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Abstract: Opportune sensing of ammonia (NH3) gas is industrially important for avoiding hazards.
With the advent of nanostructured 2D materials, it is felt vital to miniaturize the detector architecture
so as to attain more and more efficacy with simultaneous cost reduction. Adaptation of layered
transition metal dichalcogenide as the host may be a potential answer to such challenges. The current
study presents a theoretical in-depth analysis regarding improvement in efficient detection of NH3

using layered vanadium di-selenide (VSe2) with the introduction of point defects. The poor affinity
between VSe2 and NH3 forbids the use of the former in the nano-sensing device’s fabrications. The
adsorption and electronic properties of VSe2 nanomaterials can be tuned with defect induction, which
would modulate the sensing properties. The introduction of Se vacancy to pristine VSe2 was found to
cause about an eight-fold increase (from −012 eV to −0.97 eV) in adsorption energy. A charge transfer
from the N 2p orbital of NH3 to the V 3d orbital of VSe2 has been observed to cause appreciable NH3

detection by VSe2. In addition to that, the stability of the best-defected system has been confirmed
through molecular dynamics simulation, and the possibility of repeated usability has been analyzed
for calculating recovery time. Our theoretical results clearly indicate that Se-vacant layered VSe2

can be an efficient NH3 sensor if practically produced in the future. The presented results will thus
potentially be useful for experimentalists in designing and developing VSe2-based NH3 sensors.

Keywords: 2D materials; VSe2 monolayer; ammonia sensing; electronic properties; reversible sensors;
density functional theory

1. Introduction

With the development of technology, the requirement for gas sensors in the fields of
industry, agriculture, medicine, air-quality monitoring, etc., has been amplified [1,2]. For
instance, gases such as carbon monoxide, nitrogen oxide, nitrogen dioxide, ammonia, etc.
are harmful to living beings and can trigger serious health issues [3,4]. To eliminate such
hazardous gases from the environment, lucrative sensors with good stability, sensitivity,
and selectivity are desirable. In the past, metal oxides such as ZnO, SnO2, and so on were
explored as efficient sensors having good sensitivity and selectivity towards the sensing
of harmful gases [5]. Although metal oxides are cheaper and need low fabrication costs,
their elevated operating temperature restricts their use in sensing devices [6]. Following
this, various types of sensing materials have been reported in the past. Among all the
reported sensing materials, chemi-resistors are recommended as promising sensitive and
selective sensors [7,8]. For instance, Oudenhoven et al. reported a thin layer of ionic liquid
[BMIM][NTf2] as the electrolyte, capable of sensing NH3 even at a level of 1 ppm [9].
On the other hand, Amirjani et al. reported a calorimetric sensor for detecting NH3 by
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utilizing localized surface plasmon resonance of Ag nanoparticles for detection in the range
of 10–1000 mg L−1 [10]. The electrochemical sensor developed by Arya et al. uses SnO2
nanoparticles synthesized with the sol–gel route to sense NH3 in aqueous solution [11].

Graphene is a two-dimensional carbon allotrope with a zero band gap and possesses a
high surface-to-volume ratio [12,13]. The discovery of graphene brought a breakthrough in
the exploration of two-dimensional nanomaterials [14–18]. Due to the presence of novel
physical and chemical properties, two-dimensional nanomaterials can be used in a wide
range of applications such as energy storage devices, catalysis, sensing devices, etc. [19–21].
The application of two-dimensional materials, namely borophene, phosphorene, transition
metal dichalcogenides (TMDs), etc., in gas sensing has been studied by different research
groups [19–26]. For instance, honeycomb germanium is reported to act as an efficient
sensor as compared to graphene-based sensors [27,28]. Sosa and his coworkers investigated
the application of alkali, alkaline earth metals, and transition metal-doped germanene in
ammonia (NH3) sensing by computing adsorption energies, charge transfer analysis, work
function, and desorption time [29]. Several other studies have also been reported in the past
to investigate the adsorption properties of NH3 on different two-dimensional materials [30].
For instance, adsorption energies and diffusion energy barriers were computed for NH3
adsorption on MoO3 nanomaterial by Xu and coworkers [31]. The authors reported the low
sensing of NH3 on the studied two-dimensional material. Lv and his coworkers studied the
sensing properties of NH3 on a two-dimensional C3N monolayer by performing density
functional theory [32].

Transition metal dichalcogenide nanosheet; MoSe2 is reported to act as an efficient
sensor in the sensing of CO, NO, NO, and NO2 gases [33,34]. It is also possible to tune
the physical and chemical properties of such two-dimensional nanomaterials by tuning
their structures [35–43]. The Janus TMDs are two-dimensional nanomaterials in which a
metal layer is sandwiched between two different non-metal atom layers. The difference in
the non-metal atom layers introduces asymmetry, which is responsible for enhancing the
physicochemical properties of such materials. The Janus TMDs have been explored for their
use in hydrogen storage, catalysis, water splitting, etc. [44–47]. Along with these properties,
the application of Janus TMDs in gas sensing has also been studied by researchers in the
past [48–50]. For instance, the role of MoSSe nanomaterial in the sensing of CO, CO2, NO,
and NO2 was studied using DFT methods [46]. The authors reported that the selectivity
of sensing can be improved with the help of external strain. Following this, the sensing
properties of the defected Janus TMDs have also been studied in the past [51]. The studies
showed that the defected Janus TMDs showed higher sensitivity towards the gas molecules
as compared to pristine monolayers.

The charge transfer between adsorbate and adsorbent partakes in the gas sensing
mechanism (Figure 1). Previous studies showed that the gas-sensing behavior of two-
dimensional can be improved by introducing p-type or n-type doping [52–55]. The doping
can be introduced by incorporating impurities in the two-dimensional nanomaterial lat-
tice [56,57]. Suh and his group reported the hole generation in the MoSe2 monolayer with
the doping of Nb in the lattice structure [58]. The gas-sensing behavior of Nb-doped MoS2
nanosheets has been investigated by Choi and his coworkers [59]. Their report stated that
optimum NO2 sensing of MoS2 can be enhanced up to 8% with Nb doping and hence,
can be considered an effective way to achieve high-performance gas sensing devices. The
improvement of the gas-sensing behavior of MoSe2 and MoTe2 nanomaterials with the
elemental substitution is also reported in the past [60]. The role of V, Nb, and Ta-doped
MoS2 in NH3, H2O, and NO2 sensing has been studied by Zhu and his group [61]. Authors
suggested that doping of transition metal atoms enriches the sensing properties of MoS2.
The effect of Al, Si, and P-doped MoS2 on the adsorption as well as sensing of NH3 has
been studied by Luo and his group [62]. The effect of nitrogen, phosphorus, and arsenic
doping on the CO, NO, and HF sensing of Janus WSSe nanosheets has been studied in
the past using DFT methods [63]. The studies showed that ~3.12% doping of nitrogen,
phosphorus, and arsenic makes Janus WSSe nanosheets efficient sensing materials even
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without imposing external strain. The utilization of VSe2 nanomaterial for the sensing of
nitrobenzene and catechol has been reported in past studies [64,65]. Vacancy engineering
has been reviewed as a critical strategy for tuning electron and phonon structures of two-
dimensional materials in general and for gas-sensing applications in particular [66–68]. For
instance, in the case of TMDs, the introduction of vacancy has been reported to be beneficial
for the sensing of SO2, NH3, NO2, ‘NO, O2, and CO, and decomposed SF6 gases in SnSe2,
SnS2, MoS2, PtSe2, and WS2 layered systems, respectively [69–73]. Keeping the above in
mind, the potential of vacancy-engineered VSe2 for the detection of NH3 appears to be a
still unaddressed topic, to the best knowledge of the authors.
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Figure 1. Schematic flow diagram of gas sensing mechanism involving charge transfer interactions.

The modality of detection of NH3 with VSe2 nanosheets has thus been theoretically
studied in the present work. The effect of defect-engineered nanosheets has also been
considered in this work by introducing V-defected as well as Se-defected layered VSe2
nanomaterials. Using first-principles calculations, the change in the electronic and magnetic
properties of defected VSe2 monolayers has been compared with the pristine material. The
sensing capabilities of pristine and defected VSe2 monolayers have also been assessed in
terms of adsorption energy values, electronic, magnetic, and charge transfer properties
with the NH3 molecule.

2. Computational Methods

The density functional theory (DFT) computations were accomplished by means of
the Projector Augmented Wave (PAW) principles as implemented in the Vienna ab initio
Simulation Package (VASP) [74–77]. In the simulations, generalized gradient approximation
(GGA) was used for exchange-correlation functions [78]. During the computations, the
convergence criteria for Hellman–Feynman forces were kept at 0.01 eV/Å alongside the
plane wave cut-off energy of 600 eV. The long-range interactions may impact the sensing
properties of the material. Hence, long-range interactions were taken care of with Grimme’s
DFT-D3 functional [79,80]. The Γ-centered K-points grid of 6 × 6 × 1 was used for the
integration of the first Brillouin zone [81]. A vacuum of 20 Å was introduced in the z-
direction to avoid the interactions between the layers in the Z direction. The thermal
stability of the VSe2 monolayer adsorbed with NH3 was computed with the help of ab-
initio molecular dynamics simulations (AIMD). The AIMD simulations were carried out in
the NVT ensemble using the Nosé–Hoover thermostat to determine the thermal stability of
VSe2 + NH3 and VSe2(Sev) + NH3 systems at 400 K. The simulations were carried out for a
total time of 5 ps with a time step of 1 fs.

3. Results and Discussion
3.1. Structural Analysis of Pristine and Defected VSe2

The 4 × 4 × 1 supercell of VSe2 was used to mimic the two-dimensional monolayer
in this work. The geometry-relaxed structure of pristine VSe2 is shown in Figure 2a. In
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this structure, the metal atom layer is embedded between the selenium atom layers. Using
the optimized structure of pristine VSe2, V-defected VSe2 was constructed by removing a
single V-metal atom from the monolayer [Figure 2b]. Similarly, the Se-defected layer was
modeled by eliminating a Se-atom from the monolayer [Figure 2c]. The V and Se-defected
monolayers are described as VSe2(Vv) and VSe2(Sev), distinctly. The optimized structures
of VSe2, VSe2(Vv), and VSe2(Sev) are used for the further adsorption of the NH3 molecule
at various possible positions, as mentioned below.
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3.2. Adsorption of NH3 on VSe2, VSe2(Vv), and VSe2(Sev)

To understand the NH3 sensing of pure and defected VSe2, the NH3 molecule was
placed at various possible sites, 2 Å above the VSe2, VSe2(Vv), and VSe2(Sev) monolay-
ers. The structurally relaxed geometries upon NH3 introduction on VSe2, VSe2(Vv), and
VSe2(Sev) monolayers are depicted in Figure 3. The stability of the NH3 adsorbed com-
plexes is assessed in terms of adsorption energy values both with and without van der
Waals (VdW) interactions.

The adsorption energy is computed using the following equation:

BE = E(complex) − E(monolayer) − E(NH3) (1)

In this equation, E(complex) is the energy of the NH3 adsorbed VSe2/VSe2(Vv)/VSe2(Sev)
systems. The E(monolayer) represents the energy of the VSe2 or VSe2(Vv) or VSe2(Sev) systems.
The last term E(NH3) represents the energy of the isolated ammonia gas molecule.
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The adsorption energy values are shown in Table 1. It can be observed from Table 1
that the NH3 molecule is weakly bound to the pure VSe2. Or, in other words, the NH3
shows weak affinity towards the VSe2 monolayer, specifying that pure material is not much
suitable for sensing purposes. The result shown in Table 1 for the VSe2 + NH3 system
corresponds to the adsorption energy of 0.124 eV for the case when the N atom of NH3 has
been placed upright the V atom of VSe2. The same practice has been repeated for the other
three possible sites, i.e., Se atom, V-Se bond, and center of a hexagonal ring consisting of V
and Se atoms, and all four obtained adsorption energy values are shown in Table S1. As can
be seen, the adsorption energy for the arrangement corresponding to the “above V” case is
the least (though positive without VdW incorporation); further, all calculations are based
on that arrangement. However, VSe2(Vv) and VSe2(Sev) monolayers show stronger affinity
towards NH3 with adsorption energy values of −0.22 and −0.66 eV, respectively. The
present studies also determined the influence of long-range interactions by computing the
adsorption energy values with DFT-D3 functional to consider van der Waal interaction. It
can be observed from Table 1 that the adsorption energy values improve with the inclusion
of VdW interactions. The values reported in Table 1 suggest that the VSe2(Sev) + NH3
forms the most stable complex due to higher adsorption energy values. The bond lengths
between NH3 and the adsorbent are also measured and are given in Table 1. In the case of
VSe2(Sev) + NH3, the distance between the vanadium atom of the monolayer and the N
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atom of NH3 is reduced as compared to the VSe2 + NH3 complex. This supports stronger
adsorption interactions between VSe2(Sev) and the NH3 molecule. As the VSe2(Sev) +
NH3 forms the most stable complex, the change in the electronic properties of pure and
Se-defected monolayers with the adsorption of NH3 molecule is studied in this work and
has been comparatively discussed further.

Table 1. Adsorption energies for the adsorption of NH3 on VSe2, VSe2(Vv), and VSe2(Sev) systems
with and without VdW functional. The bond lengths between the atoms of adsorbate and adsorbent
are given in Å units.

System Adsorption Energy (eV) Bond Length (Å)

VSe2 + NH3 0.124 V-N: 4.786 S-N: 3.94
VSe2 + NH3 (with VdW) −0.12 V-N: 4.709 S-N: 3.93
VSe2 (V vacancy) + NH3 −0.219 V-N: 4.756 S-N: 3.92

VSe2 (V vacancy) + NH3 (with VdW) −0.342 V-N: 4.479 S-N: 3.732
VSe2 (Se vacancy) + NH3 −0.664 V-N: 2.26 S-N: 3.697

VSe2 (Se vacancy) + NH3 (with VdW) −0.97 V-N: 2.253 S-N: 3.681
VSe2 (2Se vacancy) + NH3 −1.33 V-N: 2.242 S-N: 3.514

VSe2 (2Se vacancy) + NH3 (with VdW) −1.58 V-N: 2.241 S-N: 3.501

To study the effect of a further increase in defect density, a VSe2 structure deficient
with two Se atoms has been relaxed and again optimized with the insertion of an NH3
molecule. (Figure 4). The resultant adsorption energy values (−1.33 and −1.58 eV with
VdW), as shown in Table 1, indicate stronger adsorption. Such observation is promising to
conclude that doubling the Se vacancy population is beneficial for better NH3 detection.
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3.3. Total Density of States (TDOS) Plots

In order to get insights regarding charge transfer and the interaction mechanism of
NH3 with pristine and defected VSe2, we have presented total and partial density of states
analyses. The TDOS plot of a pure VSe2 monolayer is specified in Figure 3a. To determine
the magnetic behavior, spin-up and spin-down states are plotted. It is observed from
the figure that the pure material is magnetic due to the asymmetry in spin states. The
existence of the density of states at the fermi level implies the metallic behavior of the
materials, consistent with earlier findings [64,65]. The total density of states enhanced
by the adsorption of the NH3 molecule on VSe2 is shown in Figure 5a. In the case of the
VSe2(Sev) system, an enhancement in TDOS is observed below the Fermi level, as depicted
in Figure 5b. The enhancement in the density of states occurs due to the unbound V-atom
bonds after the removal of the Se atom from the monolayer. The change in the density of
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states with the adsorption of NH3 supports the orbital interactions. The density of states is
also enhanced at the fermi level with the adsorption of NH3 on the VSe2(Sev) system.
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Figure 5. Comparison of TDOS plots between (a) Pristine VSe2 and VSe2 with Se Vacancy, and
(b) NH3 adsorbed on pristine VSe2 on V atom, and NH3 adsorbed on VSe2 with Se vacancy on
V atom.

3.4. Partial Density of States (PDOS) Plots

To investigate the orbital interactions, the spin-polarized partial density of states
(PDOS) is analyzed. The spin-polarized partial density of states (PDOS) for N-2p and H-1s
orbitals in NH3 and VSe2(Sev) + NH3 were computed and are shown in Figure 6a. In the
case of the NH3 molecule, the partial density of states for N-2p and H-1s orbitals is spotted
in the valence band. These partial densities of states disappeared (or were reduced) with the
adsorption of NH3 on the VSe2(Sev) monolayer. Further, the spin-polarized partial density
of states (PDOS) of V-3d orbitals for VSe2 + Sev and VSe2(Sev) + NH3 were computed
and are shown in Figure 6b. On comparing the PDOS of V-3d orbitals of VSe2(Sev) and
VSe2(Sev) + NH3 systems, it can be observed that the densities of states are enhanced in the
latter with the adsorption of the NH3 molecule. This suggests that the monolayer is acting
as an electron acceptor, whereas NH3 is acting as an electron donor. So, we can say that
there is a charge transfer from NH3 to VSe2(Sev) due to the adsorption of NH3.

The total density of states and partial density of states plots have shown that the
electronic properties of the VSe2 monolayer can be tuned with the defect induction, which
impacts the adsorption properties.
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Figure 6. PDOS plots for (a) N 2p and H 1s orbital in NH3 and NH3+ VSe2 with Se vacancy and (b) V
3d and Se 4p orbital in VSe2 with Se vacancy and NH3+ VSe2 with Se vacancy.

3.5. Charge Transfer Analysis

The interactions between the analyte and host were determined in terms of Bader
charge analysis [82]. The VSe2(Sev) monolayer shows a net gain of 0.009e of charge due
to adsorption of the NH3 molecule whereas, the NH3 molecule shows a net loss of 0.009e
of charge, suggesting that the monolayer acts as an electron acceptor. The Bader charge
analysis is in accordance with the partial density of states (PDOS) plots (Figure 6). The
above observation is consistent with the opinion of earlier researchers regarding ammonia
sensing in terms of charge transfer course. (Table 2) [37,83–86]. Additionally, a charge
density difference plot has been shown in Figure 7. It is performed with the relation:

ρDi f f erence = ρVSe2(SeV)+NH3
− ρVSe2(SeV)

− ρNH3

Table 2. Comparison with earlier reported charge transfer data for NH3 sensing.

2D Material Charge Lost by NH3 Reference

MoS2/ WS2 0.09e/0.03e [37]
Ag3-WSe2 monolayer 0.202e [83]

MoS2 Pictorial illustration [84]
Ti3C2Tx MXene @ TiO2/MoS2 heterostructure ~0.03e [85]

WOS nanosheet Pictorial illustration [86]
VSe2(Sev) 0.009e This work

For all three systems, the ISO values are around 0.04e, wherein red regions denote
regions of charge loss and green or blue regions denote charge gain. In all three systems, a
charge loss region is noted around the N atom of the NH3 molecule, while a charge gain
region is noted over the VSe2 surface with a Se vacancy.
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3.6. Thermal Stability from Molecular Dynamics Simulations

A nanosensor should be stable at higher temperatures for its efficient performance.
Moreover, the gas molecules adsorbed on it should remain intact in the system until the
sensing procedure is completed. As pristine VSe2 is a synthesized material, it is thermally
stable at room temperature. So, we have investigated the thermal stability of VSe2 + NH3
and VSe2(Sev) + NH3 systems. The ab initio molecular dynamics simulations were carried
out to investigate the thermal stability of the considered material at higher temperatures.
The snapshots of equilibrated VSe2 + NH3 and VSe2(Sev) + NH3 systems after 5 ps at 400 K
are shown in Figure 8.
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Figure 8. MD snapshots (a) VSe2 + NH3 (b) VSe2(Sev) + NH3 at 400 K after 5 ps; for the pristine VSe2:
as adsorption energy is less, NH3 is desorbed while for VSe2 (Sev) it remains intact.

The bond length fluctuations (between N of NH3 and V of VSe2) with the temperature
are plotted in Figure 9. We can notice that for pristine VSe2, the NH3 molecule goes away
from the system starting with a temperature of 108 K. It seems that the NH3 molecule
desorbs from the system once the temperature is increased, with desorption starting
around 108 K. This is because NH3 is bonded very weakly on pristine VSe2 and goes
out of the system at higher temperatures. So NH3 desorbs from the system below room
temperature for pristine VSe2. So, pristine VSe2 is not suitable for NH3 sensing due to
weaker interactions and low adsorption energy. But for VSe2(Sev) + NH3 system, the bond
length fluctuations are not much. It is around 10% of the mean value, suggesting that
adsorbed NH3 remains intact at 300 K and even up to 400 K on the sensing material. This
is due to the fact that the adsorption energy of NH3 on defected VSe2 has increased from
−0.12 eV for the pristine system to −0.97 eV for the VSe2(Sev) system. Strong adsorption
energy is due to charge transfer from NH3 to defected VSe2. So, the defected VSe2 is
promising for NH3 sensing.
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Figure 9. Variation of bond length N-V with the temperature during AIMD simulations for
(a) VSe2 + NH3 (b) VSe2(Sev) + NH3; for pristine VSe2, NH3 is desorbed while for VSe2(Sev) it
remains intact.

3.7. Recovery time (τ)

The reversible sensors could be used repeatedly and hence, are economically conve-
nient for utilization in industrial sectors [65]. The recovery time analysis helps to determine
the extent to which a sensor can be used reversibly. The recovery time determines the
time required for an analyte to desorb from the host surface. It can be computed using the
following equation [65]:

τ = ν−1exp(−Eads/kT) (2)

In the equation, the ν denotes the frequency factor or the reciprocal of the pre-
exponential factor of the Arrhenius equation [87]. The terms Eads, k, and T denote the
adsorption energy, Boltzmann constant, and temperature, respectively.

Using this equation, the recovery time for VSe2 + NH3 and VSe2(Sev) + NH3 systems
were computed at 300 K and 500 K for visible yellow light and UV light. The τ values
are shown in Table 3. The tabulated values show that at 300 K under UV radiation,
VSe2(Sev) + NH3 system promises a convenient recovery time (~2 s). This suggests that
VSe2(Sev) + NH3 system can act as a reusable sensor.

Table 3. Recovery time for VSe2 + NH3 and VSe2(Sev) + NH3 systems at 300 K and 500 K for yellow
light and UV light.

System

Recovery Time (s)

Yellow Light (ν = ~5.2 × 1014 Hz) UV Radiation (ν = 1 × 1014 Hz)

300 K 500 K 300 K 500 K

VSe2 + NH3 (with VdW) 1.97 × 10−13 3.09 × 10−14 1.02 × 10−14 1.61 × 10−15

VSe2(Sev) + NH3 (with VdW) 1.92 × 10−15 1.16 × 10−05 1.99 6.01 × 10−07

Apart from the above, response time is also considered a very important parameter
for determining the sensitivity of any gas detector. When the gas is initially applied, it
takes a few seconds for the sensor output current to attain steady-state conditions [88]. The
response time of the sensor is commonly specified by the T90 or T50 time. T90 is the time
for the sensor’s response current to reach 90% of its steady-state value. Similarly, the T50
metric is the time required for the sensor to reach 50% of its steady-state value [88]. Future
progress in this work can consist of determining the response time for VSe2 to detect NH3.

In spite of promising results, improvements in 2D VSe2 are needed to attain better
sensitivity, selectivity, and stability. Specifically, there is scope for improvement in re-
covery time owing to the slow gas desorption process to enable it suitable for usage at
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room temperature. Currently, this kind of resource seems to be substandard in terms of
sensing presentations when contrasted with metal oxide nanostructures; however, their
performance is on par with that of pristine graphene. The technology available as of now
to physically fabricate planer structures is still not industrially budget-friendly, so more
technological advancement is necessary.

4. Conclusions

The structural, electronic, and sensing properties of pure and defected VSe2 mono-
layers have been investigated with density functional theory calculations. The energetic
stability of VSe2(Sev) + NH3 and VSe2(Vv) + NH3 monolayers is studied as adsorption
energy values. The VSe2(Sev) binds strongly with the adsorbed NH3 molecule compared to
the pure nanomaterial. With the introduction of Se vacancy, the adsorption energy increases
from −0.12 eV in the pristine case to −0.97 eV for VSe2(Sev). Charge transfer from NH3
to defected VSe2 is responsible for stronger adsorption. It has been observed that NH3
acts as a charge donor and the host, i.e., VSe2, as a charge acceptor to cause the adsorption
to be effective. The thermal stability of the VSe2(Sev) + NH3 system was investigated by
performing ab initio molecular dynamics simulations at 300 K and 400 K and the system
was found to be structurally stable even at higher temperatures. The recovery time analysis
suggests that the VSe2(Sev) monolayer can act as a reusable nanosensor. The present studies
show that the sensing properties of the VSe2 monolayer can be significantly improved with
the introduction of Se-defects in the lattice structure. Or, in other words, tuning structural
and electronic properties through the introduction of Se vacancy aids in enhancing the
sensing properties of the VSe2 monolayer for NH3 adsorption. The obtained results will
be potentially helpful for experimentalists to design defect-engineered TMD-based novel
gas sensors.
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