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Abstract: Nanozymes are nanomaterials with enzyme-like activity, possessing the unique properties
of nanomaterials and natural enzyme-like catalytic functions. Nanozymes are catalytically active,
stable, tunable, recyclable, and versatile. Therefore, increasing attention has been paid in the fields of
environmental science and life sciences. In this review, we focused on the most recent applications
of nanozymes for environmental monitoring, environmental management, and environmental pro-
tection. We firstly introduce the tuning catalytic activity of nanozymes according to some crucial
factors such as size and shape, composition and doping, and surface coating. Then, the application
of nanozymes in environmental fields are introduced in detail. Nanozymes can not only be used to
detect inorganic ions, molecules, organics, and foodborne pathogenic bacteria but are also involved
in the degradation of phenolic compounds, dyes, and antibiotics. The capability of nanozymes
was also reported for assisting air purification, constructing biofuel cells, and application in marine
antibacterial fouling removal. Finally, the current challenges and future trends of nanozymes toward
environmental fields are proposed and discussed.
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1. Introduction

Most life activities in nature involve enzymes. Natural enzymes are macromolecular
biocatalysts composed of most proteins and a few nucleic acids that run through the
metabolism of life [1]. They have high catalytic efficiency, good substrate specificity, and
biocompatibility [2]. Therefore, they are widely used in various fields, including disease
diagnosis, clinical treatment, agricultural engineering, paper and leather, textile industry,
and food processing. However, most natural enzymes are easy to inactivate or their
activities are inhibited under nonphysiological conditions, which severely limits the wide
application of enzymes. In addition, enzymes also have defects such as storage stability
and recovery difficulties, complex production as well as purification processes, and high
costs [3,4]. With the rapid development of nanoscience and life science, simulating the
structure and catalytic activity of natural enzymes to construct substitute products has
gradually become a new direction in which to expand the application of natural enzymes.

The term “artificial enzymes” was coined by Ronald Breslow for enzyme mimics. An
“artificial enzyme” combines a metal catalytic group and a hydrophobic binding cavity [5].
In 2004, Scrimin and his colleagues created the term “nanozyme” and used gold nanoparti-
cles functionalized by triazetidine as the catalyst for the transphosphorylation reaction [6].
In 2007, Yan’s team found that magnetic nanoparticles (Fe3O4 MNPs) have a catalytic
activity similar to horseradish peroxidase (HRP), indicating that some inorganic nanopar-
ticles can also have peroxidase-like properties [7]. In 2013, Wei and Wang used the term
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“nanozyme” to describe some nanoscale materials with enzyme-like characteristics, namely,
nanozyme is a kind of nanomaterial with similar natural enzyme catalytic activity and
enzymatic reaction kinetics [8]. In the ten years since then, nanozyme experienced a period
of rapid development and application in various fields. Based on advanced nanotechnology,
a variety of nanozymes with catalytic activity comparable to that of natural enzymes have
been explored. Compared with natural enzyme, nanozyme has the following obvious ad-
vantages: (I) High stability: inorganic nanomaterials are less fragile than natural enzymes,
which enables the use of nanozymes under a wide range of pH (3–12) and temperature
(4–90 ◦C) conditions. In contrast, natural enzymes are usually inactivated under extreme
pH and temperature conditions. (II) Low cost: the production process of enzymes is usually
complex and expensive, while inorganic nanomaterials are easy to produce, with high
efficiency and low cost. (III) Recycling: Nanozymes are recyclable, and there is no substan-
tial loss of catalytic activity in subsequent cycles. (IV) Easily multifunctional: Nanozymes
have sufficient surface area to allow them to be coupled with multiple ligands to achieve
multifunctionability [9]. (V) High catalytic activity: The level of activity is comparable to
that of biological enzymes with the help of advanced nanotechnology. At the same time,
a variety of factors influence the level of activity such as size, shape, composition, crystal
surface, charge, and hydrophilicity. Although nanozymes have the above advantages, some
nanozymes have the disadvantages of toxicity, low specificity, and poor dispersion. During
the degradation and protection of environmental pollutants by nanozymes, nanozymes
inevitably contact with water, animals and plants, soil, and air. Therefore, the safety of
nanozymes is crucial. For example, some heavy metal nanozymes (Au, Cu, Ce, Fe, etc.)
will be absorbed into soil and water, causing ecological pollution [10]. The continuous
enrichment of heavy metals will eventually endanger human health through the food chain.
In addition, graphene, quantum dots, copper–carbon dots and other nanomaterials have
their own toxicity, and their dispersion will be strengthened during trial, which will make
them more easily absorbed by aquatic plants and water bodies [11]. Toxicity can be reduced
by reducing the size of nanozyme [12]. In addition, we can control the surface charge of
nanozyme to regulate its permeability to cells in the human body [13]. The metal core is
the source of toxicity, so it can be prevented from leakage by mixing other metal ions and
chemical sealing [14,15].

The International Enzyme Commission (I.E.C.) specifies that natural enzymes can
be classified into six categories by the enzymatic reaction as oxidoreductases, hydrolases,
isomerases, lyases, ligases, transferases. Since nanozymes are a class of nanomaterials
that mimic the catalytic activity and enzyme kinetic characteristics of natural enzymes,
the categories also similar to that of natural enzymes could divide nanozymes into the
following six categories: redox nanozyme, hydrolyzing nanozyme, lytic nanozyme, transfer
nanozyme, isomeric nanozyme, and linked nanozyme. Currently, the reported nanozymes
are mainly in the redox nanozyme family, whose members are oxidase (OXD) [16], per-
oxidase (POD) [17], catalase (CAT) [18], and superoxide dismutase (SOD) [19] (Figure 1).
Oxidase catalyzes the oxidation of substrates using oxygen as the electron acceptor. Subse-
quently, O2 is reduced to water or hydrogen peroxide. Peroxidase nanozyme can catalyze
peroxides whose substrate is usually used as an electron donor. In biomedicine, it defends
against pathogens and removes the toxicity of reactive oxygen [20]. Catalase often catalyzes
H2O2 to produce oxygen and water. It is found that many metal materials and even metal
oxides have catalase-like activity. Superoxide dismutase disproportionates superoxide
radicals into oxygen and hydrogen peroxide and alleviates oxidative stress generated
from cell metabolism. There is also a family of hydrolyzing nanozymes including phos-
phatases [21], nucleases, and proteases. They catalyze the separation of phosphate groups
and the hydrolysis of phosphate diester bonds and peptide bonds. The family of lytic
nanozyme comprises the carbonic anhydrase [19]. Nanozymes mostly catalyze the optical
signal transmission of chromogenic substrates, so that other three types of nanozymes are
rarely reported. It is hoped that the design of nanozymes can break through more types
and functions limitations.
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The reported nanozymes can be classified into four categories according to the ma-
terials, such as metal-based, metal oxide-based, carbon-based, MOF-based, and other
material-based. Currently reported carbon-based nanozymes include fullerenes, carbon
nanotubes (CNTs), graphene, graphene oxide (GO), carbon dots (CDS), graphitic quantum
dots (GQDS), and carbon nitrides [22]. Because of their special electronic and geometric
properties, they can mimic the catalytic center of natural enzymes and possess catalytic
activities such as oxidase, peroxygenase, superoxide dismutase, and catalase. On account
of the intrinsic enzymatic activity of carbon nanomaterials, they can be combined with
other materials or modified and functionalized to enhance enzymatic activity. Ye et al. [23]
reported a highly specific N-doped nanozyme with HBF as a porous carbonaceous and
nitrogen-containing precursor to prepare N-doped carbon nanozymes named HBF-1-c800
by high temperature pyrolysis with N-doping efficiency up to 5.48%, which is higher than
the value of most reported N-doped carbon nanozymes. As a result, they found that the
apparent POD activity of HBF-1-c800 shows a three to seven-fold enhancement over tradi-
tional carbon nanozymes and a five-fold enhancement over the reported N-doped graphene.
Consequently, it has been widely used in environmental monitoring and environmental
remediation. Although slightly inferior to metal-based nanozymes in terms of catalytic
activity, its catalytic activity has been improved, and some excellent designed carbon-based
nanozymes show comparable or even better results than that of natural enzymes.

Metal-based nanozymes are one of the most widely used nanozymes. They have
unique optical and electrical properties at the nanoscale as well as excellent catalytic
properties [24] and exhibit good activity tunability and high stability. They have been found
to exhibit a variety of enzyme-like properties, including oxidase-, peroxidase-, catalase-,
and/or superoxide dismutase-like activities [25]. Metallic nanomaterials commonly include
Au, Ag, Pt, PD, Rh, Ru, and Ir. For metal-based nanozymes, the catalytic mechanism arises
from the adsorption, activation, and electron transfer of the substrate onto the metal
surface, in contrast to the mechanisms occurring by changes in the metal valence of the
nanomaterial, as in the case of other metal compound-based nanozymes [22]. Studies have
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found that the surface state of metal-based nanomaterials is one of the important factors
affecting their catalytic activity. Therefore, much attention has been focused on how to
optimally control the surface of metal-based nanozymes for high electrical conductivity. It
can be classified into monometallic nanozymes, bimetallic nanozymes, and multimetallic
nanozymes, which are distinguished, as the name implies, by having several metal cores.
Bimetallic nanomaterials (BNMS) usually exhibit stronger catalytic performance than
monometallic nanomaterials due to the synergistic effect [26], among which platinum-based
BNMS have been extensively studied in the field of catalysis for many years. Multimetallic
NPs composed of at least three different metals have more possibilities in modulating the
activity, selectivity, and stability of surface catalyzed reactions. Hence, the rational design
and controllable synthesis of multimetal nanozymes are of great significance.

Transition metals other than noble metals (Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Al, Mo, and
W) usually exist stably in the form of their complex ions, among them the oxide form, thus
constituting metal oxide-based nanozymes. Metal oxide-based nanozymes including CeO2,
Fe2O3, Fe3O4, Co3O4, Mn2O3, and Mn3O4 all exhibit multienzyme activities, such as perox-
idases, oxidases, hydrolases, and catalases. In addition, they show other physicochemical
properties such as fluorescence quenching, dielectric properties, and magnetism [27]. It
is worth noting that most metal oxide nanomaterials exhibit lower Km than HRP, which
provides the possibility for a wide range of applications. Metal-organic frameworks (MOFs)
are porous coordination crystalline materials formed by the self-assembly of metal ions (or
metal clusters) and organic ligands through the principles of coordination chemistry [28].
In recent years, some MOFs exhibit their own good enzyme mimicking properties, mim-
icking the functions of a variety of enzymes, including oxidases, peroxidases, catalases,
superoxide dismutases, and hydrolases. The high specific surface area, homogeneously
dispersed active sites, structural diversity, and pore size tunability of MOFs can facilitate
the efficient contact of reaction substrates to the catalytic sites and, in turn, enhance the
catalytic efficiency of subsequent processes. Therefore, its pore size, size, modification, and
composition are important factors for regulating enzyme activity. In addition, it can also
participate in regulation by external conditions pH, temperature, H2O2, and so on [29].
The development of other nanomaterials with different structures and properties has pro-
vided new sources for artificial enzyme research, such as perovskites, metal sulfides, metal,
dichalcogenides, methyl hydroxides, metal phosphates, and polymeric nanostructures [22].
The development of other types of nanomaterials has provided new sources for artificial
enzyme research, such as perovskites, metal sulfides, metal, dichalcogenides, methyl hy-
droxides, metal phosphates, polymeric nanostructures, and others. They can also mimic the
enzymatic activity properties of the oxidoreductase family and have received much atten-
tion for their unique structures or properties that are different from those of carbon-based
nanomaterials, metal-based nanomaterials, and metal oxide nanomaterials and applica-
tions in environmental monitoring and remediation. As a carbon nitride, MXENEs have
large surface areas, metallic conductivity, antimicrobial activity, and biocompatibility [30]
and have been found to possess intrinsic peroxidase-like and oxidase-like activities and
can be enhanced by single stranded DNA (ssDNA) adsorbed onto nanosheets. Li et al.
constructed a simple label-free colorimetric sensing platform for TB-selective detection
based on Ti3C2@ssDNA. The sensor exhibited good selectivity and sensitivity with a wide
linear range of 1.0 × 10 −11 to 1.0 × 10−8 m and a low detection limit of 1.0 × 10−11 M [31].

In this review, we summarize the most recent applications of nanozymes for environ-
mental monitoring, environmental management, and environmental protection (Figure 1).
We firstly introduce the tuning catalytic activity of nanozymes according to some crucial
factors such as size and shape, composition and doping, and surface coating. Then, the
application of nanozymes in environmental fields is introduced in detail. Nanozymes can
not only be used to detect inorganic ions, molecules, organics and foodborne pathogenic
bacteria but are also involved in the degradation of phenolic compounds, dyes, and an-
tibiotics. The capability of nanozymes was also reported for assisting air purification,
constructing biofuel cells, and application in marine antibacterial fouling removal. Finally,
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the current challenges and future trends of nanozymes toward environmental fields is
proposed and discussed.

2. Tuning Catalytic Activity

Nanozymes are alternatives to natural enzymes but remain slightly inferior in catalytic
activity. Thus, we need to focus on several important factors that affect the enzymatic
activity of nanozymes as well as current strategies to enhance activity, thereby laying a
theoretical foundation for the design of nanozymes.

One of the distinct features of enzymes are their ultrahigh reaction rate. Correspond-
ingly, nanozymes with comparable or even superior activity are long-standing pursuits.
Two strategies are discussed here to improve the activity of nanozymes: (I) increasing the
inherent activity by delicate design and (II) boosting the activity by confinement effect or
external stimulators [32]. The main factors affecting the intrinsic activity of nanozyme are
size, composition, doping, shape, and surface modification. External stimulus factors, such
as pH, substrate concentration, temperature, and light, affect the catalytic activity. Factors
determining the activity of nanozymes need to be optimized for specific conditions in order
to achieve maximum efficiency in applications involving detection of target analytes.

2.1. Size and Shape

Size, shape, and atomic arrangement can lead to changes in the catalytic performance
of materials. It was found that the catalytic activity and stability of nanozyme increased
with the increase in surface volume ratio. For example, Valden et al. [33] prepared gold
clusters with a diameter of 1 to 6 nm on the single crystal surface of titanium dioxide
under ultrahigh vacuum to investigate the size dependence of their low-temperature
catalytic oxidation of carbon monoxide. It was found that the gold cluster with the largest
carbon monoxide oxidation activity was 3 nm. In another case, Zhou et al. [34] used
Au nanoparticles with various sizes (2–15 nm) to catalyze the reduction of resazurin,
showing that Au nanoparticles of 6 nm exhibited the highest activity. However, small
gold nanoparticles tend to aggregate and lose their activity. Scientists often anchor gold
nanoparticles to carbon, silica, graphene, and other supporting materials to improve
the dispersion of bare Au. Kalantari et al. [35] adjusted the delayed addition time of
the thiolated organosilica precursor to control the nanostructure and the thiol density.
Moreover, for the first time, they demonstrated that the peroxidase-like activity of T-
Dendritic Mesoporous Silica Microspheres (DMSNs)-Au depended on nano-Au size. In
addition, the highest activity was achieved at the Au particle size of 1.9 nm (Figure 2).
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The catalytic performance of nanozymes can also be modulated by adjusting the shape
of the nanostructures. Biswas et al. [36] compared the catalytic efficiency of gold nanorods
(GNRs), gold nanoparticles (GNPs), and horseradish peroxidase (HRP). It was proved that
the peroxidase activity of gold nanorods with a length diameter ratio of 2.8 was 2.5 times
higher than that of HRP and gold nanoparticles, which showed stability in a wide range of
pH and temperature. Based on this, a colorimetric sensor for malathion was developed,
whose sensitivity of the assay was 1.78 µg/mL. A comparative study of VO2 nanoparticles
with different morphologies (nanofibers, nanosheets, and nanorods) was conducted and
applied to the sensitive colorimetric detection of H2O2 and glucose by Tian et al. [37]. Ac-
cording to the typical Michaelis–Menten curve obtained for VO2 nanozymes, the apparent
KM values of VO2 nanofibers with H2O2 as the substrate were lower than that of VO2
nanorods and VO2 nanosheets. It shows that the VO2 nanofibers have a higher affinity
for H2O2 compared with VO2 nanosheets and VO2 nanorods. Moreover, compared with
VO2 nanorods and VO2 nanosheets, the VO2 nanofibers demonstrated the most sensitive
response during the H2O2 and glucose sensing.

2.2. Composition and Doping

Some researchers have shown, based on the synergistic effect, that combining a variety
of nanomaterials or conjugating several nanomaterials to form a hybrid can provide a
catalytic center [38], improve the electron transfer between the nanozyme and the substrate,
and generate additional active sites, which can adjust the catalytic activity of the catalyst.

Zhu et al. [39] combined TiO2, CuInS2, and CuS into a ternary metal sulfide-based hy-
brid. Owing to the synergistic effect among TiO2, CuInS2, and CuS components, compared
with the control sample of Fe3O4/rGO, TiO2/rGO, Fe3O4, TiO2, and rGO, the prepared
TiO2/CuInS2/CuS nanofibers showed excellent peroxidase (POD)-like activity. They subse-
quently developed a sensor for the detection of dopamine with a detection limit of 1.2 µM.
Wang et al. [40] incorporated iron oxide nanoparticles (Fe3O4NPs) into the heterodimer
composed of gold and platinum to form a hybrid nanomaterial with good peroxidase-like
activity. The formation of an alloy between platinum and gold can significantly improve
the activity and selectivity of platinum-based catalysts. The nature of the peroxidase-like
activity of the Fe3O4@Au-Pt hybrid nanomaterial originates from their ability to transfer
electrons between the reducing substances and H2O2. The colorimetric sensor with a lower
detection limit of 0.0018 µM was developed for glucose. Another form of composition is
loading. Zhao et al. [41] covalently fixed the carbon point (C-dots) on the inner surface of
the amino terminated dendritic silica sphere (dSs) while coupling the gold nanoclusters
(Au NCs) on the outer surface. It not only maintains the superoxide dismutase-like enzyme
activity of the carbon point but also improves the peroxidase-like-activity of the gold
nanoparticles. Furthermore, adjusting the loading ratio of the two kinds of nanozymes can
meet different functional requirements.

2.3. Surface Coating

The surface modification of nanozyme not only plays a connecting role in the combi-
nation of nanomaterials but also is of great importance to the regulation of catalytic activity.
The surface catalytic reaction process can be described by several basic reaction steps, in-
cluding substrate adsorption, substrate diffusion on the surface, chemical reaction, and then
product desorption to regenerate the active site [42]. Each step will be affected by surface
modification. Thus, some general strategies can be adopted for surface modification, such
as changing the electronic structure of the surface, regulating the surface acidity, blocking
surface contact, promoting product desorption, mediating the exposure of active sites to
regulate substrate binding, and applying effective methods for surface electronic structure.

Surface modifiers can be divided into three categories: ions, small molecules, and
macromolecules. Lee et al. [43] introduced Mn(acetate)2 during the synthetic step of N-
doped carbon dots to improve the enzymatic properties of metal-induced N-doped carbon
dots (N-CDs). Its influence on the enzymatic properties of Mn-induced N-CDs (Mn:N-CDs)
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was investigated. Finally, the addition of Mn(acetate)2 to the reaction solution seemed to
generate more functional groups at the edge of carbogenic domains in Mn:N-CDs than
in N-CDs, resulting in improved peroxidase-like properties (Figure 3a). Mn:N-CDs with
strong enzymatic effects can be applied as a colorimetric sensor probe for the detection
of gamma-aminobutyric acid (GABA). Surface modification can also change the intrinsic
enzyme activity of nanomaterials. Zeolitic imidazolate framework-8 (ZIF-8) is a monatomic
nanozyme with peroxidase activity. Sun et al. [44] introduced amino acid (AA) to regulate
the growth of ZIF-8 crystal, thus simulating the structure and function of natural carbonic
anhydrase (CA). Amino acid as a capping agent regulates the shape and size of ZIF-8 and
forms a hydrophobic region on the surface of ZIF-8 to simulate the hydrophobic pocket
of natural carbonic anhydrase (Figure 3b). Compared with natural carbonic anhydrase,
Val-ZIF-8 not only has excellent esterase activity but also has better hydrothermal stability.
Surface coating may also weaken or even lead to loss of enzyme activity. Jain et al. [45]
reported the replacement of cetyl trimithyl ammonium bromide (CTAB) by 11-MUA from
the surface of Au-core CeO2-shell NP-based nanozyme studied for exhibiting multiple
enzyme-like activities such as peroxidase, catalase, and superoxide dismutase. They found
that 11-MUA coating AuNPs lost the SOD and catalase-like activity, which compromise the
multifunctional property of chitosan nanoparticles (CSNPs).
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2.4. Other Factors

Except regulating the intrinsic enzyme activity of nanozyme to control catalytic activity,
external factors can also affect the final enzyme activity. The pH and temperature are the
main external influencing factors. A lot of studies have confirmed that acidic conditions
are suitable for peroxidase-like activity, while neutral and alkaline conditions are favorable
for superoxide dismutase and catalase. For example, the esterase activity of Val-ZIF-8
synthesized by Sun et al. [44] would greatly increase with the increase in temperature. The
enzyme activity at 80 ◦C was about 25 times higher than that at 25 ◦C. Gao et al. [46] reported
a new strategy for controlling plaque biofilm with a peroxidase-like nanozyme (CAT-NP).
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CAT-NP showed a strong dependence on acidic conditions. It killed 99% of bacteria in the
acidic microenvironment simultaneously in a short time for biofilm control and prevention
of dental caries. However, several studies have broken through the limitation of optimal pH
for different nanozymes. Li et al. [47] developed the copper-based nanozyme (CuCo2S4),
which showed enhanced peroxidase-like activity and antibacterial ability under neutral
conditions (Figure 4). This would be used for infected wounds with pH close to neutral.

3. Improvement of the Specificity

At present, the research of nanozyme is not only to improve catalytic activity but also
to improve specific recognition ability to realize the replacement of natural enzyme. The
activity change of nanozyme is related to the action mechanism of nanozyme, while the
catalytic specificity of nanozyme affects the accuracy of target capture. Most applications
of nanozymes are based on the discovery and simulation of nanozyme activity, but there is
still a lack of catalytic specificity. The simulation of catalytic activity mostly comes from
the functional replica rather than the remodeling of the active center structure of natural
enzyme, so the catalytic specificity is greatly reduced. In the years of rapid development
of nanozyme, some strategies have been explored to solve these problems: (I) to simulate
the active center and binding site of natural enzyme more precisely from the chemical
structure at the design and construction of nanozyme and (II) to combine some specific
molecular-assisted recognition.

The premise for natural enzyme to work is to combine it with the substrate, that is, to
capture the substrate. It mostly depends on the primary structure and spatial configuration
of protein or RNA to realize the complementarity with specific substrate. Therefore, the
research on the specificity of nanozyme can start from this point. Currently, there have been
many reports on biomimetic research of nanozyme [48–50]. For example, Zhou et al. [48]
proposed a chiral COF nanozyme with highly ordered active centers and substrate binding
sites that is mainly used to simulate horseradish peroxidase (HRP). The active site of HRP
contains porphyrin heme as the catalytic active center and the distal L-histidine (L-His)
residue as the binding site. Biomimetic COF enzyme is mainly constructed by mixing iron 5,
10, 15, 20-tetra (4′-tetraphenylamino) porphyrin unit (Fe-ATPP) into the COF skeleton as the
active center and modifying L-His as the substrate binding site for chiral recognition. COF
can be used as the skeleton of nanozyme. The well-dispersed Fe-ATPP unit in the skeleton
endows COF nanozyme with high enzyme-like activity, which is 21.7 times higher than
HRP. At the same time, the incorporation of L-/D-Hiss imparts the COF nanozyme with
enantioselectivity in the oxidation of L-/D-dopa enantiomers and displays a preference
for dopa. Changing the content of L-/D-Hiss can also optimize the selectivity of COF
nanozyme. This work can easily adjust the activity and stereospecificity of COF chiral
nanozyme by changing the doped amino acid and its content.

Although the biomimetic simulation of active centers and binding sites can be car-
ried out according to the analysis of the three-dimensional structure of natural enzymes,
the biological affinity and structural simulation of nanomaterials are still limited, which
still need to be assisted by biological molecules with specific recognition ability. In this
method, the biological recognition element and nanozyme are coupled to achieve the dual
improvement of catalytic activity and specificity. Biorecognition elements mainly include
antibody, DNA, aptamer, molecularly imprinted polymer (MIP), and biological enzyme.
Molecularly imprinted polymer (MIP) is a polymer processed by molecular imprinting tech-
nology, which leaves a cavity in the polymer matrix and has affinity for selected “template”
molecules [51]. Molecular recognition sites of specific target molecules are created in MIP
to obtain solid materials with high selectivity for specific target molecules. Zhang et al. [52]
initiated polymerization on the surface of the nanozyme substrate conjugate by adding a
variety of polymerization monomers, thus forming a molecular imprinted hydrogel layer.
Remove the imprinted substrate molecule to obtain the substrate specific recognition site
constructed on the periphery of the nanozyme (Figure 4a). In addition, the incorpora-
tion of functional monomers and charges further improved the activity and specificity of
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nanozyme. Under the optimum conditions, the specificity can reach 100 times. A variety of
nanozyme materials, including ferric oxide, gold, cerium dioxide, and other nanomaterials
with peroxidase or oxidase activity, can be significantly improved by molecular imprinting.
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The biological enzyme–nanozyme cascade sensing system combined with biological
enzyme is mostly used in the application of peroxide–nanozyme. Biological enzymes
combine to oxidize specific substrates and produce H2O2, which in turn triggers peroxide
nanozyme color or fluorescence reaction to realize signal sensing. Although biological
enzymes can selectively capture target molecules, just like the reason for the birth of
nanozymes, biological enzymes are limited by pH, temperature, reaction system, and
other factors. At present, two kinds of enzymes are often linked on the same carrier for a
cascade reaction. The ratio of enzyme content, immobilization method, and intermediate
loss all affect the catalytic efficiency and sensing accuracy. The highly variable region
of the antibody endows the antibody with the ability to recognize antigen specifically.
Researchers often use nanozyme to replace the biological enzyme in ELISA to provide
color signals. In addition to recording optical (colorimetric, fluorescent, chemilumines-
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cence) signals for analysis, nanozyme catalysis can also trigger changes in temperature,
volume, mass and pressure to form a new sensing mode. The detection methods are not
confined to colorimetric detection but can also use electrochemical detection and Raman
analysis. Li et al. [53] used high-activity Fe3O4 nanozyme as a signal amplifier to develop
an ultrasensitive photoelectronic (PEC) immunoassay. In short, ZnO nanorods (ZnO-NRs)
growing vertically on a bar indium–tin oxide (ITO) electrode were dispersed with ZnIn2S4
nanocrystals, producing a ZnIn2S4/ZnO-NRs/ITO photoelectronic as the PEC material
mix to modify and capture PSA antibodies (Ab1). Histidine-modified Fe3O4 (His-Fe3O4)
nanozyme acts as a signal amplifier and connects with the signal PSA antibody (Ab2) to
form His-Fe3O4@Ab2 conjugate, which is anchored by a specific sandwich immune reac-
tion (Figure 4b). Labeled His-Fe3O4 nanozyme as a peroxidase induced the production of
insoluble and insulating precipitation, resulting in a significant reduction of photocurrent
signal. Finally, the ultralow detection limit of prostate specific antigen (PSA) 18 fg/mL was
achieved. Recently, the methods that can be used for the biological coupling of nanozyme
and an antibody are still limited. The technology that can effectively biocouple nanozyme
with an antibody or antigen is not mature [19], and the reproducibility of nanozyme-labeled
immunosensor is not good, and the large-scale commercial application technology still
needs to be developed.

Deoxyribonucleic acid (DNA) and aptamers are other biological recognition elements
that assist nanozymes to achieve high specificity. DNA, which follows the principle of
complementary base pairing and has a specific sequence, can accurately identify the target,
which is widely used in biological and medical fields. However, there are some problems
to be solved in the nanozyme labeled with single-stranded DNA (ssDNA). ssDNA endows
the surface of nanozyme with more negative charges, which will further affect the adsorp-
tion kinetics of substrate and the catalytic activity of nanozyme. It has been found that
the modification of DNA changes the surface charge state of Fe3O4NPs, thus promoting
the combination of nanozyme and substrate [54]. In addition, chemical modification or
physical adsorption of DNA may also block the active site of nanozyme, resulting in the
reduction of catalytic efficiency. Therefore, the length, concentration, and two-dimensional
structure of DNA and the surface charge distribution of nanozyme affect the catalytic
activity of nanozyme [55]. Although there have been many research outputs of DNA-
modified nanozymes, we still do not know enough about the mechanism of the interaction
between the DNA chain on the surface of the nanozyme and the nanozyme. Most of the
results are due to the trial and error of scientific researchers. Understanding the mechanism
may better control the application of DNA in the field of nanozymes. The aptamer is
a short DNA sequence screened in vitro, which is also highly specific. There are many
aptamer sensors based on nanozyme. A simple and low-cost colorimetric analysis was
established for a highly sensitive determination of Kanamycin (KAN) through integrat-
ing boron nitrate quantum dots-anchored porous CeO2 nanorods (BNQDs/CeO2) and
aptamer by Zhu et al. [56] due to the large specific surface area and synergistic interac-
tion between BNQDs and CeO3, which can effectively catalyze the oxidation of 3,5′,5,2′-
tetramethylbenzidine (TMB). In addition, the catalytic activity of BNQDs/CeO2 nanozyme
was significantly enhanced because of the dispersion of BNQDs/CeO2 nanozyme and the
increase in substrate affinity after the substrate was combined with KAN-specific aptamer.
KAN can combine with the aptamer to reduce the catalytic efficiency. The proposed colori-
metric method realized the low detection limit of 4.6 pM. DNA and aptamer are superior
to other biological recognition molecules in cost and stability, and aptamer can also further
improve the detection specificity. However, there is also a complex interaction between
the aptamer and the catalytic performance of nanozyme. Mechanism analysis and rule
summary need to be obtained.

4. Environmental Monitoring

Over recent years, with the development of industry, environmental pollution has
become increasingly serious, especially water pollution, which directly threatens human
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health. Common pollutants include heavy metal ions, dyes, phenols, pesticides, antibiotics,
drugs, plasticizers, and other organic substances due to biological pollutants such as bio-
logical pathogenic bacteria or toxin pollution (Table 1). Hence, monitoring environmental
pollutants has become a global concern.

4.1. Toxic Ions

With the rapid development of manufacturing industry around the world, overex-
ploitation of minerals and groundwater, and industrial wastewater discharge, toxic ion
pollution has become an unavoidable environmental problem. Toxic ions mainly refer
to heavy metal ions, including mercury, cadmium, lead, chromium, arsenic, and other
elements with potential biological toxicity. Because it cannot be degraded, it can only be
converted into different chemicals through abiotic or biological mechanisms and can be
amplified through the food chain, posing a serious threat to the ecosystem and human
health [57]. At present, many methods based on nanozyme detection of toxic ions have
been explored. Most of the sensors are miniaturized and portable to be used in point-of-care
testing (POCT).

Wang et al. [58] loaded Au NPs onto HS-rGO to modify a glass carbon electrode (GCE)
as a sensing platform. Au Pd-modified zirconium metal organic skeleton (AuPd@UiO-67)
labeled with signal chain (Apt2) is used as signal enhancer to capture Hg2+ based on T-Hg
(II)-T structure (Figure 5a). With the increase in modified Hg2+ concentration, the amount
of Apt2-AuPd@UiO-67 is increased, thus realizing the detection of Hg2+. The electro-
chemical sensor has a wide linear range (1.0 nmol/L–1.0 mmol/L) and a low detection
limit (0.16 nmol/L). Except for electrochemical detection methods, colorimetry is the most
commonly used method to detect Hg2+. A graphene oxide nanosheet (CGO) based on
L-cysteine functionalization was found to have a strong peroxidase-like activity compared
with graphene oxide [59]. The introduction of more S and N species can effectively produce
more surface defects and active sites, thus endowing carbon high peroxidase-like properties.
The nanozyme can be used to realize the microdetection of Hg2+, and its sensing principle
is mainly based on the competitive adsorption between Hg2+ and photothermal properties
of 3,3′,5,5′-tetramethylbenzidine (TMB). Because Hg2+ hinders the combination of TMB
and CGO, TMB is catalyzed by H2O2 to produce more colored oxidation products, resulting
in a more significant colorimetric response (Figure 5b), meaning, therefore, good detection
of Hg2+. Zhong et al. [60] used the peroxidase-like activity of iron hydroxide (FeOOH)
nanorods to detect As(V) by colorimetry. Unlike TMB, the catalytic substrate is ABST,
and its oxidation product is green and reaches the maximum absorption peak at 418 nm.
As(V) can be adsorbed onto FeOOH nanorods through electrostatic interaction and an
As-O bond, so the oxidation is gradually embedded. Finally, the colorimetric determination
with response of 0–8 ppb and 8–200 ppb and detection limit of 0.1 ppb is realized. Ag+ is
also a heavy metal ion. Zhang et al. [61] utilized the excellent colorimetric and TMB to
construct photothermal and colorimetric double-readout sensors for Ag+ analysis. MnO2
nanosheets (NSs) were used to catalyze the oxidation of TMB to oxTMB. However, the
reduction of MnO2 NSs by glutathione (GSH) can reduce the catalytic capacity of MnO2
NSs (Figure 5c). In this method, a specific combination of Ag+ and GSH is utilized to inhibit
this reduction process. According to this principle, the Ag+ concentration can be converted
into temperature and color signals. Consequently, the Ag+ content can be determined both
with the naked eye and with a portable thermometer. It is very suitable for POCT in the
process of environmental detection.
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Figure 5. (a) Schematic diagram for fabricating the designed electrochemical aptasensor to detect
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Reproduced with permission from (a) Ref. [58], Copyright 2022 Elsevier; (b) Ref. [59], Copyright 2022
Elsevier; (c) Ref. [61], Copyright 2019 Springer.

4.2. Organic Pollutants

Herbicides and pesticides used in agriculture to increase food production will cause
serious pollution of soil and water quality. At present, most pesticides on the market are
not degradable organophosphorus pesticides. If the metabolites or degradation products
of pesticides exceed the maximum residue, they will cause pollution. In addition, antibiotic
residues are also considered as typical organic pollution. Because of their longer half-life,
they are more threatening to humans and other organisms. Another common organic
pollutant, phenolic compounds, are common in dye, pharmaceutical, photo development
and other industrial fields and is difficult to degrade in the aquatic ecological environment.

Parathion is an organophosphate (OP) insecticide, and it is also an irreversible in-
hibitor of nervous system function. Chen et al. [62] designed a bimetallic nanozyme (Au@Pt:
gold@platinum) catalytic competitive sensitive biological bar code immunoassay. This
novel biobarcode immunoassay contained three types of probes: (I) mAbs and ssDNA-
labeled AuNP probes, (II) parathion OVA-hapten-modified immunomagnetic nanoparticle
(MNP) probes, and (III) C-ssDNA-labeled Au@Pt probes (Figure 6a). The Au@Pt probe
reacts with the AuNP probe through complementary base pairing. Parathion then com-
petes with the MNP probe to bind mAb onto the AuNP probe. Finally, Au@Pt nanozyme
is released from the complex to catalyze the color development of TMB. The most com-
mon and efficient platform to detect OPs is the enzyme biosensor, which is based on OPS
to inhibit acetylcholinesterase (AChE) activity. In another work, lactate dehydrogenase
(LDH)-based ZIF-8 nanocomposite was prepared by Bagheria et al. [63], utilizing the for-
mation of a simple complex between Zn2+ and 2-methylimidazole. This process leads
to the formation of highly dispersed ZIF-8 nanostructures on the surface of ZnFe-LDH
nanosheets (LDH@ZIF-8). Moreover, the peroxidase-mimicking behavior of the prepared
nanocomposites is improved compared to pristine LDHs and MOFs. LDH@ZIF-8 signifi-
cantly contributes to the CL emission intensity of the H2O2 rhodamine B (RhoB) system.
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When organophosphorus pesticides (OPS) were present, AChE activity was inhibited, and
reduced production of H2O2 eventually led to the attenuated chemiluminescence of RhoB
(Figure 6c). This detection method achieved highly sensitive sensing of OPS indirectly by
detecting the change of the hydrogen peroxide content. Apart from the chemilumines-
cence strategy, photoelectrochemical biosensors are another emerging analytical method.
Song et al. [64] used the double amplification strategy to construct the photoelectrochemical
aptamer sensor. The sensor realizes signal sensing mainly based on Co9S8@In-CdS NTs
and PtNi nanozymes acting as signal amplifiers. Because sulfamethazine (SMZ) has a
stronger affinity with the aptamer, the aptamer tends to combine with SMZ and escape
from the electrode through the dissociation of the double chain structure, generating a
photocurrent response. SA-modified PtNi nanostructures further increase the spatial steric
resistance of the electrode surface. The insoluble 4-CD precipitate formed by incubation
with 4-CN in the presence of H2O2 seriously hinders electron transfer and again changes
the photocurrent response to achieve sensing of SMZ (Figure 6b).
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In order to make detection and environmental assessment portable and fast, some
researchers bind sensors and smartphones to achieve mobile data transmission. This
kind of combination can be used for POCT. Sun et al. [65] synthesized a three-layer
FeOx@ZnMnFeOy @Fe Mn bimetallic organism with excellent multienzyme activity (per-
oxidase, oxidase, and catalase). Therefore, this sensing platform can complete the four
functions of detecting H2O2, citric acid (CA), norfloxacin (NOR), and gallic acid. Moreover,
smartphones are also used for automatic quantitative detection of CA and NOR, and the
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detection limit of norfloxacin is as low as 52 nM. Nanozyme with multienzyme activity
was also used in the detection of phenolic compounds. A highly efficient mimic catalyst
of Co1.5Mn1.5O4 with four enzyme activities (peroxidase, oxidase, catalase, laccase) was
used to detect dihydroxybenzene isomers. Finally, a dual function colorimetric sensor
was constructed using TMB [66]. Ye et al. [67] constructed NiCo2O4@MnO2 with p–n
junctions, which not only has the photoelectric effect brought by the p–n junctions but also
has inherent oxidase and peroxidase-like activities. The result is an excellent minimum
detection limit of 0.0042 µM for hydroquinone.

4.3. Foodborne Pathogens

Biological pollution mainly refers to environmental pollution caused by various or-
ganisms that pose a threat to human health. The biological pollution in the water and
soil environment mainly comes from untreated domestic sewage, industrial wastewater,
garbage, and feces, which eventually leads to the excessive content of foodborne pathogens.
In history, Vibrio cholerae once polluted the water environment as a foodborne pathogen,
which eventually led to the global epidemic of cholera in the 1930s. Intestinal bacteria
such as Escherichia coli, Streptococcus faecalis and Clostridium are the main bacteria that
pollute water. Hepatitis also erupts through fecal sewage.

The first microorganism to be detected in drinking water is the content of Escherichia
coli (E. coli). Thus, the detection of foodborne pathogens is increasingly urgent. In the detec-
tion of E. coli, β-Galactosidase (β-Gal) is applied. A multicolor colorimetric platform trig-
gered by a designed enzyme nanozyme cascade reaction was designed and prepared [68].
MnO2 nanoparticles with oxidase-like activity can catalyze the oxidation of TMB. Then
TMB2+ quickly etched the gold nanorods (Au NRs), and the longitudinal local surface
plasmon resonance peak appeared as an obvious blue shift and the polychromatic change
of Au NRs. The presence of E. coli will hydrolyze p-aminophenyl β-d-galactopyranoside
(PAPG) to produce p-aminophenol (PAP) through β-galactose, thereby mediating the re-
duction of MnO2 nanosheets, destroying their oxidase-mimicking activity, and affecting the
production of TMB2+. Consequently, sensing systems that exhibit different colors can be
easily observed for different concentrations of E. coli. A colorimetric sensor based on Ps-Pt
nanozymes for the detection of Salmonella typhimurium was reported by Jiao et al. [69].
The sensor combines immunosensing and magnetic separation techniques. They cova-
lently bound streptavidin first to Ps-Pt. Then the bacteria were recognized by coupling a
biotinylated antibody of S. typhi onto PS Pt through the high affinity between streptavidin
and biotin. Moreover, the magnetic beads conjugated antibodies were also prepared to
facilitate the subsequent bacteria separation test, thus making the detection simple and
fast. Similarly, Ps-Pt nanozyme with peroxidase activity has also been used to detect
Staphylococcus aureus (S. aureus) on paper-based analytical equipment with a detection limit
of 9.56 ng/mL [70]. Targeting S. aureus, Luo et al. [71] constructed a PEC sensor for S. aureus
with a wide linear range between 10 and 108 CFU/mL and a limit of detection (LOD) as
low as 3.40 CFU/mL based on “signal off” using the Cu-C3N4-TIO2 heterostructure as
the photoactive material and Cu-C3N4 peroxidase-like nanozymes as signal amplifiers.
During the detection, Cu-C3N4 (Cu-C3N4@Apt) and benzo-4-chlorohexanedione (4-CD)
produced by the oxidation of 4-chloro-1-naphthol (4-CN) in the presence of hydrogen
peroxide participated in decreasing the photocurrent signal (Figure 7b). Polyoxometalates
(POMS) of different structures have also been noted to possess peroxidase activity, among
which P2Fe4W18 enzyme activity was reported by Zhang et al. [72] Polydopamine (PDA)
as an emerging biomimetic adhesive polymer combines with P2Fe4W18 to enhance enzyme
activity (Figure 7a). Ultimately, Fe4P2W18/PDA achieved the detection of E. coli O157:H7
with a detection limit of 4.2 × 102 CFU/mL.
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Table 1. Summary of the application of nanozymes in environmental monitoring.

Category Analyte Nanozyme Activity Detection Mode Detection
Range LOD Ref.

Toxic ions

Fe2+/Pb2+ MnO2 CAT Colorimetric

0.001~0.02
mmol/L
0.05~0.4
mmol/L

0.5 µmol/L
2 µmol/L [73]

F− AgPt-Fe3O4 POD Colorimetric 50~2000 µM 13.73 µM [74]
Nitrite AuNP-CeO2 NP@GO OXD Colorimetric 100~5000 µM 4.6 M [75]

Cl−, Br−, I− Ag3Cit OXD Colorimetric / 26, 12, 7 nM [76]
Cu2+ E-ChlCu/ZnO POD Colorimetric 0–1/1–15 µM 0.024 µM [77]

As3+ Pd-DTT OXD Colorimetric 33~3.333 ×
105 ng/L 35 ng/L [78]

Fe2+ C-dots/Mn3O4 NCs OXD Colorimetric 0.03~0.83 µM 0.03 µM [79]
Nitrite His@AuNCs/RGO POD Electrochemical 2.5~5700 µM 0.5 µM [80]

Hg2+ MXene/DNA/Pt
NCs POD Colorimetric 50~250 nM 9.0 nM [81]

Fe3+ NCD/UiO-66 NCs SOD
POD Colorimetric 0~0.1 mM / [82]

Cr6+ PEI-AgNCs OXD Colorimetric / 1.1 µM [83]

Fe2+ AuRu aerogels OXD
POD Colorimetric 5~250

µmol/L 0.7 µmol/L [84]

Hg2+ CS-MoSe2NS POD
OXD Colorimetric 0.1~4.0 µM 3.5 nM [85]

Fe3+ MoSe2@Fe POD Colorimetric 25~300 µM 1.97 µM [86]
F− R-MnCo2O4/Au NTs POD SERS 0.1~10 nM 0.1 nM [87]

Sn2+ nano-UO2 POD Colorimetric 0.5–100 µM 0.36 µM [88]
PO4

3− MB@ZrHCF POD Colorimetric 10~200 µM 2.25 µM [89]
Cr3+ GdOOH Phospholipase Colorimetric 5.0~200 µM 0.84 µM [90]
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Table 1. Cont.

Category Analyte Nanozyme Activity Detection Mode Detection
Range LOD Ref.

Toxic ions

Hg2+ AuPd@UiO-67 POD Electrochemical 1~106 mM 0.16 nmol/l [58]

Al3+ Single atom Ce-N-C Laccase Colorimetric 5–25 µg/mL 22.89 ng/mL [91]
Cr6+ CD/g-C3N4 POD Colorimetric 0.3–1.5 µM 0.31 µM [92]

Hg2+ CuS HNS POD Colorimetric 50~4 × 105

ng/mL
50 ng/L [93]

As3+ CoOOH POD Electrochemical 0.1~200 µg/L 56.1 ng/L [94]
Cr6+ Cu-PyC MOF POD Colorimetric 0.5–50 µM 0.051 µM [95]

Cr6+
Ni/Al LDH

(Ni/Al–Fe(CN)6
LDH)

POD Colorimetric 0.067~10 mM 0.039 mM [96]

Pb2+ Tannic Acid@Au NPs POD Colorimetric 25~500
ng/mL 11.3 ng/mL [97]

S2− MoS2/g-C3N4HNs POD Colorimetric 0.1~10 µM 37 nM [98]
S2− PDA@Co3O4NPs CAT Colorimetric 4.3~200 µM 4.3 µM [99]

As3+ AuNPs POD Colorimetric 0.01~11.67
mg/L 0.008 mg/L [100]

S2− GMP-Cu Laccase Colorimetric 0~220
µmol/L 0.67 µmol/L [101]

Hg2+ Ag2S@GO OXD Colorimetric 5.0~120.0 ×
10−8 M

9.8 × 10–9

mol/L
[102]

Cu2+ MMoO POD Colorimetric 0.1~24 µM 0.024 µM [103]
Cr6+ MOF OXD Colorimetric 0.1~30 µM 20 nM [104]
Cr6+ CuS-frGO POD Colorimetric 0–200 nM 26.60 nM [105]
Cr6+ SA-Fe/NG POD Colorimetric 30~3 µM 3 nM [106]
Cr3+ CuFe2O4/rGO POD Colorimetric 0.1~25 µM 35 nM [107]
Hg2+ L-cysteine@GO POD Colorimetric 0~200 µg/L 5 µg/L [59]
Hg2+ PtNPs POD Colorimetric 20~3000 nM 10.5 nM [108]

Hg2+ Au-HBNz POD Colorimetric 0.008~20
µg/mL 1.10 ng/mL [109]

Hg2+ AuPt@DSN POD Colorimetric 0.1~103 nM 8.58 pM [110]
Hg2+ MVC-MOF OXD Colorimetric 0.05~6 µM 10.5 nM [111]

Hg2+ Citrate-capped Cu
NPs POD Colorimetric 0.100~6.000

µM 0.052 µM [112]

Hg2+ Fe-MoS2@AuNPs POD Electrochemical 0.5~200 nM 0.2 nM [113]

Hg2+ Ag NWs OXD Colorimetric 25∼5000
µg/L 19.9 ng/L [114]

Hg2+ Cys-Fe3O4 POD Colorimetric 0.02–90 nM 5.9 pM [115]
Hg2+ His-AuNCs OXD Colorimetric 0.05–0.8 µM 8 nM [116]
Ag+ MnO2 NSs OXD Colorimetric 0.02~1.0 µM 6.7 nM [61]

As5+ FeOOH POD Electrochemical 0.04~200
µg/L 12 ng/L [60]

Al3+ Nanoceria Phosphatase Electrochemical 30~3.5 × 103

nM
10 nM [117]

H2O2 MA-Hem/Au-Ag POD Colorimetric 0.010–2.50
mM 2.5 µM [118]

H2O2 Pt/CeO2/NCNFs CAT Electrochemical 0.0005–15 mM 0.049 µM [119]

Phenolic

Phenol
Compounds

1-
Methylimidazole/Cu

Nanozyme
Laccase Colorimetric 0.5~4 µg/mL 0.57 µg/ml [120]

2,4-dinitrophenol polymer-Fe-doped
ceria/Au NC POD Colorimetric 1~100 µg/mL 2.4 µM [121]

Hydroquinone NiCo2O4@MnO2 POD OXD Colorimetric 0~24 µM 0.042 µM [67]
Hydroquinone Co1.5Mn1.5O4 OXD Colorimetric 0.05∼100µM 0.04µM [66]

2,4,6-TNT 2H–MoS2/Co3O4 OXD Electrochemical / 1 pM [122]

Hydroqui-none Fe3O4@COF POD Colorimetric 0.5~300 µmol
L 0.12 µmol L [123]

2,4-DP AMP-Cu Laccase Colorimetric 0.1~100
µmol/L 0.033 µmol/L [124]

2,4-DP MnCo@C NCs Laccase Electrochemical 3.1~122.7 µM 0.76 µM [125]

2,4-DP NiFe2O4 POD Colorimetric 0.218~3.282
µg/mL 0.311 µg/mL [126]
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Table 1. Cont.

Category Analyte Nanozyme Activity Detection Mode Detection
Range LOD Ref.

OPs

Carbendazim MoS2/MWCNTs OXD Electrochemical 0.04~100 µM 7.4 nM [127]

parathion ethyl C-Au NPs POD Colorimetric 11.6~92.8
ng/mL 5.8 ng/mL [128]

Dichlorvos γ-MnOOH NWs OXD Colorimetric 0~15 ng/mL 3 ng/ml [129]
Diazinon LDH@ZIF-8 POD Colorimetric 0.5~300 nM 0.22 nM [63]

Paraoxon 2D MnO2
OXD
POD Electrochemical 0.1~20 ng/mL 0.025 ng/mL [130]

Benomyl AgNPs/MWCNTs/GO OXD Electrochemical 0.2~122.2 µM / [131]
Dimethoate Pt NPs POD Colorimetric 0.5~9 µg/mL 0.15 µg/mL [132]

Naphthalene
acetic acid Ti3C2-MXene/BP OXD Electrochemical 0.02~40 µM 1.6 nM [133]

Parathion NiO-SPE OXD Electrochemical 0.1~30 µM 0.024 µM [134]
MeHg NA-CDs/AuNPs POD Colorimetric 0.375~75 µg L 0.06 µg L [135]

Chlorpyrifos Ag-Nanozyme POD Colorimetric 35~210 ppm 11.3 ppm [136]

Omethoate SACe-N-C POD Colorimetric 100~700
µg/mL 55.83 ng/mL [137]

Methyl-paraoxon Nanoceria Laccase Colorimetric 0.42~126 µM 0.42 µmol/L [138]

Methyl-paraoxon CeO2
POD
OXD Electrochemical 0.1~100

µmol/L 0.06 µmol/L [139]

Methyl-parathion Fe3O4/C-dots@Ag-
MOFs / Electrochemical 5 × 10−11~2

× 10−9 mol/L
1.16 × 10−11

mol/L
[140]

Atrazine Fe3O4-TiO2/rGO POD Colorimetric 2~20 mµ g/L 2.98 µg/L [141]
Glyphosate Au@PN POD Colorimetric 0.5~20 nM 0.24 nM [142]
Glyphosate Porous Co3O4 POD Colorimetric 8~80 µg/L 2.37 µg/L [143]

Glyphosate Fe3O4@C7/PB POD Colorimetric 0.125~15
µg/mL 0.1 µg/mL [144]

Carbaryl NH2-MIL-101(Fe) POD Colorimetric 2~100 ng/mL 1.45 ng/mL [145]
Chlorophenols Fe3O4@MnOx OXD Colorimetric 10~1600 µM 0.85 µM [146]

Fipronil ZIF-8 POD Colorimetric 0.2~4µM 0.036 µM [147]
Malathion Fe-N/C SAzyme OXD Colorimetric 0.5~10 nM 0.42 nM [148]

Antibiotic
residues

Sulfamethazine PtNi NCs POD Photoelectrochemical 0.05~103

pg/mL
37.2 fg/mL [64]

Sulfonamides 2D Cu-TCPP (Fe) POD Electrochemical 1.186~28.051
ng/mL 0.395 ng/mL [149]

Streptomycin Au@Pt NPs POD Lateral Flow
Immunoassays

0.062~0.271
ng/mL 1 ng/mL [150]

Tetracycline Cu-doped-g-C3N4 POD Colorimetric 0.1~50 µM 31.51 nM [151]
Tetracycline Fe3O4@MIP POD Colorimetric 2~225 µM 0.4 µM [152]
Tetracycline MIL-101(Fe/Co) POD Colorimetric 1–8 µM 0.24 µM [153]

Norfloxacin FO@ZMFO@FM-
MOG

CAT
OXD
POD

Colorimetric 0.415–6.21 µM 52 nM [65]

Kanamycin CoFe2O4NPs POD Electrochemical 1~10−6 µM 0.5 pM [62]

Chloramphenicol Co3O4 POD Electrochemilumi-
nescence

5 × 10−13~4
× 10−10

mol/L

1.18 × 10−13

mol/L
[154]

Kanamycin WS2 Nanosheets POD Colorimetric 0.1–0.5 µM 0.06 µM [155]

Metronidazole

MIL-53 (Fe)@
molecularly

imprinted polymer
(MIP)

POD Colorimetric 1~200 µM 53.4 nM [156]

Foodborne
pathogens

Staphylococcus
aureus Cu-C3N4-TiO2 POD Photoelectrochemical 10~108

CFU/mL
3.40 CFU/mL [71]

Staphylococcus
aureus Pd@Pt NPs POD Lateral Flow

Immunoassays
10–300
ng/mL 9.56 ng/mL [70]

Salmonella
typhimurium IPs-Pt POD Colorimetric 104~106

CFU/mL 103 CFU/mL [69]

Escherichia coli Au NRs OXD Colorimetric
1.0 × 102~1.0
× 105

CFU/mL
22 CFU/mL [68]

E. coli O157:H7 Au-Pt dumbbell NPs POD Colorimetric 10~107

CFU/mL
2 CFU/mL [157]

E. coli O157:H7 man-Pediatric lead
(PB) POD Lateral Flow

Immunoassays
102~108

CFU/mL 102 CFU/mL [158]

E. coli O157:H7 P2W18Fe4/PDA POD Colorimetric 103~106

CFU/mL
4.2 × 102

CFU/mL
[72]
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5. Environmental Management

Over these years, industrial development and natural resource exploitation have
brought economic prosperity, but at the same time, all over the world, it has also faced
serious environmental governance challenges. Most pollutant residues are found in water
sources and soils on which mankind depends for survival. Furthermore, the common
degradation methods of pollutants are of three types: (I) biodegradation, (II) physical
adsorption, and (III) chemical oxidation. Nanozymes as an emerging research outcome
in the 21st century exhibit excellent qualities in environmental governance. They (I) can
handle compounds that are often difficult to biodegrade, (II) can operate independently of
pollutant concentration, (III) can operate over a wide range of pH, temperature, and salinity,
(IV) are not inhibited by biofouling, (V) are relatively simple and easy to control, and (VI)
are highly stable and recyclable [57]. Environmental monitoring Table 2 demonstrates the
application of nanomaterials in the degradation of various pollutants.

Table 2. Summary of the application of nanozymes in environmental management.

Category Pollutant Activity Nanozyme Removal Efficiency Ref.

Dyes

RhB POD Sulfur-doped graphdiyne >98% [159]
Methyl orange POD CNZ 93% [160]
Rhodamine B OXD FeBi-NC SAzyme 99% [161]

Methylene Blue POD ZnNi-MOF/GO NCs 95% [162]
Methylene Blue POD Cu2+-HCNSs-COOH 80.7% [163]

Methylene Blue POD
OXD PdNPs/PCNF 99.64% [151]

Amido Black Laccase Cu/H3BTC MOF 60% [164]
Malachite green Laccase Fe3O4@C-Cu2+ 99% [165]

Organic dyes POD Fe3O4@Gel 99% [166]

Antibiotics Tetracycline POD Sulfur-doped graphdiyne >69% [159]

Toxic ions
Cr6+/As3+ CAT NanoMn3O4 >98% [167]

Hg2+/Cl− POD AgRu@β-CD-co-GO 94.9%
93.8% [168]

H2O2
CAT
POD DMNS@AuPtCo >95% [169]

Phenolic

Hydroquinone Laccase

Aminopropyl-
functionalized copper

containing phyllosilicate
(ACP)

100% [170]

Phenol POD MNP@CTS >95% [171]

Phenol CAT
POD DMNS@AuPtCo 90% [169]

2,4-DP Laccase Fe1@CN-20 65% [172]
2,4-DP Laccase AMP-Cu 65% [124]
2,4-DP Laccase CH-Cu 82% [173]
2,4-DP Laccase Cu-Cys@COF-OMe >75% [174]
2,4-DP Laccase CA-Cu NPs 90% [175]

DEHP phthalic acid esters Hydrolase Zn-heptapeptide
bionanozymes 86.80% [176]

Microplastics POD Fe3O4NPs 100% [177]

Pathogens

Escherichia coli Phospholipase PAA-Cnp >80% [178]
Escherichia coli POD Au-Pt dumbbell NPs 95% [157]
Escherichia coli OXD w-SiO2/CuO 90% [179]

Gram-negative bacteria POD SA-Pt/g-C3N4-K >99.99% [180]

OPs
Simazine POD Fe3O4/DG 99% [181]
Atrazine POD Fe3O4-TiO2/rGO 98% [141]

Cinosulfuron POD CP@CA 96.25% [182]
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Currently, most of the substances that nanozymes are able to degrade are organic such
as phenolic compounds, herbicides, insecticides, dyes, and antibiotics. A few nanozymes
are used to degrade inorganic heavy metal ions. Citric acid-modified copper peroxide
nanodots (CP@CA) synthesized by Yang et al. [182] are an autocatalytic nanozyme. Un-
der acidic conditions, they can decompose into H2O2 and Cu2+ in water or soil, while
H2O2 would further decompose into •OH, capable of degrading nicosulfuron, based on
a Fenton-like reaction. Its degradation rate can reach 97.58% within 1 h. Furthermore,
after CP@CA was involved in pollutant degradation, the ecotoxicity of most degradation
intermediates was reduced to a lower level compared with nicosulfuron. Moreover, CP@CA
had little effect on the active components of the soil bacterial community. Photocatalytic
degradation is another pathway for the degradation of pollutants. Baruah et al. synthesized
magnetic Fe3O4 NPs on the surface of polydopamine functionalized RGO sheets (FDGs)
for photocatalytic degradation of the hazardous pesticide simazine. Due to its excellent
photocatalytic activity and magnetic separability, this makes the degradation rate of this
nanozyme 99% and highly sustainable. The specific mechanism of its degradation relies
on the formation of •OH under photocatalysis. The graphene sheets with good optical
properties enhanced Fe3O4 with very high electron hole pair recombination characteristics.
Dopamine-functionalized graphene sheets (DG) have high electron carrier capacity through
their π-bond network, resulting in FDG nanozymes with high photocatalytic activity. Upon
light irradiation, nanozymes absorb photons and undergo redox reactions by elevating
electrons from the valence band (VB) to the conduction band (CB) (Eqn 8). The electrons
in the CB can be easily transferred to the DG surface, forming a hole in the VB (Eqn 8).
The electrons on the surface of DG simultaneously trap dissolved molecular oxygen and
lead to the formation of superoxide radical anions (O•2−) (Eqn 9). Superoxide radical
anions directly interact with water molecules to form •OH (Eqn 10–12). Similarly, the holes
(H+) can be in contact with water molecules producing •OH (Eqn 13). •OH decomposes
simazine pesticides into nontoxic inorganic molecules and ions [181].

There are few recent studies on the removal of heavy metal ions by nanozyme, but
there are still several methods with high removal efficiency. AgRu bimetal mesoporous
nanozyme costabilized by β-CD and GO (AgRu@ β-CD co GO) was first constructed [168].
The nanozyme has a porous microstructure and a large number of hydroxyl and GO
aromatic rings, which can enrich and adsorb a large amount of Hg+ and Cl− in water. The
authors, through a 0.22 µm commercial millipore filtration membrane, repeatedly filtered
the mixed solution containing Hg+, Cl−, and nanozyme three times, and the Hg2+ and
Cl− removal efficiency reached more than 95.4% and 93.8%, respectively. In another work,
Su et al. [167] investigated the microbial sensitivity regulation mechanism (MSRM) on
typical paddy field heavy metal pollution (As3+ and Cr6+) using nanozyme nanoMn3O4-
coated microbial populations (NMCMP) and proved that Flavoisolibacter and Arthrobacter
were two main bacteria related to heavy metal (As3+ and Cr6+) pollution remediation. In
addition, NMCMP can enhance the reduction of Cr6+ level and inhibit the release and rapid
oxidation of As3+ during the repair process of As2H2S3 (Figure 8b). Methyl orange is a
typical dye in industrial wastewater selected as a typical dye pollutant because it is not
easily degraded. CNZ was applied to the degradation of methyl orange pollutants [160]. At
a high temperature of 60 ◦C and pH value of 3.93%, the degradation rate can be obtained in
less than 10 minutes. In addition, the nanozyme showed excellent reusability and storage
stability. However, Pd@ZnNi-MOF/GO nanocomposites with high peroxidase-like activity
took only 8 min to completely degrade the methyl blue dye, and the catalytic degradation
efficiency was as high as 95% [162].
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Figure 8. (a) Schematic diagram of MNP@CTS nanozyme-catalyzed degradation of phenol [171].
(b) Experimental design and process on NMCMP (NMCMP: nanozyme nanoMn3O4-coated microbial
populations) [167]. (c) Schematic diagram of Fe3O4 nanozyme-catalyzed degradation of microplas-
tics [177]. Reproduced with permission from (a) Ref. [171], Copyright 2018 Elsevier; (b) Ref. [167],
Copyright 2022 Elsevier; (c) Ref. [177], Copyright 2022 Wiley Online Library.

Decomposition of phenol and phenolic compound purification of the environment
is the focus of social attention. The degradation of phenol and phenolic compounds
using ferromagnetic nanoparticles (MNPs) has many advantages. Ferromagnetic chitosan
nanozymes (MNP@CTS) have the ability to catalyze the production of reactive oxygen
species from hydrogen peroxide. Under the action of reactive oxygen species, the substrate
phenol can be rapidly oxidized into various small molecules. Meanwhile, CTS can improve
the catalytic efficiency and increase the degradation rate and degradation effect (Figure 8a).
The removal efficiency is higher than 95% within 5 h [171]. Microplastics have a high surface-
to-volume ratio, and they can act as a carrier for invading microorganisms, heavy metals,
and other contaminants. Some of the long-term deleterious effects of microplastics include
infertility, degradation of microplastics, and cancer. Therefore, it is crucial to remove and
degrade microplastics in water resources. Hydrophilic bare Fe3O4 nanoaggregates allowed
efficient removal of the most common microplastics including high-density polyethylene,
polypropylene, polyvinyl chloride, polystyrene, and polyethylene terephthalate [177]. The
bare Fe3O4 nanoaggregates with peroxidase-like activity further catalyzed the degradation
of microplastics with nearly 100% efficiency by adsorbing to microplastics via hydrogen
bonding (Figure 8c).

6. Other Environmental Protection Applications
6.1. Air Purification

Air pollution does great harm to people who breathe with their lungs. Formalde-
hyde is particularly harmful. Newly decorated rooms often face the problem of too much
formaldehyde and cannot be occupied. Ecological nanozymes can catalyze the decompo-
sition of formaldehyde. The average purification rate of formaldehyde in two hours was
91.9% [57]. The composite material is made of activated carbon fiber (ACF) and porous
polymer composite and is also equipped with an antibacterial agent. When formaldehyde
molecules are sucked into the nanospace, the nanozyme will react with the oxygen in the
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air to produce highly active superoxide ions with active oxygen structure. Due to the
large contact area between the ecological enzyme catalyst and the adsorbed formaldehyde
molecules in the nanopores, the active catalyst molecules quickly combine with formalde-
hyde molecules. After a series of oxidation-reduction enzyme catalyzed reactions, different
peroxyintermediate oxidation molecules are formed. Finally, the formaldehyde molecules
are oxidized into water and carbon dioxide molecules [57]. However, the ecological en-
zyme quickly returned to its original state and combined with oxygen molecules in the air
again. The process of “combination with oxygen molecules– formation of active oxygen
molecules–combination with formaldehyde molecules–enzymatic decomposition” keeps
repeating so as to remove formaldehyde, bacteria, and other organic molecules in the air.
This can keep the composite material clean for a long time.

6.2. Antibacterial and Antifouling Agent

Marine biofouling refers to the process in which marine microorganisms, animals, and
plants continuously enrich and grow on artificial surfaces to form biofouling, which is a
worldwide problem affecting maritime transport and communication facilities and coastal
power plants [183]. The microfouling organisms on the substrate surface form a hetero-
geneous biofilm, which is composed of a variety of heterotrophic bacteria, cyanobacteria,
diatoms, protozoa, and fungi [184]. Biofouling can increase hull roughness and weight,
increase navigation resistance, greatly increase fuel consumption, cause economic losses of
billions of dollars every year, increase carbon dioxide emissions, and intensify the room
temperature effect [185]. In addition, organisms attached to distant ships will enter different
sea areas, causing potential “species invasion” and affecting the marine ecological balance.
When they block the mesh of mariculture cages, they can cause large-scale death of fish
and shrimp. For a long time, the method to solve the pollution of marine organisms mainly
depended on the toxic effect of heavy metal ions, which also causes serious pollution of the
marine environment. In recent years, the research and development of nanozyme provides
a new solution to prevent and remove marine biological fouling.

A semiconducting nanozyme consisting of chromium single atoms coordinated on
carbon nitride (Cr-SA-CN) that performs bifunctional roles of nonsacrificial H2O2 photosyn-
thesis and haloperoxidase-mimicking activity for antibiofouling was constructed [186]. The
bifunctional Cr-SA-CN nanoplatform promotes the sustainable formation of HOBr under
visible light radiation, so it has excellent antibacterial ability. Moreover, the nanozyme can
continuously produce H2O2 from underwater and oxygen under visible light irradiation for
enzymatic reaction. Field tests in seawater show that Cr-SA-CN, as an antibacterial additive
for environmental protection coatings, can prevent the colonization of marine microorgan-
isms on inert surfaces. In addition, the disinfection efficiency of Cr-SA-CN + Br− against
Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Vibrio vulnificus
was, respectively, 97%, 96%, 92%, and 95%. This study not only proved the ability of
monatomic nanozyme to resist biological pollution and sterilization but also provided a
strategy for designing more innovative nanozymes with multifunctionality. Nanozyme
antifouling agents with the same principle also include photothermal nanozyme with Mo
single atom as the active site (Mo SA-N/C), which also has halogen oxide enzyme-like
activity [187]. It catalyzes the oxidation of Br– and H2O2 to produce cytotoxic HOBr. At
the same time, the photothermal effect induced by visible light greatly accelerates the
reaction process. Attapulgite (ATP) is a kind of natural and available nanomineral that has
a special layered chain structure, large specific surface area, strong adsorption capacity,
and surface dynamic properties. It provides rapid mass transfer and abundant accessible
sites for efficient catalytic reactions [188]. Feng et al. [189] synthesized iron and copper-
doped ATP (Fe Cu/ATP) with POD-like activity. The addition of Fe and Cu improves the
conversion efficiency of H2O2, thus showing enhanced POD-like activity. The bactericidal
mechanism is to produce reactive oxygen species to attack bacterial populations (Figure 9a).
The antibacterial rate of Fe Cu/ATP against Escherichia coli and Staphylococcus aureus is
100% and has a long-term effect. Wei et al. [190] synthesized Fe3O4@MoS2-Ag made great
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efforts in bacterial adsorption and toxic attack. Topological structure of MoS2 nanosheets
and S-vacancy enabled Fe3O4@MoS2-Ag to have strong adhesion with bacteria by forming
chemical bonds, which shortens the diffusion distance of free radicals and enhances the
antibacterial effect (Figure 9b). The nanocomposite has the characteristics of peroxidase
simulation and can catalyze H2O2 to produce living oxygen to attack bacteria. In addition,
the released Ag+ plays an auxiliary role while attacking the bacterial membrane. Under
near-infrared radiation, local hyperthermia and peroxidase simulation can further enhance
the sterilization effect. Magnetism also makes it reusable. The method has broad-spectrum
antibacterial performance against Gram-negative bacteria, Gram-positive bacteria, drug-
resistant bacteria, and fungal bacteria.
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6.3. Enzyme-like Nanomaterial (Nanozyme)-Based Biofuel Cells

Human beings are facing environmental problems caused by the excessive exploitation
of fossil energy. In recent years, countries all over the world have focused on sustainable and
environment-friendly new energy. Biofuel cells have become an alternative energy conver-
sion device [191]. Biofuel cells can be divided into three categories: microbial biofuel cells
(MBFC), enzyme biofuel cells (EBFC), and enzyme-like nanomaterial (nanozymes)-based
biofuel cells (NBFC). MBFC have many advantages in waste treatment and environmental
protection [192], but the key disadvantage limiting their wide application and commercial-
ization is that their power output is significantly low, and they are extremely difficult to
control the internal electron transfer of microorganisms. Unlike MBFC, EBFC catalyze the
oxidation of biofuels to generate electricity with the help of natural enzymes. The biofuels
of EBFC are usually sugar relatives, such as glucose, sucrose, fructose, alcohols (including
ethanol and methanol), organic acids, and organic salts (such as sulfite). However, glucose-
based EBFC have many limitations derived from natural enzymes, such as variability
and instability, high production cost, and difficult electron transfer [193,194]. In this case,
compared with natural enzymes, nanozymes have become potential catalytic materials for
developing glucose biofuel cells due to their inherent characteristics (such as long-term
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stability, easy synthesis, low cost, and adjustable enzyme mimic activity). Gu et al. [195]
found that black phosphorus (BP) showed glucose dehydrogenase (GDH)-like activity and
could catalyze the oxidation of glucose without any by-products. BP is a strong alternative
candidate for sustainable biofuel cells. Finally, nanozyme-based EBFC consisting of BP an-
odes for glucose oxidation and Cu2+/carbon nanotube (Cu2+/CNT) cathodes for reducing
O2 under natural conditions were successfully constructed (Figure 10a). The power output
of BP-based EBFC is higher than that of GDH-based EBFC. BP nanosheets maintained
structural integrity before 360 ◦C, while the protein structure of GDH was destroyed after
250 ◦C. More important, EBFC based on nanozyme still showed high stability after 30 days
of operation. This work provides more possibilities for the application of BP in the field of
nanozyme. Compared with metal-based nanozymes, metal oxide nanozymes can be easily
synthesized at low cost. Ho et al. [196] proposed interesting NBFC based on metal oxides,
in which CoMn2O4/carbon was used as a GOx-like anode catalyst in biofuel cell systems.
NBFC show a power output of 2.372 mW/cm2, which is comparable to the commercial
platinum/carbon-based biofuel cell system.
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In the traditional design of EBFC, once the fuel is added to the anode, the generation
of electric energy will start and continue until the fuel is exhausted or the circuit is cut off.
This uncontrollable way will lead to energy waste when EBFC are not used. Li et al. [197]
proposed a novel optical switch for EBFC by controlling the electron acceptor in the cathode.
When the stable TMBred was oxidized by singlet oxygen activated by the C point under
light conditions, the medium can accept the electrons generated by the enzyme anode,
thus leading to the formation of a path for the external circuit. Without radiation, TMBred
cannot be converted into TMB198ox. A limited amount of electron acceptors is rapidly
depleted, resulting in almost zero current and power density. Here, the C-point nanozyme
was used as a photosensitizer of oxygen, and TMB is added to the cathode chamber as an
electron acceptor. Theoretically, without lighting, there should be no current in the external
circuit, showing a completely “off” state. The EBFC can be precisely and easily adjusted
by the optical switch with light as the input signal (Figure 10b). Therefore, it avoids the
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damage to the anode enzyme caused by the traditional pH switch. This optical switch
can adjust the power output of EBFC according to specific optical signals and promote the
“intelligent” application of EBFC.

Enzymes such as nanomaterial (nanozyme)-based biofuel cells mainly use noble metal-
based nanozymes, metal oxide-based nanozymes, and electron-receiving laccase that can
mimic natural GOx and catalase. NBFC are stable and have a long service life. The high
catalytic activity of glucose oxidation can output enough power, which can be synthesized
on a large scale and has low production cost. The use of nanozymes in glucose biofuel cell
systems has significantly improved the power generation performance. The utilization of
NBFC will continue to improve.

7. Conclusions and Prospects

To summarize, we reviewed the application of nanozyme in the environmental field
from three aspects: environmental monitoring, environmental management, and other
environmental applications. The influencing factors of nanozyme catalytic activity were
briefly summarized as well. The size, structure, composition combination, doping, and
surface modification of nanozyme can adjust the catalytic activity of nanozyme. The
specificity of nanozyme is mainly improved by biological recognition molecules (biological
enzyme, MIP, DNA, antibody, aptamer) and the simulation of the active center and binding
site of the biological enzyme. In addition to its own intrinsic enzyme activity, it can also
affect the catalytic efficiency through pH, temperature, light stimulation, and so on. In
terms of environmental monitoring and treatment, the detection and degradation of heavy
metal ions, phenolic compounds, dyes, plasticizers, pesticides, and antibiotics all involve
nanozymes. Moreover, nanozymes can be used as antibacterial and antifouling agents and
biofuel cells to indirectly protect the environment. Great development and applications of
nanozyme have been promoted in the field of environmental science.

Nanozyme has been developed for more than 20 years. Nanomaterials with new
enzyme activities have been continuously explored. The design strategy of nanozymes has
been constantly improved. However, nanozyme still has some limitations regarding the
direction of development in the future.

• At present, the types of nanozymes are still too few, and they are mainly con-
centrated in the oxidoreductase family and hydrolase family. Compared with
the six categories of natural enzymes, there is still an urgent need to unlock
more simulated enzymes with different catalytic activities to expand the scope
of application.

• Nanozymes are a succedaneum for natural enzymes, but the catalytic activity of
most nanozymes is far inferior to natural enzymes. Hence, strategies need to be
continuously explored to improve their catalytic activity.

• Nanozymes can show good performance in the laboratory. Nevertheless, they
are still disadvantaged because they cannot be used on a large scale for the actual
pollutant treatment industry, such as catalytic devices requiring high-precision
technology, short service life, and higher cost than traditional environmental
treatment methods.

• Although some nanozymes that break through the restriction of pH have ap-
peared, most nanozymes are still limited by pH with narrow range. Technologi-
cal breakthroughs are still needed in this regard so that the catalytic activity of
most nanozymes is no longer limited by pH.

• Nanozymes are intrinsically toxic. It is vital to design low-toxicity nanozymes by ad-
justing their physical and chemical properties such as size, shape, surface properties,
surface charge, and chemical composition to avoid secondary contamination.

• In recent years, nanozymes with multienzyme activity have been continuously
developed, which can be used for multifunctional applications. However, at
the same time, facing the challenge that the selectivity of nanozymes with
multienzyme activity is lower than that of single-enzyme live nanozymes, will
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challenge researchers to balance the relationship between "multifunction" and
“high selectivity” as well as achieve a win–win situation.

• Recently, the specificity of nanozyme is much lower than that of natural enzyme.
The design of nanozyme should be committed to better a bionic biological
enzyme’s active center and binding site, and the recognition element should
be stably and effectively connected to the nanozyme. In addition, it is critical
to explore the mechanism and law of interactions between nanozyme and a
recognition element. Meanwhile, it is still necessary to improve the performance
of nanozyme sensors by combining the research results of specific recognition in
other fields and sensing technologies.

• Nanozyme detection mostly relies on colorimetric sensing, but colorimetric
sensing has the problems of large interference and low sensitivity. In addition
to electrochemistry, photoelectrochemistry, and surface-enhanced Raman scat-
tering (SERS), adding more detection modes can have unexpected effects on
environmental monitoring.
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