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Abstract: An electrochemiluminescence-electrochemistry (ECL-EC) dual-mode sensing platform
based on a vertically-ordered mesoporous silica films (VMSF) modified electrode was designed here
for the sensitive and selective determination of cancer antigen 15-3 (CA 15-3), a specific biomarker
of breast cancer. VMSF was assembled through a rapid electrochemically assisted self-assembly
(EASA) method and plays a crucial role in signal amplification via a strong electrostatic interaction
with the positively charged bifunctional probe Ru(bpy)3

2+. To construct the biorecognition interface,
epoxy functional silane was linked to the surface of VMSF for further covalent immobilization of
the antibody. As a benefit from the specific combination of antigen and antibody, a non-conductive
immunocomplex layer was formed in the presence of CA 15-3, leading to the hinderance of the mass
and electron transfer of the probes. Based on this strategy, the dual-mode determination of CA 15-3
ranging from 0.1 mU/mL to 100 mU/mL with a LOD of 9 µU/mL for ECL mode, and 10 mU/mL to
200 U/mL with a LOD of 5.4 mU/mL for EC mode, was achieved. The proposed immunosensor was
successfully employed for the detection of CA 15-3 in human serum without tedious pretreatment.

Keywords: dual-mode detection; electrochemiluminescence; electrochemistry; cancer antigen 15-3;
vertically ordered mesoporous silica film; immunosensor

1. Introduction

Cancer has become the second major cause of death worldwide [1]. According to
the latest statistics from the International Agency for Research on Cancer (IARC), breast
cancer occurs with the highest incidence and is also the major cause of cancer-related
mortality in females [2], indicating that it is the most common and high-risk cancer globally.
The diagnosis of breast cancer mainly relies on clinical screening or imaging analysis that
often requires invasive means to obtain tissue samples and may bring sufferings to the
patients [3]. The establishment of a noninvasive/minimally invasive, non-radioactive,
simple, and rapid technique for early diagnosis remains a serious challenge and an unmet
demand. Tumor markers, a kind of biological macromolecules existing in accessible body
fluids (e.g., blood, serum, and urine) [4], provide a new standard for cancer diagnosis,
health monitoring and personalized treatment. Cancer antigen 15-3 (CA 15-3) is an acidic
glycoprotein with a molecular weight of 300–450 kDa that is often found in those who
suffer from breast cancer [5,6]. The serum content of CA 15-3 in healthy people is usually
less than 30 U/mL [7]. Abnormally elevated serum CA 15-3 levels indicate a higher risk
of breast cancer. Simple but sensitive identification and quantitation of serum CA 15-3
level is critical for cancer screening, determination of disease progression, and treatment
effect assessment.
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Enzyme-linked immunosorbent assay (ELISA) [8], fluorescent immunoassay (FIA) [9],
and radioimmunoassay (RIA) [10] have been reported for the quantitation of CA 15-3, but
cumbersome instruments, trained operators and time-consuming preprocesses are always
required. The electrochemical (EC) sensing technique has proven itself to be a powerful tool
because of the fast response, simple operation, and ease of integration [11,12] compared
with the traditional immunoassay, despite the hidden risk of inaccurate test results. To
guarantee the accuracy and reliability of the diagnosis, dual-mode bioassays with different
mechanisms and independent signal conversion have been developed. To date, a series of
dual-mode biosensors which incorporate colorimetric-electrochemiluminescence (ECL) [13],
ECL-electrochemical impedance spectroscopy (EIS) [14], fluorescence-colorimetry [15], and
ECL-EC [16,17] have been reported. Among them, the ECL-EC dual-mode that combines
the wider linear range and zero background signal of the former and the fast and easy
operation characteristics of the latter with highly sensitivity, has attracted much attention.
Generally, two different probes for ECL and EC are involved in the reported dual-mode
detection strategy, which requires more laborious procedures. Tris(2,2′-bipyridyl) ruthe-
nium (Ru(bpy)3

2+), as an excellent bifunctional probe with both outstanding EC and ECL
response, is a good candidate for constructing an ECL-EC dual-mode sensor, not only
simplifying the manual work, but also reducing the analysis error effectively [17,18].

In the recent three decades, functional mesoporous materials possessing abundant
unique mesostructures have exhibited tremendous potential in the fields of adsorption,
separation, catalysis, and sensing [19–21]. Among them, the vertically-ordered meso-
porous silica films (VMSF) made of numerous perpendicularly aligned nanochannels with
a ultrasmall and uniform diameter of 2~3 nm has attracted much attention [22,23]. The de-
protonation of plentiful silanols with pKa of ~2 on the VMSF surface endows its negatively
charged property [24,25]. All these characteristics endow VMSF with a good capability of
prominent charge-based permselectivity, high molecular permeability, and outstanding
antifouling ability [26–28]. Therefore, VMSF has been widely used in the construction of
sensing platforms to serve certain functions (e.g., preconcentration through electrostatic
interaction [29], hydrogen bonding [30] or hydrophobic extraction [31], specific recognition
by tailoring recognitive molecules [32], and antifouling ability through size exclusion effect
of nanopores [33]). As a monolayer of modification material with a nanoscale thickness,
diverse VMSF-based sensors have been developed for the determination of biomolecules
(DNA, antibodies, and antigens) [17,34], pharmaceutical molecules [35,36], small organic
pollutants [30,37], and metal ions [38,39] in biofluids (blood, serum, urine, and sweat) and
environmental samples. Su’s group observed a two-orders-of-magnitude ECL intensity
enhancement when equipping indium tin oxide (ITO) electrode with a layer of VMSF
due to the strong electrostatic attraction between the negatively charged nanochannels
and the cationic ECL luminophore Ru(bpy)3

2+ and obtained a high ECL intensity even
with a very low concentration [40]. On the other hand, the existence of silanols with ex-
cellent covalent reactivity towards silane coupling reagents provides the precondition to
construct a recognition interface by introducing certain specific molecules to design a gated
sensing scheme [41,42]. VMSF has become a fascinating material in the construction of
sensing interfaces, demonstrating a great potential for direct and sensitive detection of tar-
gets in complex samples without cumbersome pretreatment processes including filtration,
separation, and pre-enrichment.

In this work, an ECL-EC dual-mode immunosensor constructed on an ITO sub-
strate composed of a layer of mesoporous silica membrane as the signal amplifier, and a
monomolecular layer of anti-CA 15-3 antibody as the recognition element was designed for
the sensitive and selective detection of the breast cancer biomarker CA 15-3. Compared
with medical imaging and pathological biopsy applied to the clinical diagnosis of breast
cancer, this method offers more hope for the early detection of breast cancer rapidly and
conveniently. As shown in Scheme 1, VMSF was first assembled on ITO through the elec-
trochemical assisted self-assembly (EASA) method. The construction of the immune recog-
nition interface for further identifying and capturing targets specifically was achieved by



Biosensors 2023, 13, 317 3 of 14

immobilizing the antibodies with the assistance of (3-glycidyloxypropyl)trimethoxysilane
(GPTMS) linked to the outer surface of VMSF beforehand. A layer of immunocomplex
with poor conductivity and large size would form in the presence of the CA 15-3 antigen
and hamper the mass transfer and electron transfer of the bifunctional probe Ru(bpy)3

2+,
leading to decreased ECL-EC signal and the final signal-off detection of CA 15-3. The
benefits of the immunosensor lie in the easy fabrication of the modification material which
serves as both a signal amplifier to enrich Ru(bpy)3

2+ and an anti-fouling filter, as well as
in the generalizability of the detection strategy which is suitable for the quantitation of
various targets by simply changing the immobilized bio-receptors.
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Scheme 1. Illustration of the preparation of the immunosensor and detection of CA 15-3.

2. Materials and Methods
2.1. Reagents and Solution

CA 15-3, anti-CA 15-3 antibody, carcinoembryonic antigen (CEA), and prostate specific
antigen (PSA) were from Beijing KEY-BIO Biotech. Tetraethyl orthosilicate (TEOS), hexade-
cyl trimethyl ammonium bromide (CTAB), sodium nitrate (NaNO3), sodium hydroxide
(NaOH), potassium ferrocyanide (K4[Fe(CN)6]), potassium ferricyanide (K3[Fe(CN)6]),
bovine serum albumin (BSA), and (3-glycidoxypropyl)methyldiethoxysilane (GPTMS)
were from Aladdin Chemistry Co. Ltd. (China). Tris(2,2-bipyridyl) dichlororuthenium (II)
hexahydrate (Ru(bpy)3Cl2·6H2O) and hexaammineruthenium (III) chloride (Ru(NH3)6Cl3)
were purchased from Sigma-Aldrich. Ethanol (99.8%), hydrochloric acid (HCl, 38%), and
acetone were from Hangzhou Shuanglin Chemical Reagent Co. Ltd. Phosphate buffered
saline (PBS, 0.01 M, pH = 7.4) was obtained by mixing NaH2PO4 and Na2HPO4 in a certain
ratio. All chemicals and reagents were used as received without any further purification.
All the aqueous solutions used here were prepared using ultrapure water (18.2 MΩ cm)
from Milli-Q Systems (Millipore Inc., Massachusetts, America). Serum of healthy men was
obtained from the Center of Disease Control and Prevention (Hangzhou, China) for real
sample analysis.
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2.2. Apparatus and Electrodes

An MPI-E II ECL analytical system (Xi’an Remex Analytical Instrument Ltd., Xi’an, China)
was used to perform ECL measurements. EC measurements, including cyclic voltammetry
(CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy
(EIS) were performed on an Autolab electrochemical workstation (PGSTAT302N, Metrohm,
Switzerland). A traditional three-electrode system was adopted. Bare or modified ITO,
platinum wire or platinum plate, and Ag/AgCl electrode (saturated with KCl solution)
were used as the working electrode, counter electrode and reference electrode, respectively.
Zhuhai Kaivo Optoelectronic Technology provided ITO glasses (<17 Ω/square, thickness:
100 ± 20 nm), which were cleaned ultrasonically with 1 M NaOH, acetone, ethanol and
deionized water, respectively. The geometric surface area of the electrode was fixed to
1 cm × 0.5 cm.

The morphology of VMSF/ITO was investigated on a JEM-2100 (JEOL Ltd., Tokyo,
Japan) transmission electron microscopy (TEM). The thickness of VMSF/ITO was charac-
terized with a SU8010 (Hitachi, Tokyo, Japan) scanning electron microscopy (SEM).

2.3. Procedures
2.3.1. Preparation of VMSF/ITO Electrode

According to the reported electrochemically assisted self-assembly (EASA) method,
an easy and rapid modification of VMSF on the ITO electrode was achieved [43]. A
sol for film electrodeposition was prepared as follows: first mix 20 mL of ethanol and
20 mL of NaNO3 (0.1 M, adjusted to pH = 2.6 by HCl) together, then add 1.585 g of CTAB
and 3050 µL of TEOS. After their complete dissolution, the solution was stirred for 2.5 h
at room temperature for hydrolyzation. The assembly of VMSF was conducted under
a galvanostatic condition (j = −0.70 mA/cm2) for 10 s after immersing the ITO in the
hydrolyzed sol, using an Ag/AgCl (saturated KCl) as reference electrode and a platinum
plate (2 cm × 4 cm) as counter electrode. The as-prepared electrode was rapidly removed
from the sol and washed with copious deionized water, dried with N2 stream, and further
treated overnight at 120 ◦C. The obtained electrodes were denoted SM@VMSF/ITO, which
retained surfactant micelles (SM) templates in the nanochannels. The templates can be
conveniently removed using 0.1 M HCl-ethanol by stirring for 5 min and the obtained
electrode modified with open nanochannels was termed VMSF/ITO.

2.3.2. Characterization of VMSF/ITO Electrode

The morphology of VMSF was characterized with a JEM-2100 TEM with an accelera-
tion voltage of 100 kV. The TEM specimen was prepared by dispersing the VMSF peeled
off from the VMSF/ITO in ethanol through ultrasonication, and finally dropped onto the
copper grids for investigation. The thickness of VMSF was characterized using a SU8010
SEM with an acceleration voltage of 5 kV. Before observation, a fresh cross section was
obtained by breaking up the VMSF/ITO and spraying it with gold.

The integrity and permeability of VMSF were investigated with the CV technique using
Fe(CN)6

3− and Ru(NH3)6
3+, two types of standard redox probes with different charges.

2.3.3. Fabrication of Immunosensor towards CA 15-3

For the immunosensor fabrication, the construction of a biorecognition interface is
of great significance. To immobilize the antibody on the outer surface of the VMSF/ITO
electrode, the bifunctional reagent GPTMS with both epoxy and silyl groups was selected
as the crosslinker [34]. Typically, the SM@VMSF/ITO was immersed in GPTMS (2.26 mM
in ethanol) for 60 min, then the GPTMS was covalently linked to the outer surface in-
stead of the inner channels of the VMSF through silane reaction. The electrode was then
treated with 0.1 M HCl-ethanol to remove the SM templates. The electrode modified with
epoxy-functionalized nanochannels was named O-VMSF/ITO. Anti-CA 15-3 antibodies
(anti-CA 15-3) were further immobilized by covering the O-VMSF/ITO with 50 µL of anti-
CA 15-3 solution (10 µg/mL in PBS) for 90 min at 37 ◦C via the ring opening reaction
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between active epoxy groups on the VMSF and amino residues of the anti-CA 15-3. After
rinsing with PBS, it was incubated with s BSA solution (1%, w/w) for 90 min to block the
nonspecific binding sites. The immunosensor termed as anti-CA 15-3/O-VMSF/ITO was
obtained and was stored at 4 ◦C for further tests. The procedure of the immunosensor
fabrication is illustrated in Scheme 1.

2.3.4. Dual-Mode Tests

Before the ECL and EC tests, the immunosensor was incubated with different concen-
trations of CA 15-3 (50 µL in PBS) for 45 min at 37 ◦C and was noted as CA 15-3/anti-CA
15-3/O-VMSF/ITO, followed by thoroughly washing with PBS. For ECL measurement,
the CA 15-3/anti-CA 15-3/O-VMSF/ITO was placed in PBS containing 10 µM Ru(bpy)3

2+

and 3 mM TPA. The ECL process was triggered by a continuous CV procedure with the
potential range of 0 to 1.25 V at 0.1 V/s, which was recorded simultaneously along with the
ECL signals. The voltage of the photomultiplier tube (PMT) was set at 400 V. For the EC
measurement, the CA 15-3/anti-CA 15-3/O-VMSF/ITO was immersed in PBS including
10 µM Ru(bpy)3

2+ and let to stand for 30 min to preconcentration before recording the
DPV curves.

Real sample analysis was conducted on human serum from healthy adults using the
standard addition method without complex preprocessing. The serum was spiked with a
known amount of CA 15-3, followed by 50-times dilution with PBS, and was analyzed by
the established methods.

3. Results and Discussions
3.1. Morphology and Permeability of VMSF/ITO

As expected, the VMSF was assembled on the surface of the ITO electrode due to
polycondensation of TEOS under the catalysis of hydroxide ions generated from the elec-
troreduction of protons/water and nitrate ions, where CTAB served as the template, and
was proved by TEM and SEM images (Figure 1a,b). VMSF presents a 2D structure of
intact film with a thickness of 90 nm and is free of any cracks. A too thin VMSF would
lead to an inadequate enrichment of Ru(bpy)3

2+, and would finally fail to achieve a high
sensitivity. With the prolongation of electrodeposition time, a much thicker VMSF with
more silica aggregates byproducts on its surface would be obtained, which would restrict
the diffusion of Ru(bpy)3

2+ species across the film to the underlying electrode surface.
According to the many reported works [23,24,28–30], a procedure of electrodeposition
for 10 s at j = −0.70 mA/cm2 was selected here to obtain a VMSF with an appropriate
thickness. This not only achieves an effective electrostatic attraction to Ru(bpy)3

2+, but also
guarantees an efficient and rapid response. The film contains numerous nanochannels that
are highly ordered and hexagonally packed and whose diameter is 2~3 nm.

Considering that VMSF plays the role of the modification material that is on the
electrolyte/electrode interface, it is crucial to determine how VMSF affects the mass
transfer. The permeability is investigated by comparing the electrochemical behaviors
of Ru(NH3)6

3+ and Fe(CN)6
3−/4− on ITO, SM@VMSF/ITO and VMSF/ITO. As shown in

Figure 1c,d, SM@VMSF/ITO exhibited no peak current but only a non-faradic current to-
wards the Ru(NH3)6

3+ probe and a rather large charge transfer resistance (Rct) represented
by the equivalent diameter of Nyquist curve obtained using the EIS technique, a power-
ful tool to study interfacial property [44]. This is due to the hydrophobic SM templates
inside the nanochannels that block the mass transfer of charged probes (Ru(NH3)6

3+ and
Fe(CN)6

3−/4−) and finally hinder the electron exchange. The nanochannels open after the
removal of SM, which facilitates the diffusion of particles, and thus VMSF/ITO shows
a pair of well-defined redox peaks to Ru(NH3)6

3+ and a much smaller Rct. In addition,
VMSF/ITO exhibits a relatively higher peak current towards Ru(NH3)6

3+ than that of
ITO, which derives from the deprotonation of abundant silanol with a pKa of ~2 in the
nanochannel walls that can create a strong electrostatic attraction to positively charged
species [25].
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3+ and (d) EIS plots of ITO, SM@VMSF/ITO, and VMSF/ITO in 0.1 M KCl solution
containing 2.5 mM Fe(CN)6

3−/4−. The scan rate in (c) was 0.05 V/s. The insets up and down in
(d) are the equivalent circuit and magnified EIS plots of ITO and VMSF/ITO, respectively.

The excellent capability of VMSF to enrich cations was further verified by Ru(bpy)3
2+, a

bifunctional probe with outstanding ECL and EC activities. The ECL process was triggered
by a continuous CV procedure; the mechanism is as follows:

Ru(bpy)3
2+ − e− → Ru(bpy)3

3+

TPA − e− → TPA·+

TPA·+ − H+ → TPA

TPA· + Ru(bpy)3
3+ → Ru(bpy)3

2+*

Ru(bpy)3
2+*→ Ru(bpy)3

2+ + hν (λmax ≈ 620 nm)

During the positive scanning of potential, TPA and Ru(bpy)3
2+ were electrooxidized

to TPA· radical and Ru(bpy)3
3+. The redox reaction between TPA· radical and Ru(bpy)3

3+

led to the generation of excited Ru(bpy)3
2+* that emitted light (λmax ≈ 620 nm) when

turning to the ground state, which was recorded by the photomultiplier. As shown in
Figure 2, the ECL and DPV signals produced by 10 µM Ru(bpy)3

2+ on ITO were very weak
while those obtained on VMSF/ITO were remarkable enhanced thanks to the electrostatic
preconcentration of the nanochannel layer in the positively charged probe. VMSF/ITO
tends to provide an adequate basic signal and exhibits enormous potential in the subsequent
immunosensor fabrication.



Biosensors 2023, 13, 317 7 of 14

Biosensors 2023, 13, x FOR PEER REVIEW 7 of 14 
 

Ru(bpy)32+* → Ru(bpy)32+ + hν (λmax ≈ 620 nm) 
During the positive scanning of potential, TPA and Ru(bpy)32+ were electrooxidized 

to TPA· radical and Ru(bpy)33+. The redox reaction between TPA· radical and Ru(bpy)33+ 
led to the generation of excited Ru(bpy)32+* that emitted light (λmax ≈ 620 nm) when turning 
to the ground state, which was recorded by the photomultiplier. As shown in Figure 2, 
the ECL and DPV signals produced by 10 μM Ru(bpy)32+ on ITO were very weak while 
those obtained on VMSF/ITO were remarkable enhanced thanks to the electrostatic pre-
concentration of the nanochannel layer in the positively charged probe. VMSF/ITO tends 
to provide an adequate basic signal and exhibits enormous potential in the subsequent 
immunosensor fabrication. 

  
(a) (b) 

Figure 2. (a) ECL curves of ITO and VMSF/ITO in 10 μM Ru(bpy)32+ and 3 mM TPA; (b) DPV curves 
of ITO and VMSF/ITO in 10 μM Ru(bpy)32+. 

3.2. Characterization of the Immunosensor Construction 
The CV and EIS techniques were employed to monitor the interface features during 

the bioelectrode’s stepwise assembly. As shown in Figure 3a, VMSF/ITO showed two 
well-defined redox peaks, which were decreased after the modification of GPTMS, indi-
cating the presence of epoxy group entities. The peak currents were further reduced with 
the immobilization of antibodies and the capture of CA 15-3 antigens, suggesting that an 
insulating protein layer was formed on the electrode surface, creating an obstacle to both 
mass and electron transfer. Figure 3b shows the EIS results fitted according to the Randles 
equivalent circuit. As shown by the inset, the Randles equivalent circuit contained a solu-
tion resistance (Rs), a double-layer capacitance (Cdl), Warburg impedance (Zw), and an ap-
parent charge transfer resistance (Rct) that is equal to the equivalent diameter of the semi-
circle in the high-frequency region [45]. The Rct of VMSF/ITO was the smallest (141 Ω) and 
increased after the crosslinking of GPTMS (329 Ω). The incubation with the antibodies 
caused an obstruction to the electron transfer of the redox probe, increasing the Rct of anti-
CA 15-3/O-VMSF/ITO significantly (493 Ω). The bio-recognition and combination of CA 
15-3 further aggravated the blocking effect and CA 15-3/anti-CA 15-3/O-VMSF/ITO had 
the largest Rct (607 Ω). The results above indicate the successful fabrication of the im-
munosensor. 

Figure 2. (a) ECL curves of ITO and VMSF/ITO in 10 µM Ru(bpy)3
2+ and 3 mM TPA; (b) DPV curves

of ITO and VMSF/ITO in 10 µM Ru(bpy)3
2+.

3.2. Characterization of the Immunosensor Construction

The CV and EIS techniques were employed to monitor the interface features during
the bioelectrode’s stepwise assembly. As shown in Figure 3a, VMSF/ITO showed two well-
defined redox peaks, which were decreased after the modification of GPTMS, indicating the
presence of epoxy group entities. The peak currents were further reduced with the immobi-
lization of antibodies and the capture of CA 15-3 antigens, suggesting that an insulating
protein layer was formed on the electrode surface, creating an obstacle to both mass and
electron transfer. Figure 3b shows the EIS results fitted according to the Randles equivalent
circuit. As shown by the inset, the Randles equivalent circuit contained a solution resistance
(Rs), a double-layer capacitance (Cdl), Warburg impedance (Zw), and an apparent charge
transfer resistance (Rct) that is equal to the equivalent diameter of the semicircle in the
high-frequency region [45]. The Rct of VMSF/ITO was the smallest (141 Ω) and increased
after the crosslinking of GPTMS (329 Ω). The incubation with the antibodies caused an
obstruction to the electron transfer of the redox probe, increasing the Rct of anti-CA 15-3/O-
VMSF/ITO significantly (493 Ω). The bio-recognition and combination of CA 15-3 further
aggravated the blocking effect and CA 15-3/anti-CA 15-3/O-VMSF/ITO had the largest
Rct (607 Ω). The results above indicate the successful fabrication of the immunosensor.
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3.3. Dual-Mode Tests of CA 15-3

The specific recognition and combination between the anti-CA 15-3 antibody and
the CA 15-3 antigen formed an antibody-antigen immunocomplex. In analogy with the
aforementioned CV and EIS results, Figure 4a shows decreased ECL responses with the
step-by-step assembling of the bioelectrode, confirming the feasibility of the ECL analysis.
The inset suggested an outstanding stability of the biosensor under continuous CV scanning
with a relative standard deviation (RSD) of less than 2%. The IECL-time curves recorded on
bioelectrodes incubated with a series of different amounts of CA 15-3 are shown in Figure 4b.
With the increase in CA 15-3, more immunocomplex was formed, which perturbed the
mass transfer of Ru(bpy)3

2+ and restrained the electron transfer at the electrode. A linear
relationship for CA 15-3 was obtained from 0.1 mU/mL to 100 U/mL using the equation
IECL = −997.0 logCCA15-3 + 2537 (R2 = 0.991). LOD is defined by the International Union
of Pure and Applied Chemistry (IUPAC) as the concentration (cL) that can be detected
with a reasonable certainty for a given analytical procedure. It can be derived from the
smallest measure (xL), which is calculated with the equation xL = xb1 ± ksb1, where xb1 is
the mean of the blank measures, sb1 is the standard deviation of the blank measures, and k
is a numerical factor commonly recommended as 3. Here, + and − are applied to signal-on
and signal-off sensors, respectively [46]. Thus, the LOD was calculated to be 9 µU/mL
according to the calibration curve equation. Compared with the other reported methods
listed in Table 1, this proposed ECL immunosensor exhibits a relatively wider linear range
and an exceedingly lower LOD for CA 15-3 determination without elaborate and complex
labor during the construction process. Diverse sophisticated nanomaterials and sandwich
strategies are widely used in other related works listed in Table 1. They require a complex
preparation process, several steps of incubation, and consume more high-cost biological
reagents. Our proposed sensor is simple in preparation, does not need multiple incubations
for detection, and is much more economic.
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IECL-time curves. (b) ECL responses of the immunosensor to various concentrations of CA 15-3 from
10−4 U/mL, 10−3 U/mL, 10−2 U/mL, 10−1 U/mL, 1 U/mL, 10 U/mL to 100 U/mL. (c) The corre-
sponding calibration curve. The error bars represent the standard deviation of three measurements
under the same condition.

In addition, considering the excellent electroactivity of Ru(bpy)3
2+, CA 15-3 was

quantified using the DPV method. Similar to the ECL mode, the feasibility of the EC mode
was verified by the gradually reduced DPV response during the bioelectrode fabrication as
shown in Figure 5a. Upon the increase in CA 15-3, a group of peak currents which decreased
linearly with the logarithm of the antigen concentration from 10 mU/mL to 200 U/mL
were obtained (Figure 5b), and the calibration curve was represented in Figure 5c using
the equation I = −0.82 logCCA15-3 + 4.60 (R2 = 0.992). Similar to the ECL mode, the LOD
was calculated to be 5.4 mU/mL (S/N = 3). Although the EC method was inferior in LOD
compared with the ECL mode, a higher detection upper limit was achieved. Although
the LOD of our proposal is not as low as 10−5 U/mL for the sandwich strategy using
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Ab2/HRP-MBs and Ab1/AuE, our immunosensor is free of complex labeling operations
or several steps of incubation. Dual-mode tests that combine the merits of ECL and EC
strategies succeed to broaden the working linear range while achieving an ultrasensitive
LOD. The total cost of a single fabricated immunosensor is approximately 0.366 USD,
which is much lower in cost compared to ELISA which costs around 1.31 USD for a single
sample test. Furthermore, the materials involved here are all commercially available,
indicating its potential for industrialization, as well as the possibility of application in
microfluidic Point-of-Care devices [47,48]. However, the immunosensor is susceptible
to matrix effects, and a dilution is required before testing bio-samples to guarantee the
accuracy in clinical application. In addition, an alkali condition may lead to the hydrolysis
of VMSF as the proposed immunosensor is applicative in neutral medium to keep its
mechanical stability. The current clinical determination of CA 15-3 is mainly based on a
chemiluminescence immunoassay. This method not only involves labeling technology, but
also requires two antibodies, as well as several steps of incubation and washing, which is
high-cost and time-consuming. Our proposed method involves only one step of incubation,
which meets the needs of rapid clinical determination of CA 15-3 at low cost.
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Table 1. Comparison of various methods for the determination of CA 15-3.

Electrode Mode Classification Linear Range
(U/mL) LOD (µU/mL) Ref.

anti-CA 15-3/NH2-SiO2-PTCA/CeO2/Pt/rGO/GCE ECL Label-free 0.012–120 1348 [49]
anti-CA 15-3/Ru(bpy)3

2+@UiO-66-NH2/GCE ECL Label-free 5 × 10−4–500 17.705 [50]
Ab2/AuNPs/CQDs-PEI-GO and

Ab1/AgNPs-PDA/GCE ECL Labeled 5 × 10−3–500 1.7 × 103 [51]

anti-CA 15-3/CS/PtNi NCs-L-Cys-luminol/GCE ECL Label-free 5 × 10−4–500 167 [52]
Ab2/CdTe@CdS/PAMAM and Ab2/Fe3O4@SiO2, ITO ECL Labeled 10−4–100 10 [53]

Ab2/HRP-MBs and Ab1/AuE EC Label-free 1.5 × 10−5–50 15 [54]
anti-CA 15-3/Ag/TiO2/rGO/GCE EC Label-free 0.1–300 7 × 104 [55]

anti-CA
15-3/DAP-AuNPs/P3ABA/2D-MoSe2/GO/SPCE EC Label-free 0.14–500 1.4 × 105 [56]

anti-CA 15-3/O-VMSF/ITO
ECL

Label-free
10−4–100 9

This workEC 10−2–100 5.4 × 103

PTCA: 3,4,9,10-perylenetetracarboxylic acid; rGO: reduced graphene oxide; GCE: glassy carbon electrode; Ab:
antibody; AuNPs: gold nanoparticles; CQDs: carbon quantum dots; PEI: polyethylenimine; GO: graphene oxide;
AgNPs: silver nanoparticles; PDA: polydopamine; PtNi NCs: platinum nickel nanocubes; L-Cys: L-cysteine;
PAMAM: polyamidoamine; HRP: horseradish peroxidase; MBs: magnetic beads; AuE: gold electrode; DAP:
deposited redox dye; P3ABA: poly(3-aminobenzylamine); and SPCE: screen-printed carbon electrode.
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3.4. Specificity, Selectivity and Stability of the Immunosensor

The proposed immunosensor was expected to be highly specific and selective for
CA 15-3 detection due to the antigen-antibody recognition. Therefore, the bioelectrode
was tested with different possible clinical cancer biomarkers such as the carcinoembryonic
antigen (CEA) and the prostate specific antigen (PSA) (the concentrations of interfering
proteins are both 500 ng/mL). As illustrated in Figure 6, the signal fluctuation caused by
individual interfering proteins was less than 7%; an evident decrease in signal was observed
when incubated with CA 15-3 or the mixture of all proteins. These results indicated the
high specificity and outstanding selectivity of the fabricated immunosensor. The stability
of the anti-CA 15-3/O-VMSF/ITO was evaluated by comparing the signal after several
days of storage at 4 ◦C with the initial signal on the first day. Anti-CA 15-3/O-VMSF/ITO
retained more than 95% of the initial signal after a 15-day storage at 4 ◦C, suggesting a
satisfactory stability.
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Figure 6. Relative ratio of ECL intensity (a) and DPV current (b) before (I0) and after (I) incubation
with buffer (Control), CEA (500 ng/mL), PSA (500 ng/mL), CA 15-3 (25 U/mL), or a protein mixture
(25 U/mL CA 15-3 + 500 ng/mL other proteins). The error bars represent the standard deviation of
three measurements under the same condition.

3.5. Real Sample Analysis

To validate the practical applicability of the established method, the biosensor was
used to determine the CA 15-3 spiked in healthy human serum samples. A series of
known amount of CA 15-3 was added to the samples and then they were diluted with
PBS 50 times. After the incubation with anti-CA 15-3/O-VMSF/ITO, the CA 15-3/anti-CA
15-3/O-VMSF/ITO was obtained for ECL and EC testing. The concentration of CA 15-3
could be calculated by substituting the obtained ECL and EC response into the original
linear equation. The results are listed in Table 2. Satisfactory recoveries ranging from 95.4%
to 104.0% and an RSD below 2.9% were obtained using the ECL-EC dual-mode tests, which
implied the potential for clinical application.
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Table 2. Detection of CA 15-3 in human serum.

Mode Sample * Added (U/mL) Found (U/mL) RSD (%) Recovery (%)

ECL

1
1.00 0.980 2.1 98.0
5.00 4.80 1.5 96.0
10.0 10.1 2.0 101.0

2
1.00 1.04 2.7 104.0
5.00 5.12 2.9 102.4
10.0 9.86 2.0 98.6

EC

1
5.00 4.77 1.0 95.4
50.0 49.5 1.7 99.0
100.0 99.6 2.1 99.6

2
5.00 4.86 1.8 97.2
50.0 51.5 2.0 103.0
100.0 102.2 2.7 102.2

* Diluted by PBS for 50 times and CA 15-3 was added before dilution.

4. Conclusions

In summary, an ECL-EC dual-mode immunosensor with a simple fabrication strategy
was designed for CA 15-3 determination with an efficient biosensing performance. The
VMSF equipped on the electrode surface displays a strong electrostatic attraction to the
positively charged bifunctional probes, and provides a large surface area with good bio-
compatibility for the biorecognition of elements binding with the aid of the crosslinker
GPTMS. Integrating the merits of both the sensitivity of electrochemiluminescence and the
efficiency of electrochemistry, the immunosensor demonstrated a satisfactory performance
with a linear working range of more than 7 orders of magnitude and a LOD of 9 µU/mL.
Furthermore, VMSF exhibits good resistance to foulants thanks to the ultrasmall diameter
of nanochannels. Real sample analysis in human serum was performed, expecting to
provide a new method for clinical CA 15-3 diagnosis.
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