwave brain imaging systems. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 2057–2061. [Google Scholar] [CrossRef]
- Rokunuzzaman, M.; Ahmed, A.; Baum, T.C.; Rowe, W.S. Compact 3-D antenna for medical diagnosis of the human head. IEEE Trans. Antennas Propag. 2019, 67, 5093–5103. [Google Scholar] [CrossRef]
- Ullah, M.; Alam, T.; Islam, M. A 3D directive microwave antenna for biomedical imaging application. Bull. Pol. Acad. Sci. Tech. Sci. 2018, 66, 355–360. [Google Scholar]
- Gerazov, B.; Conceicao, R.C. Deep learning for tumour classification in homogeneous breast tissue in medical microwave imaging. In Proceedings of the IEEE EUROCON 2017-17th International Conference on Smart Technologies, Ohrid, North Macedonia, 6–8 July 2017; pp. 564–569. [Google Scholar]
- Khoshdel, V.; Asefi, M.; Ashraf, A.; LoVetri, J. Full 3D microwave breast imaging using a deep-learning technique. J. Imaging 2020, 6, 80. [Google Scholar] [CrossRef]
- Rana, S.P.; Dey, M.; Tiberi, G.; Sani, L.; Vispa, A.; Raspa, G.; Duranti, M.; Ghavami, M.; Dudley, S. Machine learning approaches for automated lesion detection in microwave breast imaging clinical data. Sci. Rep. 2019, 9, 10510. [Google Scholar] [CrossRef]
- Salucci, M.; Polo, A.; Vrba, J. Multi-step learning-by-examples strategy for real-time brain stroke microwave scattering data inversion. Electronics 2021, 10, 95. [Google Scholar] [CrossRef]
- Shah, P.; Moghaddam, M. Super resolution for microwave imaging: A deep learning approach. In Proceedings of the 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 9–14 July 2017; pp. 849–850. [Google Scholar]
- Shao, W.; Du, Y. Microwave imaging by deep learning network: Feasibility and training method. IEEE Trans. Antennas Propag. 2020, 68, 5626–5635. [Google Scholar] [CrossRef] [PubMed]
- Sharif, M.I.; Khan, M.A.; Alhussein, M.; Aurangzeb, K.; Raza, M. A decision support system for multimodal brain tumor classification using deep learning. Complex Intell. Syst. 2022, 8, 3007–3020. [Google Scholar] [CrossRef]
- Noreen, N.; Palaniappan, S.; Qayyum, A.; Ahmad, I.; Imran, M.; Shoaib, M. A deep learning model based on concatenation approach for the diagnosis of brain tumor. IEEE Access 2020, 8, 55135–55144. [Google Scholar] [CrossRef]
- Ding, Y.; Li, C.; Yang, Q.; Qin, Z.; Qin, Z. How to improve the deep residual network to segment multi-modal brain tumor images. IEEE Access 2019, 7, 152821–152831. [Google Scholar] [CrossRef]
- Ghassemi, N.; Shoeibi, A.; Rouhani, M. Deep neural network with generative adversarial networks pre-training for brain tumor classification based on MR images. Biomed. Signal Process. Control. 2020, 57, 101678. [Google Scholar] [CrossRef]
- Abd El Kader, I.; Xu, G.; Shuai, Z.; Saminu, S.; Javaid, I.; Salim Ahmad, I. Differential deep convolutional neural network model for brain tumor classification. Brain Sci. 2021, 11, 352. [Google Scholar] [CrossRef]
- Díaz-Pernas, F.J.; Martínez-Zarzuela, M.; Antón-Rodríguez, M.; González-Ortega, D. A deep learning approach for brain tumor classification and segmentation using a multiscale convolutional neural network. Healthcare 2021, 9, 153. [Google Scholar] [CrossRef]
- Kumar, R.L.; Kakarla, J.; Isunuri, B.V.; Singh, M. Multi-class brain tumor classification using residual network and global average pooling. Multimed. Tools Appl. 2021, 80, 13429–13438. [Google Scholar] [CrossRef]
- Zahid, U.; Ashraf, I.; Khan, M.A.; Alhaisoni, M.; Yahya, K.M.; Hussein, H.S.; Alshazly, H. BrainNet: Optimal deep learning feature fusion for brain tumor classification. Comput. Intell. Neurosci. 2022, 2022, 1465173. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, D.; Jin, X.; Zhu, W. nn-TransUNet: An Automatic Deep Learning Pipeline for Heart MRI Segmentation. Life 2022, 12, 1570. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Dalmaz, O.; Yurt, M.; Çukur, T. ResViT: Residual vision transformers for multimodal medical image synthesis. IEEE Trans. Med. Imaging 2022, 41, 2598–2614. [Google Scholar] [CrossRef]
- Korkmaz, Y.; Dar, S.U.; Yurt, M.; Özbey, M.; Cukur, T. Unsupervised MRI reconstruction via zero-shot learned adversarial transformers. IEEE Trans. Med. Imaging 2022, 41, 1747–1763. [Google Scholar] [CrossRef]
- Devecioglu, O.C.; Malik, J.; Ince, T.; Kiranyaz, S.; Atalay, E.; Gabbouj, M. Real-time glaucoma detection from digital fundus images using self-onns. IEEE Access 2021, 9, 140031–140041. [Google Scholar] [CrossRef]
- Kiranyaz, S.; Malik, J.; Abdallah, H.B.; Ince, T.; Iosifidis, A.; Gabbouj, M. Self-organized operational neural networks with generative neurons. Neural Netw. 2021, 140, 294–308. [Google Scholar] [CrossRef]
- Alqadami, A.S.; Nguyen-Trong, N.; Mohammed, B.; Stancombe, A.E.; Heitzmann, M.T.; Abbosh, A. Compact unidirectional conformal antenna based on flexible high-permittivity custom-made substrate for wearable wideband electromagnetic head imaging system. IEEE Trans. Antennas Propag. 2019, 68, 183–194. [Google Scholar] [CrossRef]
- Hossain, A.; Islam, M.T.; Islam, M.S.; Chowdhury, M.E.; Almutairi, A.F.; Razouqi, Q.A.; Misran, N. A YOLOv3 deep neural network model to detect brain tumor in portable electromagnetic imaging system. IEEE Access 2021, 9, 82647–82660. [Google Scholar] [CrossRef]
- Hossain, A.; Islam, M.T.; Misran, N.; Islam, M.S.; Samsuzzaman, M. A mutual coupled spider net-shaped triple split ring resonator based epsilon-negative metamaterials with high effective medium ratio for quad-band microwave applications. Results Phys. 2021, 22, 103902. [Google Scholar] [CrossRef]
- Mobashsher, A.; Abbosh, A. Three-dimensional human head phantom with realistic electrical properties and anatomy. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 1401–1404. [Google Scholar] [CrossRef]
- Cheng, Y.; Fu, M. Dielectric properties for non-invasive detection of normal, benign, and malignant breast tissues using microwave theories. Thorac. Cancer 2018, 9, 459–465. [Google Scholar] [CrossRef]
- Islam, M.T.; Samsuzzaman, M.; Kibria, S.; Misran, N.; Islam, M.T. Metasurface loaded high gain antenna based microwave imaging using iteratively corrected delay multiply and sum algorithm. Sci. Rep. 2019, 9, 17317. [Google Scholar] [CrossRef]
- Hossain, A.; Islam, M.T.; Almutairi, A.F. A deep learning model to classify and detect brain abnormalities in portable microwave based imaging system. Sci. Rep. 2022, 12, 6319. [Google Scholar] [CrossRef]
- Özbey, M.; Dar, S.U.; Bedel, H.A.; Dalmaz, O.; Özturk, Ş.; Güngör, A.; Çukur, T. Unsupervised medical image translation with adversarial diffusion models. arXiv 2022, arXiv:2207.08208. [Google Scholar]
- Ho, J.; Jain, A.; Abbeel, P. Denoising diffusion probabilistic models. Adv. Neural Inf. Process. Syst. 2020, 33, 6840–6851. [Google Scholar]
- Kiranyaz, S.; Ince, T.; Iosifidis, A.; Gabbouj, M. Operational neural networks. Neural Comput. Appl. 2020, 32, 6645–6668. [Google Scholar] [CrossRef]
- Malik, J.; Kiranyaz, S.; Gabbouj, M. Self-organized operational neural networks for severe image restoration problems. Neural Netw. 2021, 135, 201–211. [Google Scholar] [CrossRef]
- Malik, J.; Kiranyaz, S.; Gabbouj, M. Operational vs convolutional neural networks for image denoising. arXiv 2020, arXiv:2009.00612. [Google Scholar]
- Duchi, J.; Hazan, E.; Singer, Y. Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 2011, 12, 2121–2159. [Google Scholar]
- Qian, N. On the momentum term in gradient descent learning algorithms. Neural Netw. 1999, 12, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Kurbiel, T.; Khaleghian, S. Training of deep neural networks based on distance measures using RMSProp. arXiv 2017, arXiv:1708.01911. [Google Scholar]
Ref. | Name of the Existing Model | Pros | Cons |
---|---|---|---|
[33] | FT-DenseNet201 | The Entropy Kurtosis based technique is used in this model for feature extraction to improve the accuracy of the system and reduce the time of classification. | The fusion process of the model increases the computational time and shows less accuracy in classifying the small-sized tumor images. |
[34] | PT-DenseNet201 | The multi-level features Information is extracted from different bottom layers of the model, which enhances its capability to classify the tumors. | It requires a large amount of computational time and shows a low precision score and specificity score for noisy images. |
[35] | DP-DenseNet | The model is a combination of residual networks and dilated convolutional layers that can solve the vanishing gradient problem. It enhances image resolution and classification accuracy for multimodal brain tumor samples. | The network model can only classify large-sized tumor-based images but not small-sized tumor images, resulting in comparatively poor classification performances. Further, it increases the computational time. |
[37] | Differential-DCNN | The model uses a differential operator with contrast calculation for analyzing the pixel-directional pattern of images. It is very good at accurately classifying a large set of tumor images. | The model may fail to achieve high performance due to large dataset constraints, which increases the testing loss. As a result, the model failed to classify the small-sized tumor images. |
[38] | CMP-CNN | The CMP-CNN model employs three convolutional pathways for extracting discriminant texture features of different kinds of tumors and uses a multi-scale processing strategy for improving the tumor classification performance. | It takes a long computational time to train the model and has caused false positives in a number of testing images due to the lack of variability among the three tumor types. |
[39] | ResNet-50 | The global average pooling method is used to solve the problems of vanishing gradient and overfitting in the deep network-based ResNet-50 model. | It is computationally expensive as it uses a deep neural network. The classification accuracy is slightly lesser when compared to other classes. |
[40] | Fine-tuned ResNet101 | The model utilizes the differential evaluation method and particle swarm optimization algorithms to reduce redundant features and computational overhead. | The computational time increases during the testing process because of the fusion process, which achieves less accuracy in classifying the small tumor images. |
Dataset | Number of Original Images | Image Classes | Training Dataset | |||||
---|---|---|---|---|---|---|---|---|
Number of Images Per Class | Augmented Train Images Per Fold | Testing Images Per Fold | Validation Image Per Fold | |||||
This Work | Ref. [53] | Total | ||||||
Raw RMB Image Samples | 1320 | Non-Tumor (NT) | 200 | 100 | 300 | 3000 | 60 | 48 |
Single Benign Tumor (BT) | 140 | 75 | 215 | 2150 | 43 | 35 | ||
Single Malignant Tumor (MT) | 140 | 75 | 215 | 2150 | 43 | 35 | ||
Two Benign Tumors (BBT) | 150 | 50 | 200 | 2000 | 40 | 32 | ||
Two Malignant Tumors (MMT) | 150 | 50 | 200 | 2000 | 40 | 32 | ||
Single Benign and Single Malignant Tumor (BMT) | 140 | 50 | 190 | 1900 | 38 | 31 | ||
Total | 920 | 400 | 1320 | 13,200 | 264 | 213 |
Parameter’s Name | Assigned Value | Parameter’s Name | Assigned Value |
---|---|---|---|
Input Channels for Color Image | 3 | Q order | 1 for CNN, 3 for Self-ONNs |
Optimizer | Adam | Batch Size | 16 |
Image Size | 224 | Stop Criteria | Loss |
Maximum Number of Epochs | 30 | Epochs Patience | 5 |
Maximum Epochs Stop | 10 | Learning Factor | 0.2 |
Number of Folds | 5 | Learning Rate (LR) | 0.0005 |
Standard Deviation (STD) | [0.4116, 0.3645, 0.2597] | Mean (M) | [0.2552, 0.4666, 0.8804] |
Image Type | Name of the Network Model | Overall | Weighted | |||
---|---|---|---|---|---|---|
Accuracy (A) | Precession (P) | Recall (R) | Specificity (S) | F1 Score (Fs) | ||
RMB Images | Self-ONN4L1DN | 93.90 | 93.48 | 93.77 | 94.34 | 93.50 |
Self-ONN4L | 93.76 | 93.56 | 93.76 | 94.28 | 93.75 | |
Self-ONN6L | 94.19 | 94.85 | 94.29 | 95.47 | 94.58 | |
Self-ONN6L1DN | 95.50 | 95.53 | 95.20 | 96.11 | 95.31 | |
Vanilla CNN8L | 92.95 | 92.89 | 92.92 | 93.95 | 92.78 | |
Vanilla CNN6L | 92.83 | 92.76 | 92.90 | 93.87 | 92.45 | |
DenseNet201 | 94.58 | 94.55 | 94.28 | 95.84 | 94.80 | |
ResNet50 | 95.89 | 95.94 | 95.29 | 96.81 | 95.16 | |
ResNet101 | 95.90 | 95.96 | 95.89 | 95.89 | 95.86 | |
MicrowaveBrainImage Network (MBINet) | 96.97 | 96.93 | 96.85 | 97.95 | 96.83 |
Name of the Network Model | Accuracy (A) | Precession (P) | Recall (R) | Specificity (S) | F1 Score (Fs) | |||||
---|---|---|---|---|---|---|---|---|---|---|
M | STD | M | STD | M | STD | M | STD | M | STD | |
Self-ONN4L1DN | 0.9390 | 0.0129 | 0.9348 | 0.0133 | 0.9377 | 0.0130 | 0.9434 | 0.0125 | 0.9350 | 0.0133 |
Self-ONN4L | 0.9376 | 0.0130 | 0.9356 | 0.0132 | 0.9376 | 0.0130 | 0.9428 | 0.0125 | 0.9375 | 0.0131 |
Self-ONN6L | 0.9419 | 0.0126 | 0.9485 | 0.0119 | 0.9429 | 0.0125 | 0.9547 | 0.0112 | 0.9458 | 0.0122 |
Self-ONN6L1DN | 0.9550 | 0.0112 | 0.9553 | 0.0111 | 0.9520 | 0.0115 | 0.9611 | 0.0104 | 0.9531 | 0.0114 |
Vanilla CNN8L | 0.9295 | 0.0138 | 0.9289 | 0.0139 | 0.9292 | 0.0138 | 0.9395 | 0.0129 | 0.9278 | 0.0140 |
Vanilla CNN6L | 0.9283 | 0.0139 | 0.9276 | 0.0140 | 0.9290 | 0.0139 | 0.9387 | 0.0129 | 0.9245 | 0.0143 |
DenseNet201 | 0.9458 | 0.0122 | 0.9455 | 0.0122 | 0.9428 | 0.0125 | 0.9584 | 0.0108 | 0.9480 | 0.0120 |
ResNet50 | 0.9589 | 0.0107 | 0.9594 | 0.0106 | 0.9529 | 0.0114 | 0.9681 | 0.0095 | 0.9516 | 0.0116 |
ResNet101 | 0.9590 | 0.0107 | 0.9596 | 0.0106 | 0.9589 | 0.0107 | 0.9589 | 0.0107 | 0.9586 | 0.0107 |
MBINet | 0.9697 | 0.0092 | 0.9693 | 0.0093 | 0.9685 | 0.0094 | 0.9795 | 0.0076 | 0.9683 | 0.0095 |
Ref. | Year | Name of the Existing Models | Acc. (%) | Prc. (%) | Rec. (%) | Spec. (%) | Fs (%) | OCP (%) |
---|---|---|---|---|---|---|---|---|
[33] | 2022 | FT-DenseNet201 | 94.58 | 94.55 | 94.28 | 95.84 | 94.80 | 94.81 |
[34] | 2020 | PT-DenseNet201 | 94.66 | 94.62 | 94.76 | 94.68 | 93.95 | 94.53 |
[35] | 2019 | DP-DenseNet | 93.10 | 93.88 | 94.09 | 94.87 | 94.98 | 94.18 |
[37] | 2021 | Differential-DCNN | 95.80 | 95.73 | 95.62 | 95.61 | 95.11 | 95.57 |
[38] | 2021 | CMP-CNN | 91.87 | 91.85 | 91.82 | 92.95 | 91.72 | 92.04 |
[39] | 2021 | ResNet-50 | 95.89 | 95.94 | 95.29 | 95.71 | 95.16 | 95.59 |
[40] | 2022 | Fine-tuned ResNet101 | 95.90 | 95.96 | 95.89 | 95.89 | 95.86 | 95.82 |
Proposed | 2023 | MBINet | 96.97 | 96.93 | 96.85 | 97.95 | 96.83 | 97.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossain, A.; Islam, M.T.; Abdul Rahim, S.K.; Rahman, M.A.; Rahman, T.; Arshad, H.; Khandakar, A.; Ayari, M.A.; Chowdhury, M.E.H. A Lightweight Deep Learning Based Microwave Brain Image Network Model for Brain Tumor Classification Using Reconstructed Microwave Brain (RMB) Images. Biosensors 2023, 13, 238. https://doi.org/10.3390/bios13020238
Hossain A, Islam MT, Abdul Rahim SK, Rahman MA, Rahman T, Arshad H, Khandakar A, Ayari MA, Chowdhury MEH. A Lightweight Deep Learning Based Microwave Brain Image Network Model for Brain Tumor Classification Using Reconstructed Microwave Brain (RMB) Images. Biosensors. 2023; 13(2):238. https://doi.org/10.3390/bios13020238
Chicago/Turabian StyleHossain, Amran, Mohammad Tariqul Islam, Sharul Kamal Abdul Rahim, Md Atiqur Rahman, Tawsifur Rahman, Haslina Arshad, Amit Khandakar, Mohamed Arslane Ayari, and Muhammad E. H. Chowdhury. 2023. "A Lightweight Deep Learning Based Microwave Brain Image Network Model for Brain Tumor Classification Using Reconstructed Microwave Brain (RMB) Images" Biosensors 13, no. 2: 238. https://doi.org/10.3390/bios13020238
APA StyleHossain, A., Islam, M. T., Abdul Rahim, S. K., Rahman, M. A., Rahman, T., Arshad, H., Khandakar, A., Ayari, M. A., & Chowdhury, M. E. H. (2023). A Lightweight Deep Learning Based Microwave Brain Image Network Model for Brain Tumor Classification Using Reconstructed Microwave Brain (RMB) Images. Biosensors, 13(2), 238. https://doi.org/10.3390/bios13020238