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Abstract: This study reports the synthesis of a nanocomposite consisting of spongin and its applicabil-
ity in the development of an aptasensing platform with high performance. The spongin was carefully
extracted from a marine sponge and decorated with copper tungsten oxide hydroxide. The resulting
spongin-copper tungsten oxide hydroxide was functionalized by silver nanoparticles and utilized
in electrochemical aptasensor fabrication. The nanocomposite covered on a glassy carbon electrode
surface amplified the electron transfer and increased active electrochemical sites. The aptasensor
was fabricated by loading of thiolated aptamer on the embedded surface via thiol-AgNPs linkage.
The applicability of the aptasensor was tested in detecting the Staphylococcus aureus bacterium as
one of the five most common causes of nosocomial infectious diseases. The aptasensor measured
S. aureus under a linear concentration range of 10–108 colony-forming units per milliliter and a limit
of quantification and detection of 12 and 1 colony-forming unit per milliliter, respectively. The highly
selective diagnosis of S. aureus in the presence of some common bacterial strains was satisfactorily
evaluated. The acceptable results of the human serum analysis as the real sample may be promising
in the bacteria tracking in clinical samples underlying the green chemistry principle.

Keywords: spongin; cupric tungstate; silver nanoparticles; Staphylococcus aureus; renewable
bioresource; electrochemical aptasensor

1. Introduction

Sponges are the oldest multicellular organisms in marine and freshwater habitats.
Marine spongin is held in a dense network of collagen-like microfibers [1–4]. This proteina-
ceous biomaterial has offered many outstanding physicochemical properties in various
eco-friend and cost-effective applications [5–8]. Soft spongins have been initially considered
for helmet padding, portable drinking utensils, and municipal water filters [9,10]. With
the advancement of technology, their application has been extended. Their combination
with carbon-based nanostructures has been drawing focused attention to various fields of
applications, such as supercapacitors [11], tissue engineering [12], microbial fuel cells [13],
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and sensors [14–16]. This lightweight, flexible, conductive, and renewable source presents
excellent porosity with high internal surface area [16,17], such that its metallization pro-
vides rich electrochemical active sites with catalytic properties [18]. Despite the beneficial
advantages of spongin, its application in the aptasensor design has rarely been reported.
Liu’s group has only reported a nanocomposite based on AuNPs/graphene sponge in the
electrochemical aptasensor fabrication to measure homocysteine [19].

Different metal forms, e.g., copper (Cu) and tungsten (W), have been used as a modi-
fier in the sensor generation and boosted various electrochemical properties [20]. It seems
that utilizing copper tungsten oxide hydroxide (Cu2WO4(OH)2) and spongin as the bene-
ficial low-cost modifier reduces the costs of the aptasensor fabrication process. Since the
attachment of the Apt (aptamer) sequence on the surface needs a linker, the green silver
nanoparticles (AgNPs) was candidate [21]. So, a novel and green nanocomposite consisting
of spongin, Cu2WO4(OH)2, and AgNPs, denoted as spongin-Cu2WO4(OH)2@AgNPs, was
synthesized. Utilizing this biocompatible biomaterial in the aptasensor design may be
promised some unparalleled electrochemical properties, namely (1) ensuring the fast elec-
tron transfer arising from the conductive network structure of spongin, (2) facilitating the
mass transfer among the formed channels with the inherent porous structures, (3) creating
rich building blocks because of the embedded available surface areas for more loading Apt
sequences, and (4) guaranteed attachment of Apt sequence on the nanocomposite surface
by a chemisorption linkage between the thiol group of Apt and AgNPs. In this study,
the applicability of the synthesized nanocomposite has been evaluated in the aptasensor
fabrication for measuring Staphylococcus aureus (S. aureus) as a target model.

Due to bacterial pathogenicity in humans, bacteria tracking is highly crucial for com-
munity health protection. S. aureus, an opportunistic pathogenic bacterium, irreparably
threatens human health by causing endocarditis, toxemias of the gastrointestinal and
reproductive tracts, pneumonia, and causing some invasive infections [21,22]. Since
bacterial infections pose a severe threat to health systems and challenge global sustain-
ability, developing an efficient method for pathogen footprint diagnosis in the body is
constantly demanded in medical studies. Up to now, several traditional protocols have
been introduced for S. aureus tracking based on bacterial culture and plate counting of
the colony [23], polymerase chain reaction (PCR) [24,25], enzyme-linked immunosensor
assay (ELISA) [26,27] and biochemical and metabolic tests [28]. Despite their accuracy,
most of them make implementation challenging in clinical monitoring due to low sensi-
tivity, interference with other similar bacterium, labor requirements, and time-consuming
(3–5 days). So, the development of aptasensing methodology can be promising for the
effective diagnosis of S. aureus because of the excellent affinity and selectivity of the Apt
toward the target in less time. Although several S. aureus aptasensors have been reported
based on various expensive nanostructures [29–31], utilizing the conductive and robust
spongin-Cu2WO4(OH)2@AgNPs nanocomposite in the aptasensor design is a novel and
low-cost sensing interface based on green chemistry principles. To the best of the authors’
knowledge, the nanocomposite synthesis based on green chemistry and its application in
aptasensor construction has not been reported up to now.

Herein, the successful formation of the developed nanocomposite has been fully con-
firmed by various characterization techniques, including field emission scanning electron
microscopy (FESEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), UV-vis, and
Fourier-transform infrared (FTIR) spectroscopies. The aptasensor for the electrochemical
trapping of S. aureus has been fabricated by the nanocomposite covering on a glassy carbon
electrode (GCE) surface and providing a large surface area with rich AgNPs groups to load
profitably Apt bioreceptors via self-assembled monolayer (SAM) linking. The S. aureus has
been selectively measured by its incubating on the aptasensor surface and further inhibiting
the electrochemical signal of the ferro/ferricyanide [Fe(CN)6]3−/4− as the redox probe.
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2. Experimental
2.1. Chemical and Reagents

S. aureus, Salmonella (Salmon), Escherichia coli (E. coli), and Shigella flexneri (S. flexneri)
bacteria were obtained from Pasteur Institute (Tehran, Iran, https://www.pasteur.ac.ir
(accessed on 8 February 2023)). A thiolated-Apt specific to S. aureus with a sequence
of 5′-SH-TCG GCA CGT CAG TAG CGC TCG CTG GTC ATC CCA CAG CTA CGT C-
3′ [32] was synthesized by Bioneer Company (Daejeon, South Korea, https://www.bioneer.
com (accessed on 8 February 2023)). Ammonia (NH3), copper (II) sulfate (CuSO4), silver
nitrate (AgNO3), ethanol, sodium hydroxide (NaOH), hydrochloride acid (HCl), potassium
chloride (KCl), and sodium tungstate (Na2WO4) were ordered from Emertat Chemistry
Company (Tehran, Iran, http://www.ameretatco.com (accessed on 8 February 2023)). A
total of 0.1 M sterile phosphate buffer solution (PBS) with a pH of 7.4 was used for washing
the enriched bacteria. For evaluating and confirming the attachment of each layer utilizing
a probe sensitive to the surface state is necessary. The ferro/ferricyanide [Fe(CN)6]3−/4−,
as an available and low-cost redox marker that probes the electrode surface in each step,
was selected. A total of 0.1 M PBS containing 0.1 M KCl and 1 Mm [Fe(CN)6]3−/4− as
the redox marker was utilized for all the electrochemical studies. A fresh and healthy
serum sample from a 31-year-old man was randomly obtained from a local clinical lab by
observing ethical principles.

2.2. Instrumentation

Morphology characterization of nanostructures was studied by the FESEM images
and EDX spectrum obtained from TESCAN (Kohoutovice, Czech Republic, https://www.
tescan.com (accessed on 8 February 2023)). XRD with a Cu Kα radiation source was used
to investigate the crystal structure of the component of the nanocomposite. An incubator
was used for bacteria cultivation. A UV-vis spectrophotometer (Lambda 25, PerkinElmer,
MA, USA, https://www.perkinelmer.com (accessed on 8 February 2023)) was applied for
the investigation of optical density (OD) using a glass cell (1 cm) through the estimation of
the cultured bacteria. FTIR spectrum was recorded by the Bruker, VERTEX 70 (Heidelberg,
Germany, https://www.bruker.com (accessed on 8 February 2023)). A pH adjustment of
solutions was carried out with a digital pH/mV/ion meter (Metrohm, 780 model, Herisau,
Switzerland, https://www.metrohm.com/en (accessed on 8 February 2023)).

All the electrochemical experiments were performed by the potentiostat/galvanostat
analyzer, including µ-Autolab III (with nova software 2.2) and FRA. A conventional three-
electrode system containing a GCE with a diameter of 2 mm (Azar electrode, Urmia,
Iran), Pt wire counter electrode, and Ag/AgCl (saturated KCl) reference electrode was
used. The differential pulse voltammetry (DPV) technique was carried out at a pulse
amplitude of 50 mV, a modulation time of 70 ms, with a scan rate of 50 mV s−1. The
electrochemical impedance spectroscopy (EIS) study was performed under a frequency
range of 5 Hz–100 kHz at 0.25 V (vs. Ag/AgCl reference electrode) as a formal potential
of the redox marker. Based on the result of the EIS investigation, a Randles circuit was
modeled by some main components containing a constant phase element (CPE), solution
ohmic resistance (Rs), Warburg impedance (W), and charge transfer resistance (Rct).

2.3. Preparation of the Spongin

The 3D scaffold of the spongin was separated from the marine spongin and carefully
washed with deionized (DI) water to remove some stone and shell parts. Next, this was
immersed in 3 M HCl (two days) for pollution, eliminated and washed with DI water, and
finally dried [7].

https://www.pasteur.ac.ir
https://www.bioneer.com
https://www.bioneer.com
http://www.ameretatco.com
https://www.tescan.com
https://www.tescan.com
https://www.perkinelmer.com
https://www.bruker.com
https://www.metrohm.com/en
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2.4. Spongin-Cu2WO4(OH)2@AgNPs Nanocomposite Synthesize

A total of 100 mg of the obtained spongin scaffold was stirred in 0.22 M Cu(NO3)2 for
24 h. Then, an aqueous solution of 15 mL Na2WO4 (0.22 M) was slightly added to it under
sonication for 15 min. Next, the solution was heated at 120 ◦C in a stainless-steel autoclave
(48 h). After washing and drying the heated mixture, 500 mg of the resulting brown powder
containing the spongin-Cu2WO4(OH)2 was dispersed in 20 mL DI water, and 32 mg AgNO3
was added to them under stirring for 30 min. Then, 20 mL NaBH4 (13.2 mM) was droply
added to them for 30 min. The resulting spongin-Cu2WO4(OH)2@AgNPs nanocomposite
was sonicated and used for further experiments.

2.5. Cultivation of Bacterial Strains

S. aureus, Salmon, E. coli, and S. flexneri were separately cultivated in a Luria Bertani
(LB) broth culture media under shaking (170 rpm, 37 ◦C) in an incubator (12 h). OD values
of the cultured bacteria were measured by a UV-vis spectrophotometer at 600 nm. All
the enriched bacteria were separately centrifuged at 6000 rpm for 20 min (25 ◦C), and the
resulting precipitates were washed with sterile PBS (0.1 M, pH = 7.4) three times. The
concentration of the bacteria was evaluated by the McFarland Turbidity Standard protocol
based on a colony-forming unit per milliliter (CFU) [33]. The cultured bacteria solution
was diluted by PBS under sterile conditions for further experiments.

2.6. Preparation of Real Samples

The human serum sample was mixed with 2% (v/v) ethanol and centrifuged at
5000 rpm (10 min). Then, a clear supernatant layer of the sample was diluted (10%)
with 0.1 M PBS (pH = 7.4). A series of different S. aureus concentrations (from 1.5 × 103 to
1.5× 107 CFU mL−1) were spiked to the pretreated sample to test the developed aptasensor.

2.7. Aptasensor Construction and Sensing Principle

A GCE surface was polished on an emery paper impregnated with alumina powder
(0.05 µm) to create a mirror-like surface. Then, the GCE was briefly sonicated in a DI
water/ethanol mixture to eliminate some possible absorbed particles. A total of 5 µL of
the synthesized nanocomposite was drop-casted on the clean GCE surface and dried at
room temperature to provide the spongin-Cu2WO4(OH)2@AgNPs/GCE. Next, 10 µL Apt
was incubated on the spongin-Cu2WO4(OH)2@AgNPs/GCE surface overnight (4 ◦C) to
attach to the nanocomposite’s AgNPs through SAM linkage. The resulting Apt/spongin-
Cu2WO4(OH)2@AgNPs/GCE as the aptasensor was washed by PBS to remove some
unbound particles. The signals of the aptasensor incubated by different concentrations
of S. aureus were recorded underlying [Fe(CN)6]3−/4− as the redox marker by the DPV
technique (Scheme 1).
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3. Results and Discussions
3.1. Characterization of the Spongin-Cu2WO4(OH)2@AgNPs Nanocomposite

The different synthesis stages of the nanocomposite were investigated by the XRD tech-
nique. While the XRD pattern of the spongin in Figure 1a indicates a single broad peak at 2θ
of 22◦ corroborating the carbon-based structure of the spongin, some sharp peaks marked
by the blue circle confirm the presence of Cu2WO4(OH)2 in Figure 1b. The Ag pattern with
the pink circle in Figure 1c proves a successful synthesis of the nanocomposite functional-
ized by AgNPs. Moreover, the absence of some common additional peaks in XRD patterns
confirms the high purity of the synthesized crystalline nanocomposite. According to the
Scherrer equation (Equation (1)), an average dimension (τ) of the spongin-Cu2WO4(OH)2
and spongin-Cu2WO4(OH)2@AgNPs in the nanocomposite were calculated to be 42 nm
and 50 nm, respectively, where dimensionless shape factor (K), X-ray wavelength (λ), β as
corrected full width at half-maximum after eliminating instrumental line broadening, and
Bragg angle were identified.

τ =
kλ

βcosθ
(1)

FESEM images of the nanocomposite with two different magnifications were further
recorded to identify the nanostructure (Figure 1d,f). Figure 1d exhibits a fiber network
corresponding to the 3D scaffold of the spongin [34]. The morphology changes of the fiber
network and the presence of some particles with different shapes and sizes in Figure 1e,f are
attributed to covering Cu2WO4(OH)2 and Cu2WO4(OH)2@AgNPs on the scaffold surface,
respectively. These images reveal that Cu2WO4(OH)2 and AgNPs are firmly attached to
the spongin fibers, so they have not peeled off from the surface even during the ultrasonic
washing process. FTIR spectrum of Cu2WO4(OH)2@AgNPs is shown in Figure 2a. The
bands near 419 cm−1 and 619 cm−1 may be related to the Cu-O stretching vibration, and
the peak located at 1116 cm−1 can be assigned to the presence of W-OH bonds [35]. The
absorbance bands at 1384 cm−1 and 1635 cm−1 can be assigned to the C=O and C-O
vibration modes in the carbon-based structure of the spongin, respectively. The broad
band at 3420 cm−1 may correspond to the OH-stretching vibration modes of free and
hydrogen-bonded hydroxyl groups [36]. The EDX spectrum in Figure 2b confirms the
presence of all the elements of the synthesized spongin-Cu2WO4(OH)2@AgNPs.
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3.2. Electrochemical Characterization of Aptasensor

The GCE modification process was investigated step by step with the recording of
the corresponding cyclic voltammograms (CVs) of GCE in 0.1 M PBS containing 0.1 M
KCl and 1 mM [Fe(CN)6]3−/4− as the redox marker at a scan rate of 50 mV s−1 (Figure 3a).
As shown in Figure 3a, the CV of the spongin-Cu2WO4(OH)2/GCE exhibits a higher
current signal with a lower peak-to-peak potential separation (∆E = 145 mV) compared
to the bare GCE (∆E = 165 mV). This desired electrochemical behavior reveals the effi-
cient ability of the spongin-Cu2WO4(OH)2 in activating the GCE sites and amplifying
the electron transfer. The higher current signal and lower ∆E value (142 mV) of spongin-
Cu2WO4(OH)2@AgNPs/GCE than the spongin-Cu2WO4(OH)2/GCE is attributed to the
AgNPs presence in the nanocomposite. The AgNPs not only increase the surface con-
ductivity and enhance the current signal than spongin-Cu2WO4(OH)2/GCE and bare
GCE but also act as a linker for the thiolated-Apt attachment on the nanocomposite via
chemisorption linkage. The current signal decrease and ∆E value increase (388 mV) in
the Apt/spongin-Cu2WO4(OH)2@AgNPs/GCE layer is assigned to the repelling of the
negatively charged Apt attached to the AgNPs and the anion [Fe(CN)6]3−/4− probe. This
behavior confirms the attachment of thiolated-Apt to the AgNPs on the nanocomposite
surface. The S. aureus/Apt complex formation on the surface is confirmed by further
electron transfer decrease and the ∆E value increase (416 mV) stemming from the S. aureus
attachment on the Apt’s arm and more space barrier created on the surface.
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Figure 3. The recorded CVs (at a scan rate of 50 mV s−1) and Nyquist curves of
the GCE, spongin-Cu2WO4(OH)2/GCE, spongin-Cu2WO4(OH)2@AgNPs/GCE, Apt/spongin-
Cu2WO4(OH)2@AgNPs/GCE, and 108 CFU mL−1 S. aureus incubated on the Apt/spongin-
Cu2WO4(OH)2@AgNPs/GCE in 0.1 M PBS containing 0.1 M KCl and 1 mM [Fe(CN)6]3−/4− as
the redox marker.
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The electron transfers kinetic study of the aptasensor’s different layers by the EIS
technique and corresponding Nyquist plots in Figure 3b exhibits a large semicircle with
a charge transfer resistance (Rct) value of 1.089 kΩ and 0.289 kΩ for the bare GCE and
spongin-Cu2WO4(OH)2/GCE, respectively. This behavior can be attributed to the high
surface area and porosity of the spongin-Cu2WO4(OH)2 than the GCE to improve electron
transfer and mass transfer on the surface. A low Rct value (0.03 kΩ) with a straight line
for the spongin-Cu2WO4(OH)2@AgNPs/GCE layer proves the AgNPs presence in the
nanocomposite. A remarkable increase in the Rct value (1.692 kΩ) for the Apt/spongin-
Cu2WO4(OH)2@AgNPs/GCE is attributed to the immobilization of the negatively charged
Apt on the GCE surface via AgNPs linker. More increase in Rct value to 2.018 kΩ is assigned
to S. aureus capturing by the Apt and suitable performance of the aptasensor in the target
tracking. The CV and EIS results certify the successful immobilization of all layers in the
aptasensor fabrication process.

To evaluate the performance of the embedded nanocomposite in the surface area
increasing, the electroactive surface area (A) values of GCE, spongin-Cu2WO4(OH)2/GCE,
and spongin-Cu2WO4(OH)2@AgNPs/GCE surfaces were investigated by using the famous
Randles–Sevcik Equation (2) [37]:

Ip = (2.69 × 105) n3/2 A D1/2 C ν1/2 (2)

where D is the diffusion coefficient of K3[Fe(CN)6] (7.6 × 10−6 cm2 s−1) and all symbols
have a normal meaning. Accordingly, the A values of the GCE, spongin-Cu2WO4(OH)2/
GCE, and spongin-Cu2WO4(OH)2@AgNPs/GCE surfaces were calculated to be 0.03, 0.06,
and 0.08 cm2, respectively. The estimated A value of 2.67-fold for the
spongin-Cu2WO4(OH)2@AgNPs/GCE surface confirms the unique properties of the pro-
posed nanocomposite in supplying higher surface area and amplifying the current signal.

3.3. Optimization of Incubation Time

The incubation time strongly influences the response stability of the aptasensor. To
appraise the incubation time of S. aureus on the aptasensor surface, different times from
10 min to 50 min were investigated by monitoring the recorded DPVs in 0.1 M PBS contain-
ing 0.1 M KCl and 1 mM [Fe(CN)6]3−/4− (Figure 4). The current difference (∆I) value in the
absence and presence of 1.5 × 106 CFU mL−1 of S. aureus was significantly decreased by
the time increasing from 10 min to 30 min, attributing to occupying the surface’s active sites
via the target and the target-Apt complex forming on the surface. Since the ∆I value was
not approximately changed by more times from 30 min to 50 min and finally tended to a
steady state, 30 min was considered the optimum incubation time for further experiments.
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3.4. Analytical Performance of the Aptasensor

To appraise the analytical performance of the aptasensor, a series of different con-
centrations of S. aureus was injected into the aptasensor for 30 min. As indicated in
Figure 5, the recorded DPVs of the aptasensor in the redox probe solution displays a
current decrease by the increasing of the S. aureus concentration from 10 CFU mL−1 to
108 CFU mL−1. This behavior may be stemmed from the fact that more concentrations
of S. aureus on the aptasensor surface form more of the S. aureus/Apt complexes and
enhance the electron transfer hindrance of redox marker on the sensing interface. Inset
of Figure 5 presents a regression dependence of the current response to the logarithm of
different S. aureus concentrations, as the analytical calibration depicted under an equation
of ∆I (µA) = 3.8059 log CS. aureus − 1.38 (R2 = 0.9876). Accordingly, a limit of quantification
(LOQ) of 12 CFU mL−1 and detection (LOD) of 1 CFU mL−1 were calculated based on
the S/N of 3. The examination of the S. aureus assay (1.5 × 103 CFU mL−1) by the ap-
tasensor through five times repetitions demonstrated suitable repeatability of the method
with a relative standard deviation (RSD%) value of 3.52%. Furthermore, the detection
of 1.5 × 103 CFU mL−1 of S. aureus by the five fabricated aptasensors confirmed a repro-
ducible response of the aptasensor under the RSD% value of 2.59%.
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Figure 5. The DPVs of the aptasensor and inset a corresponding calibration curve after incubation
with a series of different concentrations of S. aureus from 10 CFU mL−1 to 108 CFU mL−1 during
an incubation time of 30 min in 0.1 M PBS containing 0.1 M KCl and 1 mM [Fe(CN)6]

3−/4− as the
redox marker.

Anti-interference ability of the aptasensor in the S. aureus monitoring in the presence
of other similar bacteria is crucial in avoiding false identification. To appraise the selectivity
of the aptasensor, three different strains of the cultured bacteria, including Salmon, E. coli,
S. flexneri, and S. aureus (1.5 × 107 CFU mL−1), were separately measured (Figure 6a–d).
S. aureus remarkably changed the signal, while other bacteria strains had no significant
interference in the aptasensor response in 0.1 M PBS containing 0.1 M KCl and 1 mM
[Fe(CN)6]3−/4−. So, the specific analysis of the aptasensor is confirmed. This satisfactory
performance of the developed aptasensor compared to some reported sensors and aptasen-
sors listed in Table 1 can be asserted due to using the efficient sensing interface because
of some reasons as follows: (1) facilitating the mass transfer among the formed channels
of the spongin with the porous network, (2) enhancing the electron transfer among the
spongin-Cu2WO4(OH)2 conductive structure, (3) embedding a high surface to volume ratio
in the presence of AgNPs, (4) providing more loading of Apt sequences on the surface
via a strong bonding through SAM linkage, and (5) amplifying the sensing selectivity by
utilizing Apt.
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(b) S. flexneri, (c) E. coli, and (d) Salmon for 30 min in 0.1 M PBS containing 0.1 M KCl and 1 mM
([Fe(CN)6]3−/4−) as the redox marker.

Table 1. A comparison of the analytical performance of the aptasensor with some reported sensors
and aptasensors in S. aureus detection.

Strategy Technique LOD
CFU mL−1

LDR
CFU mL−1 Ref.

Apt/S. aureus/Apt-AgNP DPV 1 10–106 [38]
Apt/rGO/AuNPs Impedimetric 10 10–106 [39]
Apt/gold electrode Impedimetric 10 10–104 [40]

Apt/AuNPs/CNPs/CNFs Impedimetric 1.2 × 101–1.2 × 108 [29]
Apt/SWCNT Potentiometric 103–108 [41]
Apt/AuNPs Colorimetric 9 10–106 [42]

CNT/Apt Potentiometric 8 × 102 8 × 102–108 [41]
Gold-based immunosensors PM-RAIRS 105 – [43]

CdSe QD Fluorometric 102 102–107 [44]
Apt/spongin-

Cu2WO4(OH)2@AgNPs/GCE DPV 1 10–108 This
study

rGO: reduced graphene oxide. SWCNT: single-walled carbon nanotube. CNP: carbon nanoparticles. CNF: cel-
lulose nanofibers. CNT: carbon nanotube. PM-RAIRS: polarization modulation reflection absorption infrared
spectroscopy. QDs: quantum dots.

3.5. Real Sample Analysis

The human serum as the real sample was tested to examine the feasibility of the
aptasensor for S. aureus tracking. The DPVs of the pretreated serum samples (described
in the experimental part) analyzed by the aptasensor were recorded, and the results were
evaluated. A series of calculated recovery values in the range of 94.2% to 103.4% with an
RSD% value less than 3.01% revealed acceptable screening of S. aureus in the serum sample
by the developed aptasensor.

4. Conclusions

To sum up, the highly porous spongin-Cu2WO4(OH)2@AgNPs nanocomposite was
greenly synthesized. This biocompatible nanocomposite was utilized as the GCE modifier
in the aptasensor fabrication due to its fast mass and electron transfer with a large surface
area. The highly sensitive sensing interface with many active sites was achieved by loading
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Apt captures on the nanocomposite via AgNPs linkage. By binding S. aureus on the
aptasensor surface and the corresponding increasing spatial barrier of the surface, the S.
aureus was sensitively measured under a wider LDR with lower LOD, and LOQ values
than many previously reported aptasensors. S. aureus was selectively distinguished in the
presence of some similar strains of the cultured bacteria and human serum. The proposed
methodology is promising for the nanocomposite immobilization on other carbon-based
platforms as the electrode, such as carbon cloth, felt graphite, or screen-printed carbon
electrode (SPCE), to attach further layers of AgNPs and Apt. Accordingly, a flexible and
miniaturized aptasensor based on flexible or flat surfaces can be generated for S. aureus
detection. Furthermore, various aptasensors can be designed for sensing other targets
by only changing the Apt sequence. Because the reticular structure of the spongin gives
adequate access to the catalysis process, this renewable bioresource can be used for more
electrochemical fields, such as supercapacitors, batteries, and fuel cells.
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5. Zdarta, J.; Norman, M.; Smułek, W.; Moszyński, E.; Kaczorek, D.; Stelling, A.L.; Ehrlich, H.; Jesionowski, T. Spongin-based

scaffolds from Hippospongia communis demosponge as an effective support for lipase immobilization. Catalysts 2017, 7, 147.
[CrossRef]

6. Petrenko, I.; Summers, A.P.; Simon, P.; Żółtowska-Aksamitowska, S.; Motylenko, M.; Schimpf, C.; Rafaja, D.; Roth, F.; Kummer, K.;
Brendler, E. Extreme biomimetics: Preservation of molecular detail in centimeter-scale samples of biological meshes laid down by
sponges. Sci. Adv. 2019, 5, eaax2805. [CrossRef] [PubMed]

7. Tsurkan, D.; Simon, P.; Schimpf, C.; Motylenko, M.; Rafaja, D.; Roth, F.; Inosov, D.S.; Makarova, A.A.; Stepniak, I.; Petrenko, I.
Extreme Biomimetics: Designing of the First Nanostructured 3D Spongin–Atacamite Composite and its Application. Adv. Mater.
2021, 33, 2101682. [CrossRef]
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