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Abstract: Given the importance of respiratory frequency (f R) as a valid marker of physical effort,
there is a growing interest in developing wearable devices measuring f R in applied exercise set-
tings. Biosensors measuring chest wall movements are attracting attention as they can be integrated
into textiles, but their susceptibility to motion artefacts may limit their use in some sporting activi-
ties. Hence, there is a need to exploit sensors with signals minimally affected by motion artefacts.
We present the design and testing of a smart facemask embedding a temperature biosensor for
f R monitoring during cycling exercise. After laboratory bench tests, the proposed solution was tested
on cyclists during a ramp incremental frequency test (RIFT) and high-intensity interval training
(HIIT), both indoors and outdoors. A reference flowmeter was used to validate the f R extracted
from the temperature respiratory signal. The smart facemask showed good performance, both at
a breath-by-breath level (MAPE = 2.56% and 1.64% during RIFT and HIIT, respectively) and on
30 s average f R values (MAPE = 0.37% and 0.23% during RIFT and HIIT, respectively). Both ac-
curacy and precision (MOD ± LOAs) were generally superior to those of other devices validated
during exercise. These findings have important implications for exercise testing and management in
different populations.

Keywords: wearable sensors; validity; respiratory frequency; cadence; measurement accuracy;
exercise; sport; breathing; respiratory rate

1. Introduction

Ever-growing technological development is offering new solutions to monitor athletes
and exercise practitioners with wearable sensors in applied settings. The physiological and
mechanical variables currently available may help refine the prescription and monitoring of
training and assess its effects, with potential benefits for the health and exercise performance
of different populations. One of the physiological variables that is gaining particular interest
in the exercise community is respiratory frequency (f R) [1,2], also considering the numerous
techniques suitable for its measure [3,4]. Unlike other physiological variables (including
tidal volume, VT), f R is closely associated with perceived exertion [5–9], and its time course
reflects changes in exercise tolerance [10]. The fact that the depth (i.e., VT) and rate (i.e., f R)
of breathing provide different information is supported by their differential control, as VT
and f R are mainly modulated by metabolic and non-metabolic inputs, respectively [8,10–12].
As such, f R has been defined as the behavioral component of minute ventilation [1,10].

The notion that f R is a valid marker of physical effort, especially at high intensities, is
particularly evident during cycling exercise and applies to a variety of exercise paradigms,
including incremental exercise [13], time trial [6,8,14], time to exhaustion [5], trapezoidal
exercise [11], all-out exercise [15], and high-intensity interval training (HIIT) [8,14,16]. HIIT
shows a feature of f R that distinguishes the behavioral component of minute ventilation
from commonly monitored physiological variables such as oxygen uptake, heart rate, and
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blood lactate. Indeed, f R responds rapidly to the alternation of work and recovery, while
the other variables show a delayed response both at the onset and offset of the work
phase [8,16–18]. This offers an advantage in monitoring cycling exercise as well as other
sports that are characterized by intermittent activities [1,7].

While the measurement of f R and other ventilatory variables has a long tradition
in exercise physiology laboratories, interest in custom-made and commercial wearable
devices suitable for f R monitoring in applied exercise settings has increased substantially in
recent years [1,2]. Different methods can be used to monitor f R in applied exercise settings,
and some of them are attracting particular attention, including the techniques recording
chest wall movements and those extracting f R from physiological signals modulated by
breathing (e.g., the electrocardiographic signal). Among the sensors recording chest wall
movements, those measuring strain can be easily integrated into clothes or textiles, which
facilitates the development of unobtrusive devices. Different wearables integrating strain
sensors have been developed and tested during exercise, generally showing a relatively
good performance in measuring f R [19–27]. The other emerging trend in the field of
exercise is the attempt to extract f R from cardiac signals registered from heart rate straps
or other devices, where the main advantage is that these signals are already recorded by
many athletes and exercise practitioners [28,29]. However, the error in estimating f R from
cardiac signals is usually higher than that found when strain sensors are used [28,29]. A
common problem of the aforementioned techniques is that the registered respiratory signal
is susceptible to motion artefacts, which implies that the evaluation of the validity of f R
measurement should be sport specific. Indeed, motion artefacts may affect the quality of the
respiratory signal more in some sports (e.g., running) than others (e.g., cycling). However,
even in cycling, some exercise paradigms may challenge the quality of the respiratory
signal. For instance, we found that the error in measuring f R was higher during HIIT
compared to incremental exercise, even when the signal was recorded with a differential
pressure sensor and was thus minimally affected by motion artefacts [30]. Hence, the
use of HIIT in validation studies is encouraged but currently underappreciated. Another
important overlooked requirement of validation studies is the need to assess the quality
of the respiratory signal at a breath-by-breath level because different respiratory services
may need such a level of detail (e.g., real-time monitoring) [1,30]. The quality of validation
studies performed during exercise should improve accordingly.

The variety of sensors available for measuring f R allows for the identification of other
wearable solutions that have so far been considered to a limited extent and may partially
solve some of the above-mentioned problems. We have recently started exploiting the
very good metrological characteristics of some temperature sensors recording a respiratory
waveform that is minimally affected by motion artefacts [31]. This feature of temperature
sensors has long been appreciated in the field of exercise physiology, where thermistors or
thermocouples have been used for the assessment of the locomotor-respiratory coupling
phenomenon [32–37], which requires a very good signal quality for its detection. However,
the characteristics of temperature sensors have rarely been exploited for the development
of wearable sensors suitable for exercise monitoring, which is currently facilitated by the
miniaturization of electronics. In a first attempt, we located a thermistor embedded into
a small electronic board close to the orifice of a face mask used for laboratory exercise
testing, and we found relatively low errors in measuring f R [31]. However, this preliminary
solution was still far from the usability requirements needed for exercise monitoring in
applied settings. Hence, in this study, we present the design and testing of a new solution
exploiting the use of a temperature biosensor located in a facemask for f R monitoring
during cycling exercise.

2. Smart Facemask: Design and Description

The smart device presented in this paper has been designed from both a hardware
and software perspective to meet the requirements of f R monitoring during cycling ex-
ercise without restricting the athlete’s mobility or influencing the proper execution of
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exercise sessions. Hence, in the design and development of the smart device, we consid-
ered the following requirements: (i) keep the weight and dimensions as low as possible;
(ii) guarantee the washability of components in contact with the athlete after use, to have
the correct level of hygiene; (iii) guarantee the continuous data acquisition for more than
10 h, which is a duration that largely exceeds the usual requirements of elite cyclists [38];
(iv) ensure low air resistance to the athlete’s respiratory flow; (v) ensure low motion
artefacts sensitivity.

To fulfil all the requirements, the system’s design was intended to avoid any sensing
element in contact with the subject and to maximize the sensitivity to respiratory activity
while minimizing the influence of motion artefacts. We decided to develop a smart facemask
with a modular architecture that consists of four main units: (i) central data logger: designed
for data acquisition, digitalization, and transmission; (ii) remote base station: designed
for sending data messages to the central data logger and to store the raw sensor data;
(iii) sensor unit: designed to be the sensing part of the whole system; (iv) case unit: designed
to fit the subject’s face and to integrate both the central data logger and the sensor unit. An
example of all the main units and their modules is shown in Figure 1.

Figure 1. Schematization of the system architecture with the main units (i.e., remote base station,
central data logger, sensor unit, and case unit) and their modules.

The characteristics of the four main units of our system are as follows:
(1) The sensor unit includes three modules: (i) a breathing module that uses an NTC Radial

Glass Thermistor (model number: G10K3976B1, TE connectivity, Resistance and Tolerance
@ +25 ◦C: 10 kΩ and 1%; time response in stirred oil: 0.4 s; Beta Value 25/85: 3976 K) and a
voltage divider with a fixed resistance of 10 kΩ. The glass body of the selected thermistor
provides a hermetic seal and voltage insulation; hence it can operate in high temperature
and moisture environments. This module was designed to monitor respiratory activity by
collecting the temperature of the airflow exhaled by the nose and mouth (i.e., TExp); (ii) a
motion module that consists of a triaxial accelerometer (model Bosch® BMI160) with ±16 g
scale. This module was added to provide an estimation of exercise-induced head accelerations
that may provide information on the athlete’s movement (e.g., pedalling cadence); (iii) an
external temperature module that consists of a surface-mount temperature sensor (model number
NCP15XH103F03RC, accuracy ±5 ◦C) positioned so as not to be hit by the flow of air exhaled
by the subject. This module was selected to collect the external temperature (i.e., system’s
working temperature, henceforth TE).

(2) The central data logger consists of a small (diameter: 24 mm, height: 6 mm) and
low-weight (56.7 g) electronic board that integrates a Bluetooth low energy (BLE) module
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(Bluetooth LE 4.2–2.4 GHz), the motion module and the external temperature module. In
addition, it has four general-purpose I/O (GPIO) ports, a power supply port (3 V), and a
10-bit analog to digital converter (ADC). One of the GPIOs houses the breathing module
that is also supplied by the power supply port. The analog-acquired signal is then sent to a
10-bit ADC in the acquisition board for digitalization. This module allows us to receive
data messages from the remote base station. The central data logger is supplied by an
interchangeable lithium coin cell (capacity up to 240 mA/h, 20–54 ◦C) that guarantees more
than 700 h of continuous acquisition, widely sufficient for a typical training session.

(3) The remote base station consists of a Raspberry Pi that allows sending data messages
in a Python environment to the central data logger to provide instructions to (i) set the
sampling frequency of each sensor unit (i.e., 50 Hz for the breathing and motion modules;
1 Hz for the external temperature module) and start the data recording inside the central
data logger internal memory (8 MB); (ii) stop the data acquisition; (iii) begin the data
download; (iv) retry the connection during the download in the case of connection drops.
Additionally, it allows us to store the raw sensor data in a csv format when sent from the
central data logger via BLE.

(4) The case unit was designed with two detachable modules. The first module is
called the pull-out module and is made up of a housing for the sensor unit and a housing
for the central data logger, as shown in Figure 1. This is made up of 3D-printed polylactic
acid with a Creality Ender-3 v2 in the shape of a ‘spoon’ with an overall weight of 7 g.
The design was intended so that most of the nose and mouth airflow hits the tip of the
thermistor (approximately 2 cm away from the tip of the mouth) of the breathing module,
which emerges from the concave side of the spoon (see Figure 1). This configuration makes
it possible to record temperature changes during the inspiratory and expiratory phases of
breathing. On the other hand, the ‘spoon’ was specifically designed to make the thermistor
unexposed to wind. At the top of the ‘spoon’, we designed housing for the central data
logger positioned in the central part of the subject’s head to obtain a more reliable signal of
the head’s accelerations from the motion module. The second module of the case unit is
called the core module and was realized to be completely electronics-free. It is a facemask
made from 3D-printed Thermoplastic Polyurethane 95A, with an overall weight of 45 g.
This module was designed to accommodate the pull-out module so that the latter can be
hooked during the test and unhooked when the facemask is washed and sanitized. It also
has a 40 mm diameter hole in the front to ensure low air resistance to the athlete’s airflow.
This prevents the proposed mask from forming a closed space around the nose and mouth
once fitted. Finally, it has four housings for the headband that can be worn and set by the
athlete so that the facemask properly fits the face.

In this paper, we will focus mainly on the breathing module of the sensor unit (see
Figure 1) and its performance. The system’s working principle, the developed algorithm
for respiratory analysis, preliminary tests, and the validation process conducted against a
reference flowmeter on athletes are presented below.

3. System’s Principle of Working and f R Estimation: Algorithm Design

The operating principle of our system for collecting respiratory biosignals is based on
variations in the air temperature flowing out of the nose and mouth during the breathing
activity to which it is exposed. Our sensor has a variable resistance (R) as the temperature
(T) varies with a negative transformation coefficient. Therefore, when the T increases, the
R decreases. In the absence of exhaled airflow (e.g., sensor not worn by the subject or
during apnea), the respiratory module is surrounded by TE, so the output temperature
signal (and the resistance signal) remains stable. On the other hand, during exhalation,
the airflow impinges on the respiratory module at a temperature (TExp) of approximately
37 ◦C [39]. Thus, the behavior of the biosensor is as follows:

• If TExp > TE, the temperature measured by the respiratory module increases, and its
resistance decreases (see c,d in Figure 2);
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• If TExp < TE, the temperature measured by the respiratory module decreases, and its
resistance increases;

• If TExp = TE, the temperature (and the resistance) measured by the respiratory module
remains stable (see a,b in Figure 2).

Figure 2. Example of a normalized resistance signal (A) and the resulting normalized temperature
signal (B) collected during breathing from the smart facemask. Black line (a–b) is the end-inspiratory
apnea; blue line (c–d) is the expiratory phase; red (d–e) is the inhalation phase. In (C), the normalized
signal was collected during breathing from the reference flowmeter used in the validation phase. The
black dashed line (a–b) is the end-inspiratory apnea; the blue dotted line (c–d) is the expiratory phase,
and the red dotted one (d–e) is the inhalation phase.

Instead, in the inhalation phase, the respiratory module sensor is re-exposed to TE.
Therefore, the phenomenon is ‘passive’ and behaves as follows:

• If TExp > TE, the temperature measured by the respiratory module decreases, and its
resistance increases (see d,e in Figure 2);

• If TExp < TE, the temperature measured by the respiratory module increases, and its
resistance decreases.

To extract f R from the collected respiratory signals Y, two different algorithms were
implemented, as shown in Figure 3. The first algorithm was used to extract the breath-by-
breath f R, while the second algorithm was used to extract the average f R in 30 s windows.
In both algorithms, the breathing signal was filtered with a Butterworth band-pass filter
(BPF) with cut frequencies of 0.01 Hz and 2 Hz to obtain Ỹ [1,40,41]. Hence, the components
of physiological breathing frequency values are preserved in the signal.

Subsequently, with Algorithm#1, the f R was directly extracted from the Ỹ. For this
purpose, the peaks corresponding to the end of exhalation were selected with an algorithm
based on both temporal and amplitude criteria to exclude artefacts. The temporal criterion
states that two consecutive peaks are selected as separate events if their distance exceeds
a minimum value set at 0.6 s because, even during maximal effort exercise, the f R of
human adults usually remains below 1.67 Hz (100 breaths/min) except for extreme exercise
conditions [15]. Regarding the amplitude criterion, we set a percentage threshold of 2%
of the maximum peak-to-peak amplitude of the signal in order to be robust to changes
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in signal amplitude. Only peaks exceeding this threshold were selected as breathing
events, while the others were discarded. The distance between two different breathing
cycles (Ti

R) was calculated as the elapsed time between two consecutive breathing events.
Consequently, the breath-by-breath f R (i.e., f i

R) was calculated as 60/Ti
R.

Figure 3. (A) Block diagram of Algorithm#1 for extracting the breath-by-breath respiratory frequency
from the respiratory signal; (B) block diagram of Algorithm#2 for extracting the average respiratory
frequency in 30 s windows of the respiratory signal. BPF: band-pass filter; f i

R: i-th respiratory
frequency; f w

R : mean respiratory frequency in the w-th window.

Algorithm#2 employs the previously described algorithm (Algorithm#1) within
30 s windows. Thus, in each window, the breath-by-breath f R (i.e., f i,w

R ) was computed, and
the average one was calculated (e.g., f w

R in the w-th window). This resulted in an average
f w
R value for each window.

4. In-Lab Tests with the Mechanical Ventilator: Description and Results

To assess the feasibility of the smart facemask in monitoring f R, preliminary tests
were conducted in the laboratory. The aim of this preliminary analysis is to investigate
the behavior of the entire system when it is provided with simulated respiratory flows
at set frequencies ranging from 5 to 75 bpm. For this purpose, we used an experimental
setup consisting of (i) a mechanical ventilator (SERVO VENTILATOR 300, SIEMENS,
f R accuracy±1 bpm or 10% of the set value) used to provide frequency-controlled air flows;
(ii) a humidifier (MR850ALU, Fisher&Paykel HEALTHCARE) used to heat and humidify
the air coming out of the mechanical ventilator; (iii) a 3D-printed Polylactic Acid PLA
box containing the smart facemask. This box is designed with a front hole to convey the
airflow onto the breathing module and a rear hole that allows the airflow to pass through,
minimizing losses; (iv) a coolant box that aims to keep the TE outside the facemask almost
constant at ~25 ◦C; (v) a lung simulator that aims to simulate the adult’s respiratory airways.
Thus, the airflow originating from the mechanical ventilator passes through the humidifier
to be heated and humidified (temperature 37 ◦C, relative humidity 100%). The heated
and humidified flow is directed into the PLA box through a corrugated tube connected
to the front hole and impinges on the thermistor of the respiratory module of the smart
facemask. Subsequently, the flow exits through the rear hole and reaches the test lung
simulator, which captures the flow and then returns it to the mechanical ventilator. An
example of the whole system is shown in Figure 4.
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Figure 4. Schematization of the experimental setup for preliminary in-lab tests with the
mechanical ventilator.

Experiments were conducted to simulate eight different f R levels. The set f R ranged
from 5 bpm to 75 bpm in steps of 10 bpm to investigate the typical frequencies of a subject
at rest and during exercise [1]. For each set f R, 10 respiratory acts were simulated.

To evaluate the performance of the developed device, the breath-by-breath f R was
extracted from the respiratory module signal with Algorithm#1 and compared to the
frequency values set on the mechanical ventilator. For each set f R, the measured values
were reported as shown in Equation (1):

fRmis = fR ± δ fR , (1)

where fR denotes the mean of the measurements and δ fR is the uncertainty calculated using
Student’s distribution and expressed as follows in Equation (2):

δ fR = k
S fR√

N
, (2)

where k is equal to 2.306 and denotes the coverage factor considering a 95% confidence level,
S fR is the standard deviation of the measurements, and N is the number of the extracted
f R values (i.e., 9). The deviation obtained by comparing the values measured with the
developed system and those set on the mechanical ventilator is shown in Figure 5.

Figure 5. Mean and uncertainty of the values measured with the smart facemask (in blue) and the
values set with the mechanical ventilator (in red) (A) and related table (B).

We examined the discrepancy between the measurements provided by the two in-
struments, defined as the difference between two measured values of the same quantity



Biosensors 2023, 13, 369 8 of 20

with both the device and the reference system. Hence, we assessed whether there were

any points in common between the interval
∣∣∣ f system

R − δ
system
fR

, f system
R + δ

system
fR

∣∣∣ and the

interval
∣∣∣∣ f re f

R − δ
re f
fR

, f re f
R + δ

re f
fR

∣∣∣∣. Figure 5 shows that there is no discrepancy between the

two measurements for all the tested f R. Additionally, the results exhibit an average error
of less than 0.6 bpm with a maximum deviation of the mean values of 0.58 bpm for a set
frequency of 15 bpm and an overall overestimation of the proposed system with respect to
the reference in all but two set frequencies (i.e., 35 and 65 bpm).

5. Validation of the Smart Facemask and Algorithms: Experimental Tests on Athletes

Experimental tests were carried out to validate the proposed smart facemask against a
reference instrument for f R monitoring and pedalling cadence estimation.

(1) Population, Experimental Setup, and Protocol: Ten trained healthy non-smoker cyclists
(10 males, mean ± SD: age 25 ± 6 years, body mass 68 ± 6 kg, height 174 ± 5 cm) were
enrolled for this purpose. The study was approved by the Institutional Review Board of
the University of Rome “Foro Italico” (CAR 112/2021). The principles of the Declaration of
Helsinki were followed in all steps of the study, and written informed consent for study
participation was signed by all volunteers. To validate the proposed device, we conducted
an indoor testing session at TE of about 26 ◦C (obtained by averaging all the recorded TE
during the indoor tests). A gold-standard flowmeter (Quark PFT, COSMED S.r.l., Rome,
Italy) was used to collect reference respiratory airflow (φ) at 50 Hz.

Before starting the test, each volunteer was asked to wear the developed smart face-
mask with a properly adjusted headband to keep it fixed on the face. The flowmeter was
placed in a dedicated hole realized on the core module of the smart facemask. The test
was performed on a cycle-ergometer (WattBike Pro, model WAT-1W51-015-15) that was set
for each participant based on comfort and anthropometric characteristics. After an initial
familiarization phase and a 3 min warm-up, participants were encouraged to perform
a starting sequence consisting of three deep breaths followed by apnea. This procedure
was used to synchronize the respiratory signals collected with the smart facemask and
the reference system. Then, they were asked to complete two different exercise protocols
interspersed by 3 min of recovery (see Figure 6A):

1. Ramp incremental respiratory frequency test (henceforth referred to as RIFT), where
participants were asked to replace spontaneous breathing with the f R paced by a
metronome. This test lasted 5 min, and the f R paced by the metronome increased
from 20 bpm to 75 bpm in an exponential fashion. Participants were asked to cycle
during this test and to self-select pedalling cadence and power output according to
preference. The execution of this test has several advantages: (i) the time course of
f R resembles the response commonly observed during incremental exercise [10,42];
(ii) the range of f R values exceeds the range of values commonly observed during
cycling exercise [1,6,14]; (iii) it allows for the evaluation of the quality of the respiratory
signal even when no reference system is used (see Section 6 Outdoor Tests).

2. High-intensity interval training (henceforth referred to as HIIT) test composed of
eight repetitions of 20 s of work and 40 s of recovery. The work-phase power output
was self-selected by the cyclist to reach approximately a value of 19 of the Borg’s
6–20 ratings of perceived exertion scale [43] on the last of the eight repetitions.

5.1. Breathing Module for fR Monitoring

Prior to data analysis, all the signals recorded with the facemask (TExp signal,
TE signal, motion module signal) were synchronized with the φ reference signal starting
from the third deep breath of the starting sequence. The reference φ provides a pseudo-
periodic signal with a negative phase corresponding to inspiration and a positive phase
corresponding to expiration (see Figure 2C); φ signal was integrated to obtain a volume
signal (V), in accordance with previous studies [44,45]. V has an increasing trend during
exhalation and a decreasing trend during inhalation, comparable to the signal acquired
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with our device. Algorithm#1 and Algorithm#2 were applied to TExp and V to estimate the
fR (breath-by-breath fR) and f W

R (average fR in 30 s-windows), respectively.

Figure 6. Description of the experimental protocol carried out during the (A) indoor testing session for
the validation of the smart facemask for respiratory frequency monitoring (at average TE = 26 ◦C) and
(B) the outdoor testing session (at average TE = 32 ◦C), and schematic representation of the devices used.

For both algorithms, comparison between data provided by the developed system and
those from the reference device was performed using the Bland-Altman analysis [46]. The
latter was carried out to assess bias between the two measurement systems and expressed
in terms of the mean of differences (MOD) and limits of agreement (LOAs), calculated as
1.96 times the standard deviation of the differences between the fR values estimated by the
two methods.

In addition, the following statistical indexes were calculated: the mean absolute
error (MAE) and the mean absolute percentage error (MAPE), respectively, defined as in
Equations (3) and (4):

MAE [bpm] =
1
N

N

∑
j=1

∣∣∣ f j
R device − f j

R re f erence

∣∣∣, (3)

MAPE [%] =
1
N

N

∑
j=1

∣∣∣∣∣∣
f j
R device − f j

R re f erence

f j
R device

∣∣∣∣∣∣ ∗ 100, (4)

where N represents the number of breaths extracted or the number of windows when using
Algorithm#1 or Algorithm#2, respectively.

Table 1A,B shows the number of breaths extracted using Algorithm#1, the
MOD ± LOAs from the Bland–Altman analysis, and the MAE and MAPE values cal-
culated for the RIFT test and HIIT test, respectively. Table 2A,B shows the results of the
30 s-window analysis extracted using Algorithm#2 and the number of windows in which
the signals were windowed.
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Table 1. Breath-by-breath analysis results: (A) RIFT test and (B) HIIT test.

(A)
Breath-by-Breath Analysis—Rift Test

(B)
Breath-by-Breath Analysis—Hiit Test

Cyclist #Breathing
Events

Bias
[MOD ± LOAs]

[bpm]

MAE
[bpm]

MAPE
[%] Cyclist #Breathing

Events

Bias
[MOD ± LOAs]

[bpm]

MAE
[bpm]

MAPE
[%]

1 173 −0.02 ± 2.57 0.89 2.30 1 320 −0.04 ± 3.85 1.00 2.54
2 177 −0.01 ± 2.50 0.93 2.48 2 371 −0.01 ± 1.68 0.60 1.29
3 174 −0.23 ± 4.84 1.02 2.60 3 416 0.00 ± 2.00 0.68 1.22
4 175 −0.01 ± 2.92 1.10 2.74 4 290 −0.03 ± 2.26 0.85 2.33
5 179 −0.03 ± 4.62 1.75 4.50 5 245 −0.01 ± 2.31 0.77 2.58
6 174 −0.02 ± 2.58 0.75 1.82 6 283 0.00 ± 1.40 0.50 1.43
7 179 −0.01 ± 2.08 0.66 1.72 7 306 −0.04 ± 1.32 0.48 1.13
8 179 −0.02 ± 2.68 1.05 2.74 8 331 −0.03 ± 1.85 0.59 1.48
9 174 −0.11 ± 2.87 0.98 2.34 9 362 −0.06 ± 3.43 0.75 1.67
10 174 −0.02 ± 2.52 0.84 2.31 10 377 0.00 ± 2.25 0.66 1.28

Overall 1758 −0.05 ± 3.37 1.00 2.56 Overall 3301 −0.02 ± 2.37 0.69 1.64

Table 2. 30 s window analysis results: (A) RIFT test and (B) HIIT test.

(A)
30 s—Window Analysis—Rift Test

(B)
30 s—Window Analysis—Hiit Test

Cyclist #Windows
Bias

[MOD ± LOAs]
[bpm]

MAE
[bpm] MAPE[%] Cyclist #Windows

Bias
[MOD ± LOAs]

[bpm]

MAE
[bpm]

MAPE
[%]

1 10 −0.03 ± 0.31 0.10 0.28 1 16 −0.13 ± 0.28 0.14 0.38
2 10 −0.01 ± 0.26 0.10 0.34 2 16 −0.01 ± 0.14 0.06 0.13
3 10 −0.10 ± 0.42 0.17 0.58 3 16 −0.06 ± 0.43 0.09 0.16
4 10 −0.04 ± 0.29 0.10 0.27 4 16 −0.03 ± 0.15 0.07 0.19
5 10 −0.02 ± 0.54 0.18 0.62 5 16 0.00 ± 0.20 0.08 0.27
6 10 −0.05 ± 0.12 0.06 0.20 6 16 0.00 ± 0.10 0.04 0.13
7 10 −0.02 ± 0.15 0.06 0.19 7 16 0.04 ± 0.53 0.12 0.30
8 10 −0.06 ± 0.22 0.09 0.27 8 16 −0.02 ± 0.13 0.06 0.15
9 10 −0.04 ± 1.16 0.30 0.75 9 16 0.01 ± 0.78 0.19 0.39
10 10 0.00 ± 0.19 0.07 0.25 10 16 −0.07 ± 0.28 0.09 0.19

Overall 100 −0.02 ± 0.45 0.12 0.37 Overall 160 −0.03 ± 0.37 0.09 0.23

For the sake of clarity, the graphs of the Bland–Altman analysis performed for both
the HIIT and RIFT test by all subjects in the indoor test are shown below (see Figure 7).

5.2. Motion Module for Cadence Estimation

The motion module placed on the smart facemask was used to assess the ability to
estimate the cycling cadence from the accelerations at the level of the head when compared
to the cycling cadence extracted from the cycle-ergometer. The idea is that the y-axis
(i.e., lateral axis as in Figure 1) of the accelerometer has a cyclical pattern at a frequency
resembling that of cycling with a peak local maximum for each pedal stroke of the same
foot (defined as an event). Indeed, it is conceivable that the cyclist tends to slightly move
his head according to changes in weight distribution during pedalling.

The y-axis accelerations of the motion module were analyzed in the MATLAB environ-
ment. Data collected with the cycle-ergometer (reference cadence values) and the motion
module were synchronized and split into RIFT traces and HIIT traces. Then, two main
steps were performed on the motion module signal to extract the cycling cadence:

- Signal filtering;
- Event-by-event extraction in the time domain.
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Figure 7. Bland–Altman graphs for both the RIFT test and the HIIT test.

The signal filtering stage involves the implementation of a first-order BPF with a lower
cut-off frequency of 0.01 Hz and a higher cut-off frequency of 3 Hz to better emphasize the
contribution of head movement due to the cycling activity. The event-by-event extraction in
the time domain consists of selecting the maximum peaks in the signal and computing their
distance in time. This corresponds to the period (i.e., Tcadence) between a head movement
between one pedalling cycle and the following one. We then computed the cycling cadence
as 60

Tcadence
expressed in revolutions per minute (rpm). Finally, we applied a Hampel filter to

detect and remove outliers, defined as the samples that differ from the median by more
than three standard deviations.

Cadence values extracted from the motion module were then compared with those
extracted from the cycle-ergometer, used as reference ones. To compare the results, the
cadence values extracted from the reference cycle-ergometer and our device were resampled
at 1 Hz to have one cadence value per second for both devices. A graphical comparison
between the cadence values extracted from the two devices for all subjects is shown in Figure 8.
In addition, the MAE value for each subject was calculated as shown in Equation (3).
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Figure 8. Comparison between the cadence values extracted from the motion module and the reference
values extracted from the ergometer for the RIFT test (left panels) and the HIIT test (right panels).

6. Outdoor Tests

On a subset of the participants (six), we carried out a second testing session to assess
the feasibility of using our system in an outdoor setting with an external temperature (TE)
higher than 32 ◦C, and thus closer to TExp compared to the indoor setting (see Figure 6B).
No reference system was used in these tests performed outdoors because the stationary
metabolic cart we used could not be transported outside the laboratory. However, this
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limitation did not prevent us from testing the feasibility of measuring f R with the smart
facemask, as detailed below.

To investigate the influence of TE on the facemask output signal, we first assessed the
amplitude of the signal (A) recorded indoors and outdoors during the RIFT. Per each trial,
A was calculated as in the following formula:

A [mV] =
1
N

N

∑
i=1

(maxi −mini), (5)

where maxi. and mini are the maximum (red triangles in Figure 9) and minimum (green
triangles) voltage values of the i-th breath, respectively. Figure 9 shows the amplitude of
the data collected from one volunteer during indoor and outdoor tests.

Figure 9. Example of amplitude (A) calculation for one participant in both indoor and outdoor tests.
The blue area is the zoom related to one breath.

Table 3 reports the average and standard deviation values of the temperature (Taverage)
extracted from the TE signal and the A values for both the indoor and outdoor tests. Despite
the A being substantially higher in the indoor test than in the outdoor test, the quality of
the temperature respiratory signal was preserved even in the outdoor setting, as shown
in Figure 9.

Table 3. Average temperature (Taverage) and amplitude (A) expressed as mean ± standard deviation
for both indoor and outdoor tests.

Cyclist Taverage Indoor
[◦C]

A [mV]
Indoor

Taverage
Outdoor [◦C]

A [mV]
Outdoor

2 25.7 ± 0.1 10.3 ± 3.6 34.6 ± 0.3 2.8 ± 1.6
3 26.2 ± 0.1 12.2 ± 4.2 33.4 ± 0.6 6.3 ± 2.8
4 25.8 ± 0.1 7.4 ± 2.4 31.2 ± 0.2 4.0 ± 1.8
5 25.8 ± 0.1 5.9 ± 2.2 32.9 ± 0.3 2.5 ± 1.3
6 26.9 ± 0.1 11.3 ± 4.1 30.8 ± 0.5 3.0± 1.6
7 26.0 ± 0.2 18.5 ± 3.7 31.0 ± 0.3 9.3 ± 4.0

Given the absence of the reference system in the outdoor test, a further assessment
of the quality of the temperature signal was made by evaluating the f R response during
RIFT, where participants were asked to follow the f R paced by a metronome. Since par-
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ticipants may commit errors when attempting to follow the pace set by the metronome,
we considered this error by calculating an index estimating the ability of the athlete to
perform the breathing task. This was made by means of the RMSE value, which was
computed during the indoor test, where both the reference signal φ and the temperature
respiratory signal Texp were recorded. Specifically, we calculated two RMSE values per
each volunteer: the first considering the f R values provided by the reference system vs. the
f R values imposed by the metronome, and the second considering the f R values provided
by the facemask vs. the f R values imposed by the metronome. Very similar RMSE values
were observed for the facemask and the reference system (see Figure 10A), which outlines
that the between-participant differences in RMSE observed were mainly due to errors
committed when performing the breathing task rather than representing measurement
errors of the facemask. This consideration is important for a correct interpretation of the
RIFT data collected in the outdoor setting.

Figure 10. (A) RMSE values obtained from the smart facemask and the reference flowmeter when
compared to the set fR values provided by the metronome in indoor tests. (B) Time series of the
f R paced by the metronome (in red) and the f R calculated from the facemask (in blue) for each partici-
pant during the outdoor test. (A,C) RMSE values obtained in indoor (green) and outdoor (magenta)
tests considering the f R calculated from the facemask vs. the f R provided by the metronome.

The RMSE value of data collected during the outdoor test was then calculated for
each participant using the f R values provided by the smart facemask (blue line, Figure 10B)
vs. the f R values imposed by the metronome (red line). Similar RMSE values were generally
found for the same participant in the indoor and outdoor tests, which further suggests that
the small discrepancy observed between the f R values of the facemask and those set by
the metronome was largely due to errors made by the participants when performing the
breathing task. Notably, even without deducting the error made by participants from the
RMSE computation, the f R response observed during RIFT closely resembled the f R time
course set by the metronome, as depicted in Figures 10 and 11. The f R time course observed
during HIIT both during indoor and outdoor tests (see Figure 11) further supports the
quality of the data collected from the smart facemask, as the observed response is in line
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with the response reported in the literature during similar HIIT tests performed in the
cycling modality [2,8,16].

Figure 11. fR time series from the facemask during the RIFT test (left panels) and HIIT test (right panels)
reported as mean ± standard deviation values. The trends shown were obtained by averaging the
responses of all the subjects during both indoor and outdoor tests. The work phase of the HIIT tests is
highlighted in yellow.

7. Discussions

The purpose of this study was to test the validity of a wearable smart facemask
measuring f R during cycling exercise. The custom-made system was developed to suit the
requirements of athletes and exercise practitioners, both in terms of wearability and quality
of the respiratory signal. When compared to the reference system, we found a very good
performance of the smart facemask in measuring f R, both during progressive increases in
f R paced by a metronome and during HIIT. Precision and accuracy were very good, and
the MAE was always lower than 2 bpm, even when the validity of the f R measurement was
assessed at a breath-by-breath level. Moreover, when the validity was assessed on f R values
averaged every 30 s, the MAPE was always lower than 1%. We found that the quality of the
respiratory temperature signal was preserved even when tests were performed outdoors at
temperatures above 30 ◦C, despite a substantial reduction in the amplitude of the signal.
Both the indoor and outdoor HIIT tests showed the characteristic fast response of f R to the
alternation of work and recovery (see Figure 11), which makes f R particularly suitable for
monitoring high-intensity exercise [2,7,8,16]. These findings have important implications
for both research and exercise management in different populations.

The very low errors found for the proposed facemask have rarely been reported
when testing the validity of other wearable devices during exercise. Not only is our
solution superior to recent attempts made in extracting f R from cardiac signals [28,29], but
it also appears to overperform commercial and custom-made wearable devices integrating
strain sensors. For instance, substantially higher error values than those observed in
our study were found when assessing the validity of the ZephyrTM BioHarnessTM chest
strap of the Hexoskin® smart shirt and of the capaciflector sensors tested by Hayward
et al. [19,20,23–26]. Notably, the performance of our facemask is even superior to that
of a custom-made wearable device integrating a differential pressure sensor previously
tested in similar exercise conditions and using similar analyses [30]. During HIIT, the
previous study found average MAPE values of 4.03% and 1.77% when computed breath-
by-breath or on 30 s windows, respectively [30], while we found average values of 1.64%
and 0.23%, respectively, in this study. The very good performance of our smart facemask is
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not surprising if we consider that the good quality of the respiratory temperature signal has
long been exploited in the field of exercise physiology for the evaluation of the locomotor-
respiratory coupling phenomenon [32–37]. Indeed, its assessment requires the accurate
measurement of f R and its subcomponents at a breath-by-breath level. However, the good
metrological characteristics of the temperature sensors have not so far been effectively used
for developing wearable sensors measuring f R during exercise, and our study makes an
important step in this direction.

The performance of the smart facemask presented herein is substantially better than
that of a preliminary system that we tested in our laboratory [31], and several factors
explain the improvements made in the quality of the temperature respiratory signal. The
preliminary system had a temperature sensor embedded into the electronic board and
had thus been located outside of a commercial facemask used for exercise testing. That
system was prone to artefacts caused by wind and had only been preliminarily tested
in the laboratory [31]. Conversely, the herein-presented smart facemask was developed
with account taken of the needs of both indoor and outdoor exercise testing. Hence, the
temperature sensor was not embedded into the electronic board but was conveniently
located in the facemask and integrated into a spoon-shaped housing system allowing the
sensor to be directly exposed to nose and mouth airflow and unexposed to wind. As a
result, our smart facemask resulted in about 2–4 times lower MAPE values compared to
the previously tested preliminary system [31].

Before discussing the important implications of our findings, we acknowledge the
limitation of monitoring exercise with a facemask, albeit wearable and light, as this prevents
the possibility for athletes and exercise practitioners from wearing it daily. Indeed, the
devices that athletes commonly wear on a daily basis are less obtrusive (e.g., heart rate
straps, global positioning systems, etc.). On the other hand, the assessment of athletes’
ventilatory responses has so far been performed with devices requiring the use of a facemask
(mostly in the laboratory), and hence athletes are used to wearing a facemask for exercise
testing. Our smart facemask may play an important role in the attempt to move respiratory
monitoring from the laboratory to the field. Indeed, not all the attempts made so far by
companies or researchers to use unobtrusive wearable devices for measuring f R have
resulted in valuable information provided to the athlete or the exercise practitioner. For
instance, when using some analyses/sensors for processing/recording the cardiac signal to
extract f R [28,29], the f R measurement error may not be negligible. In fact, this issue may
also apply to a variety of other sensors and devices because it is common practice to perform
validation studies in the laboratory and assume that the devices under validation would
exhibit similar performance in the field. However, some researchers have encouraged
the verification of this assumption because different exercise protocols, modalities, and
environmental factors may affect the quality of the respiratory signal [28,29]. Hence, our
facemask meets the current need of the sports science community to have a wearable,
light, affordable, accurate, and precise device that can be used to test the validity of
f R measurements made by other wearable devices in the field. This implies that our
facemask can also be used for applied research performed in the field, thus facilitating our
understanding of how f R responds and is regulated in applied exercise settings.

In an attempt to extract valuable information from the f R response, it is important to
monitor other variables to understand the context leading to the observed response. The
movement module of the smart facemask is not only suitable for recognizing if the user
is cycling or not, but it also appears to provide pedalling cadence values with relatively
low errors. Indeed, we observed MAE values always lower than 4 rpm even during
HIIT (the values ranged from 1.9 to 3.9 rpm), where pedalling cadence values higher than
100 rpm were found in all the participants. This is important because pedalling cadence
affects f R, although we have found that f R does not change in proportion to pedalling
cadence as this relationship is moderated by exercise intensity [47]. Indeed, it is more
likely to observe consistent changes in pedalling cadence and f R during low-to-moderate
exercise than during high-intensity exercise [47]. Nevertheless, the fact that pedalling
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cadence may confound the association between f R and perceived exertion (especially at
low intensities) [47] outlines the need to measure pedalling cadence alongside f R, and our
smart facemask appears to be suitable for this purpose.

While we do not advise the use of the herein-presented facemask for monitoring
athletes on a daily basis, the device can be used for a variety of other applications requiring
accurate f R measurements. Performance assessment is fundamental for managing the
training process, and our device is suitable for use during both maximal and submaximal
tests [31]. Indeed, the fact that the f R time course is sensitive to changes in exercise
capacity makes respiratory monitoring suitable for gaining insights into performance
adaptations [10]. There is also an emerging interest in the voluntary modulation of the
breathing pattern during exercise [48]. Although further research is needed before any
suggestion can be made on the acute or chronic use of breathing strategies during exercise,
our smart facemask may support research in this area and facilitate the practice of breathing
strategies. Furthermore, the accurate measurement of f R has the potential to refine exercise
prescription and monitoring in patients. Indeed, all the patients experiencing a reduction in
exercise capacity, not only the patients affected by pulmonary diseases, have an anticipated
increase in f R compared to healthy individuals [10], and the sensitivity of f R to changes in
exercise tolerance may prove useful for monitoring patients.

While the characteristics of our smart facemask make it suitable for f R monitoring
in a variety of sporting activities and populations, our findings may not be generalized
to conditions different from those tested in the present study until further research is
performed. For instance, we have not tested female participants, although there is no reason
to assume that the temperature respiratory waveform is substantially different between
males and females. Hence, while gender differences should be considered when assessing
wearable devices recording respiratory-induced movements, this issue is negligible for
devices measuring airflow temperature. Unlike the respiratory waveform recorded with
strain sensors, the temperature respiratory waveform is neither substantially affected
by interindividual differences in anthropometric characteristics nor movement artefacts,
and this contributes to explaining why we found similar errors of measurement between
different participants. This suggests that our findings can be generalized to healthy, trained
male individuals performing cycling exercise despite the relatively low sample size tested.
On the other hand, we cannot exclude that the use of a facemask may affect the breathing
pattern, and interest in this issue has been further stimulated by recent research exploring
the physiological effects of the protective masks used for contrasting the spread of the
COVID-19 virus. The systematic review by Zheng et al. [49] suggests that the use of
facemasks during exercise does not substantially affect f R, which encourages the use of our
facemask that was specifically designed to minimize respiratory resistance while making
the temperature sensor unexposed to wind. However, further research is required to
specifically test the effects of our facemask on f R and exercise performance.

8. Conclusions

This study shows the very good performance of a wearable smart facemask measuring
f R during cycling exercise with a temperature sensor. The quality of the temperature respi-
ratory signal was preserved even in outdoor scenarios with external temperatures above
30 ◦C. This device appears to be generally superior to other custom-made and wearable
devices developed for similar purposes and can thus be used for the validation of other
devices in applied settings. Other applications include exercise testing and management
in different populations, ranging from athletes to patients. While the convenient design
of the smart facemask makes it suitable for monitoring a variety of other sports and exer-
cise modalities beyond cycling, further research is needed to address its performance in
conditions different from those assessed in this study.
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