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Abstract: As a biomarker, alpha-fetoprotein (AFP) is valuable for detecting some tumors in men,
non-pregnant women, and children. However, the detection sensitivity in some methods needs to
be improved. Therefore, developing a simple, reliable, and sensitive detection method for AFP is
important for non-malignant diseases. An aptamer binding was developed based on aggregation-
induced emission luminogen (AIEgen) nanosphere labeled with Fe3O4@MPTMS@AuNPs. AFP was
detected with a sandwich structure of AuNPs magnetic composite particles. An aggregation-induced
emission (AIE) molecule and polystyrene (PS) nanosphere complex were assembled, enhancing the
fluorescence and improving the sensitivity of detection. The limit of detection (LOD) was at a given
level of 1.429 pg/mL, which can best be achieved in serum samples. Finally, the results obtained
showed the complex to be promising in practical applications.
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1. Introduction

Alpha-fetoprotein (AFP), the most commonly used protein biomarker, has attracted
great attention recently. As a biomarker, AFP is valuable for detecting some tumors in men,
non-pregnant women, and children. In addition, in high-risk but asymptomatic popula-
tions, AFP detection indicators are vital for identifying early curable tumors and reducing
disease-related mortality in a cost-effective manner. The development of AFP detection
technology with high sensitivity is necessary for the early detection of some cancers and
the clinical detection of AFP [1–4]. To this end, a variety of methods for detecting AFP have
been developed, such as enzyme-linked immunosorbent assay [5], radioimmunoassay [6],
fluorescence immunoassay [7], electrochemiluminescence [8], Raman spectroscopy [9],
electrochemical immunosensing [10], and so on. However, they possess the shortcomings
of non-specific binding and are unsuitable for high-throughput analysis [11]. Antibodies
are associated with poor reproducibility and instability, which limits their broad application.
For example, some small molecules cannot react and antibodies are unstable in extreme
environments. Furthermore, immunoassays can produce false-positive or false-negative
results [12]. An aptamer is a single-stranded RNA or DNA molecule selected in vitro
from the nucleic acid molecular library by systematic evolution of ligands by exponential
enrichment (SELEX) to specifically combine targets with high affinity (nucleic acids, small
molecules, proteins, etc.) [13]. Aptamers are flexible, repeatable, easy to fix and regener-
ate, and show no difference between batches, and have been widely used in the sensor
field [14]. Since aptamers exhibit many beneficial properties, aptamer-based biosensor
systems have been developed to analyze various classes of detectors. Therefore, developing
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rapid, highly sensitive, selective, and high-efficiency methods for detecting AFP using
aptamers is essential for human disease diagnosis.

Microfabrication technology is widely used for manufacturing, such as for 3D printing,
microfluidics, and in devices used for detection. However, it needs expensive production
equipment [15]. As a material in the field of nanomaterials, magnetic nanomaterials have
attracted more and more attention due to their unique magnetism, low toxicity, and good
compatibility [16]. Research has shown that nanomaterials have potential applications
in magnetic separation [17], medical imaging [18], drug targeting, and even cancer treat-
ment [19]. Based on current research results, relevant studies have ascertained that, if two
or more metal nanomaterials are synthesized into composites, they can not only ensure
the essential properties of each metal, but also have the potential to enable expression
of more properties, such as particular physical (such as adsorption) or chemical (active
binding site) properties. Luminescent materials in fluorescent biosensors have been widely
used in the environment, health, and energy fields due to their high energy conversion
characteristics, good resolution and in situ processing [20–22]. Recently, researchers have
found that coupling or adsorbing fluorescent molecules into nanoparticles can improve
detection sensitivity [23]. Specifically, AIE-active molecules are almost nonemissive in
dilute solution states. There is strong fluorescence emission in aggregated states, resulting
in a turn-on fluorescent signal with better accuracy and higher accuracy sensitivity for
the sensing platform [24]. Li et al. designed a silica nanoparticle based on AIE phosphor
(AIEgen) [25]. According to morphological study, it was found that the silica precursor
without fluorescence emitted strong fluorescence through fluorescence polymerization. On
the other hand, the spatial structure inside polymer nanoparticles can limit the rotation of
AIE molecules. AIEgen was assembled into nanoparticles that can also emit fluorescence.
Studies have shown that AIEgen has been widely used for apoptosis.

DSAI is an AIE molecule combining a 9,10-distyrylanthracene (DSA) derivative with
short alkyl chains as the florescent probe [23]. In this paper, the swelling method was
used to enable AIEgen molecules (DSAI) and polystyrene (PS) nanoparticles to form
AIEgen nanospheres. The surface of the fluorescent nanospheres was modified with
chloroauric acid providing carboxyl functional groups and which covalently interacted with
the amino-terminal modified aptamer. The spatial structure inside polymer nanoparticles
can limit the rotation of AIE molecules. AIEgen was assembled into nanoparticles that
can also emit fluorescence. At the same time, a new magnetic core shell was synthesized
by 3-mercaptopropyl trimethoxysilane (MPTMS). AuNPs with Fe3O4 formed a core-shell
composite structure, which provided a functional platform for magnetic nanomaterials
and increased the binding with aptamers. Moreover, the magnetic Fe3O4 was separated
from the buffer system by the action of a magnet, which made the experimental operation
straightforward.

2. Materials and Methods
2.1. Chemical Reagents and Experimental Materials

Aptamer 1, 5′-GTG ACG CTC CTA ACG CTG ACT CAG GTG CAG TTC TCG ACT
CGG TCT TGA TGT GGG TCC TGT CCG TCC GAA CCA ATC-SH-3′.

Aptamer 2, 5′-NH2-GTG ACG CTC CTA ACG CTG ACT CAG GTG CAG TTC TCG
ACT CGG TCT TGA TGT GGG TCC TGT CCG TCC GAA CCA ATC-3′.

3-mercaptopropyltrimethoxysilane (MPTMS) and sodium dodecyl sulfonate (SDS) were
ordered from Sigma, Tokyo, Japan. Fe3O4 nanomaterials and polystyrene (PS) nanoparticles
were ordered from the Suzhou derivative Biotechnology Co., Ltd., Suzhou, China, whereas
dichloromethane was ordered from the Aladdin Reagent Co., Ltd., Shanghai, China.

2.2. Experimental Instruments

All fluorescence spectra and required absorbance were recorded under 428 nm exci-
tation using a Bio-Tek synergy H4 multifunctional microplate reader made in the United
States. A high-resolution transmission electron microscope (JEM-2100 (HR)) was used to
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produce TEM images at 200 KV. A vacuum freeze-dryer (FD-1A-50) was used to freeze-dry
the samples at a given temperature of 53 ◦C with a vacuum at 20 Pa. Fourier transform
infrared spectroscopy (FT-IR) was obtained from Perkin Elmer Inc using KBr to treat the
sample. A PHS-25 digital viscometer was used to adjust the pH of the solution. The data
obtained in the experiment were processed using Origin 8.0.

2.3. Preparation of Fe3O4@MPTMS@AuNPs

The AuNPs in this experiment were prepared using the classical Frens method [26]; the par-
ticle size was about 12 nm. A sol-gel method was used to synthesize Fe3O4@MPTMS@AuNPs
according to Mohebbi et al. [27]. The synthesized gold nanoparticles were stored at a standby
temperature of 4 ◦C. MPTMS, ultrapure water, pure ethanol, and hydrochloric acid were thor-
oughly mixed with a magnetic stirrer at a molar concentration ratio of 4:20:50:0.1 for 3 h. The
solution was then placed in the chamber for 24 h and ultrasonically mixed with Fe3O4 in a
volume ratio of 1:1, 2:1 and 4:1 for 30 min, washed many times, and lyophilized to obtain
the solid Fe3O4@MPTMS. The sulfhydryl (-SH) was the surface of Fe3O4@MPTMS. This can
further bind to Au NPs. After mixing the prepared gold nanoparticles with ethanol for 5 min,
0.1 g Fe3O4@MPTMS was added and stirred for 30 min. After washing and drying 3 times,
Fe3O4@MPTMS@AuNPs were prepared into a solution of 2 mg/mL and homogenized by
sonication for 5 min.

2.4. Preparation of AIEgen

An amount of 100 mg polystyrene nanospheres was dissolved in 10 mL of ultrapure
water (containing 0.25% SDS) to obtain a uniformly dispersed solution with ultrasound. A
quantity of 0.5 mL of DSAI (mass fraction 10%) was dissolved in CH2Cl2 solution. After
sonication for 1 min, it was stirred at 40 ◦C, and CH2Cl2 evaporated by rotation. The
obtained AIEgen nanospheres were washed with ultrapure water 3 times to remove SDS,
centrifuged at 8000 rpm for 10 min and washed with ethanol 3 times until fluorescence
was not observed in the supernatant. Finally, the solid was dried using a freeze-dryer. A
certain amount of solid was dissolved in ultrapure water to prepare a solution with a final
concentration of 2 mg/mL and ultrasonic homogenization was applied [28].

2.5. Preparation of Carboxyl Functionalized AIEgen Nanospheres

Amounts of 0.6 g NaOH and 0.5 g chloroacetic acid were added to 5 mL of AIEgene
nanosphere solution with a size of 50 nm, respectively. The solution was sonicated in a
water bath for 2 h, then neutralized by NaOH and further purified by centrifugation at
8000 rpm for 10 min and washed 3 times. The solution was dried to obtain a carboxyl-
functionalized AIEgene nanosphere.

2.6. Preparation of AIEgen Nanosphere Labeled Aptamer (AIEgen Aptamer)

AIEgene nanospheres were weighed and prepared as a solution with a 2 mg/mL final
concentration. The solution was reacted with 30 µL (50 nM) aptamer 2 with amino (-NH2)
functional group at 4 ◦C for 12 h and was subsequently centrifuged at 8000 rpm for 10 min
to remove the excess aptamer 2 and dispersed in the buffer.

2.7. Sensor Fabrication Processing

An aptamer that was based on AIEgen nanosphere labelling Fe3O4@MPTMS @AuNPs
was developed in this study. AFP was detected using a sandwich-structure aptamer flu-
orescence sensor constructed with a combination of AuNPs and magnetic composites
(Figure 1). Aptamer 1, with a final concentration of 15 nM, was mixed with 10 µg/mL
Fe3O4@MPTMS@AuNPs. The mixture was incubated for 12 h in PBS (10 mM, pH 7.4)
buffer with a total concentration of 500 µL and adsorbed with a magnet. Different concen-
trations of AFP were subsequently added and incubated at room temperature for 30 min.
Consequently, AFP was explicitly bound to aptamer 1 and remained on the surface of
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Fe3O4@MPTMS @AuNPs, which prompted the addition of 8 µg/mL AIEgen aptamer 2,
incubated at room temperature for 30 min.
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Figure 1. Schematic of alpha-fetoprotein detection by the sandwich structure of aptamer combined
with ferromagnetic composite particles labeled with AIEgen nanospheres.

3. Results and Discussion
3.1. Sensor Detection Principle

The chemical binding between sulfhydryl (-SH) at the end of aptamer 1 and
Fe3O4@MPTMS@AuNPs occurred on the surface of AuNPs with aptamer 2. The un-
bound AIEgen aptamer 2 was removed by a magnet. At this juncture, aptamer 1, AFP, and
AIEgen aptamer 2 constituted a sandwich structure. AIE molecules and PS nanospheres
were assembled into a complex state. The spatial structure inside polymer nanoparticles can
limit the rotation of AIE molecules. AIEgen was assembled into nanoparticles that can emit
fluorescence. If AFP does not remain on the surface of Fe3O4@MPTMS @AuNPs, AIEgen ap-
tamer 2 should be quenched by Fe3O4@MPTMS @AuNPs. AIEgen aptamer 2 was far from
the surface of Fe3O4@MPTMS@AuNPs based on FRET between Fe3O4@MPTMS@AuNPs
and AIEgen aptamer 2 after adding AFP. Then an AIEgen fluorescent ball emitted the
fluorescence. After the same elution, the fluorescence intensity was measured at this time.
The measured values of the reaction system using the multifunctional enzyme-labelling
instrument were processed by Origin 8.0, and the value of F/F0-1 was obtained. The value
of F/F0-1 is the ratio of fluorescence intensity, where F0 and F, respectively, represent the
fluorescence intensity of the fluorescence sensing system at 550 nm before and after the
addition of AFP.

3.2. Characterization of Fe3O4@MPTMS @ AuNPs and AIEgen Nanospheres

In the process of combining Fe3O4 with MPTMS, if the amount of MPTMS is too
low, the effective binding rate of Fe3O4 with AuNPs will be reduced; if the amount of
MPTMS is too high, it will make the MPTMS in the oil state difficult to clean. Therefore,
we optimized the combination ratio of Fe3O4 and MPTMS based on literature reports. It
can be intuitively observed from Figure 2 that the AuNPs nanoparticles were bound to the
surface of Fe3O4 through the action of MPTMS. However, it can be seen from Figure 2A
that some AuNPs in the composite system were not fully combined on the surface of
magnetic nanoparticles. Figure 2C shows that AuNPs were unevenly distributed on the
surface of Fe3O4 particles. In Figure 2B, AuNPs were distributed on the surface of each
magnetic nanosphere. Therefore, a volume ratio of Fe3O4 to MPTMS of 1:2 was chosen to
prepare subsequent composite nanomaterials. Figure 2C shows Fe3O4@MPTMS @AuNPs.
A comparative image of the AuNPs solution and the solution after the action of the magnet
shows that the magnet was able to completely adsorb the composite nanomaterials on the
bottle wall and make the solution clear.
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Figure 2. TEM images of Fe3O4@MPTMS@AuNPs synthesized by different volume ratios and
Fe3O4@MPTMS@AuNPs. (A) It can be seen that there were still some AuNP particles in the composite
system that were not completely bound to the surface of magnetic nanoparticles. (B) It can be seen
that AuNPs were distributed on the surface of each magnetic nanosphere. The volume ratio of Fe3O4

to MPTMS was 1:2. (C) It was observed that AuNPs were unevenly distributed on the surface of
Fe3O4 particles.

3.3. Fluorescence Spectra and Characterization of AIEgen Nanospheres

Figure 3A,B show the TEM images of PS nanospheres and AIEgen nanospheres,
respectively. Figure 3C compares the fluorescence spectra of AIEgen (DSAI) and AIE
and PS assembled into polymers. The fluorescence value was enhanced when AIEgen
was assembled into PS nanospheres. Figure 3D shows the FT-IR spectrum of carboxyl
functionalization of AIEgen. The peak at 1606 cm−1 represented the formation of carboxyl
functional groups, and there was a strong, wide peak at 1073 cm−1.
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Figure 3. TEM and fluorescence spectra of AIEgen and AIEgen nanospheres as well as FT−IR
spectra of carboxylated functionalized AIEgen. (A) and (B) show TEM diagrams of PS nanospheres
and AIEgen nanospheres. (C) shows a comparison of the fluorescence spectra of AIEgen (DSAI)
and AIE/PS assembled polymer. It can be seen from the figure that the fluorescence intensity of
AIEgen assembled into PS nanospheres was enhanced. (D) shows the FT−IR spectrum of carboxyl
functionalization of AIEgen. The peak at 1606 cm−1 represents the formation of carboxyl functional
groups; a strong, broad peak appears at 1073 cm−1.

3.4. Optimization of Experimental Conditions

The experimental conditions were optimized in this study to achieve the best detection
effect of AFP on the sensing platform, including the concentrations of Fe3O4@MPTMS@
AuNPs, aptamer 1, and AIEgen aptamer 2.



Biosensors 2023, 13, 351 6 of 11

3.4.1. Optimization of Fe3O4@MPTMS @ AuNPs Concentration

The influence of AuNPs on the reaction system was optimized. Different concentra-
tions of Fe3O4@MPTMS@AuNPs (6, 8, 10, 12 and 14 µg/mL) were added to the buffer
system containing 15 nM aptamer 1. The fluorescence intensity of the system was mea-
sured before and after adding AFP, and the change in fluorescence intensity at 550 nm was
compared. The results are shown in Figure 4. The results showed that F/F0-1 gradually in-
creased with the low concentration of Fe3O4@MPTMS@AuNPs nanocomposites. When its
concentration was 10 µg/mL, F/F0-1 reached a maximum value. When the concentration
of nanomaterials continued to increase, F/F0-1 gradually decreased. Therefore, the study
used 10 µg/mL Fe3O4@MPTMS@AuNPs complex as the optimal concentration.
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3.4.2. Optimization of Aptamer 1 Concentration

The concentration of aptamer 1 was optimized. Amounts of 5, 10, 15, 20, and 25 nM
aptamer 1 were added to the reaction system. Very low concentrations of aptamer 1 in the
system affected Fe3O4@MPTMS@AuNPs binding and immobilization for AFP. However, it
was not necessary at very high concentrations of aptamer 1. Figure 5 shows the highest
F/F0-1 caused by aptamer 1 with a concentration of 15 nM under the same conditions.
Consequently, aptamer 1, with a concentration of 15 nM, was chosen as the optimal
concentration in this study.
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3.4.3. Optimization of AIEgen Aptamer 2 Concentration

The influence of AIEgen aptamer 2 on the fluorescence sensor system was further
explored and optimized. The sandwich structure system added different concentrations (4,
6, 8, 10, and 12 µg/mL) of AIEgen aptamer 2. Figure 6 shows that, with gradual increase in
AIEgen aptamer 2 concentration, F/F0-1 gradually increased. When the AIEgen aptamer
2 concentration increased to 8 µg/mL, F/F0-1 reached a maximum value. Moreover, the
subsequent fluorescence change value gradually decreased with increase in AIEgen aptamer
2 concentration. However, if the concentration of aptamer 2 was more than 8 µg/mL, it
was unnecessary. A higher concentration of aptamer 2 was able to increase the intensity
of the fluorescence background. Nevertheless, the effect of detection was not improved.
F/F0-1 did not increase with a higher concentration of aptamer 2, prompting the selection
of 8 µg/mL as the optimal concentration.
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3.5. Sensitivity Test

Different concentrations of AFP (0.005, 0.01, 0.08, 0.1, 0.5, 0.8, 5, 8, and 10 ng/mL)
were added to the solution containing 10 µg/mL Fe3O4@MPTMS in the sensing system of
AuNPs; amounts of 15 nM aptamer 1 and 8 µg/mL AIEgen aptamer 2 were mixed evenly
and eluted after incubation for 30 min at room temperature. The changes in fluorescence
were recorded and calculated under different concentrations of AFP. The results are shown
in Figure 7. Higher concentration of AFP can bind to more aptamer with DSAI. Therefore,
the fluorescence intensity value gradually increased with increase in AFP concentration.
The AFP concentration was in the range of 0.005–0.1 ng/mL as shown in Figure 7B; F/F0-1
exhibited an apparent linear relationship with AFP concentration; the linear regression
equation was y = 3.082× C[AFP] + 1.148, R2 = 0.99. As the AFP concentration increased, the
fluorescence intensity increased relatively slowly. We calculated LOD based on signal-to-
noise (LOD = 3S/N), where S is the standard deviation of the eleven blank measurements
(without AFP), and N is the slope of the fluorescence intensity of DSAI relative to the AFP
concentration. Based on 3S/N, the detection limit was 1.429 pg/mL. As shown in Table 1,
this sensor had a lower LOD and an excellent linear range. It was better than some reported
sensors. The limit of quantification (LOQ, ten times of standard deviation of the blank
signal/slope) was 4.873 pg/mL.
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Table 1. Comparison of the AFP detection methods.

Method Analyst Linear Range LOD Reference

Surface-Enhanced Raman Scattering
(SERS) AFP aptamer/IgG 50~100 ng/mL 50 pg/mL [29]

Fluorescence Resonance Energy
Transfer (FRET) AFP aptamer/QDs-AuNPs 0.5~45 ng/mL 400 pg/mL [30]

FRET FAM-labeled AFP aptamer/PdNP 5~150 ng/mL 1.38 ng/mL [31]
Cyclic Voltammetry (CV) AFP aptamer/PBNPs 0.01~300 ng/mL 6.3 pg/mL [32]

CV AFP aptamer/TH/RGO/AuNPs 0.1~100.0 µg/mL 0.050 µg/mL [33]
Electrochemical Impedance

Spectroscopy (EIS) Methyl orange doped polypyrrole 10~104 pg/mL 3.3 pg/mL [34]

EIS Aptamer/graphene oxide 0.01~100 ng/mL 3 pg/mL [8]

FRET Aptamer/sandwich structure of
AuNPs magnetic composite 0.005–0.1 ng/mL 1.429 pg/mL This work

3.6. Selective Detection

Several substances similar to AFP, such as BSA, CEA, HSA, IgG, and thrombin, were
introduced into the sensing system for interference experiments. Under the optimal condi-
tions, AFP and other analogues with the same concentration (0.5 ng/mL) were added. The
corresponding fluorescence intensity value and F/F0-1 were recorded. The result is shown
in Figure 8. The same substance concentration was added under the same conditions. The
fluorescence intensity of the sensor could be distinguished from others. This showed that
the AFP detection using the sensor had good specificity.
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3.7. Serum Sample Analysis

To prove the clinical stability of the sensor, we replaced the reaction system with a
sensing platform based on serum. The serum was bought from Tianhang Biotechnology Co.,
Ltd. (Huzhou, China). The obtained information from AFP added in serum was detected
using the biosensors. Three different concentrations of AFP (0.01 ng/mL, 0.08 ng/mL
and 0.1 ng/mL) were selected in the linear range for standard recovery testing in normal
serum. Three repeated experiments were carried out in each group. As shown in Table 2,
the recoveries of the three groups of samples were 96.69%, 103.18%, and 105.224%, respec-
tively. After calculation, the relative standard deviation was 1.856%–4.484%, which met the
practical application requirements. A series of measurements from the batch resulted in a
relative standard deviation (RSD) of 4.484%, demonstrating that the sensor results were
repeatable and reproducible.

Table 2. Determination of AFP in the serum (n = 3).

Samples Added Obtained Recovery RSD

(ng/mL) (ng/mL) (%) (%)

1 0.01 0.00967 96.69 1.863
2 0.08 0.0825 103.18 4.484
3 0.1 0.105 105.224 1.856

4. Conclusions

In this study, an aptamer based on AIEgen nanosphere labeled with Fe3O4@MPTMS@AuNPs
was developed. The detection of alpha-fetoprotein by the sandwich structure of AuNPs magnetic
composite particles was carried out. The unbound AIEgen aptamer 2 was removed by a magnet.
AuNPs with Fe3O4 formed a core-shell composite structure, which provided a functional platform
for magnetic nanomaterials and increased the binding with aptamers. At the same time, the
magnetic Fe3O4 was obviously separated from the buffer system by the action of the magnet,
which enabled a straightforward experimental operation. Therefore, this can specifically detect
AFP. The AIE molecules and PS nanospheres were assembled into a complex. The spatial
structure inside the polymer nanoparticles limited the rotation of the AIE molecules. AIEgen
was assembled into nanoparticles and emitted fluorescence after aptamer 2 was bound to AFP,
which caused aptamer 2 to be far from the surface of Fe3O4@MPTMS@AuNPs based on FRET
because Fe3O4@MPTMS@AuNPs was able to quench the fluorescence of AIEgen. This enhanced
the fluorescence intensity and improved the sensitivity of detection. Moreover, the detection limit
using this method was 1.429 pg/mL, which was lower than LOD for most reported methods.
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