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Abstract: Given the importance of respiratory frequency (fgr) as a valid marker of physical effort,
there is a growing interest in developing wearable devices measuring fRr in applied exercise set-
tings. Biosensors measuring chest wall movements are attracting attention as they can be integrated
into textiles, but their susceptibility to motion artefacts may limit their use in some sporting activi-
ties. Hence, there is a need to exploit sensors with signals minimally affected by motion artefacts.
We present the design and testing of a smart facemask embedding a temperature biosensor for
fr monitoring during cycling exercise. After laboratory bench tests, the proposed solution was tested
on cyclists during a ramp incremental frequency test (RIFT) and high-intensity interval training
(HIIT), both indoors and outdoors. A reference flowmeter was used to validate the fr extracted
from the temperature respiratory signal. The smart facemask showed good performance, both at
a breath-by-breath level (MAPE = 2.56% and 1.64% during RIFT and HIIT, respectively) and on
30 s average fr values (MAPE = 0.37% and 0.23% during RIFT and HIIT, respectively). Both ac-
curacy and precision (MOD =+ LOAs) were generally superior to those of other devices validated
during exercise. These findings have important implications for exercise testing and management in
different populations.

Keywords: wearable sensors; validity; respiratory frequency; cadence; measurement accuracy;
exercise; sport; breathing; respiratory rate

1. Introduction

Ever-growing technological development is offering new solutions to monitor athletes
and exercise practitioners with wearable sensors in applied settings. The physiological and
mechanical variables currently available may help refine the prescription and monitoring of
training and assess its effects, with potential benefits for the health and exercise performance
of different populations. One of the physiological variables that is gaining particular interest
in the exercise community is respiratory frequency (fr) [1,2], also considering the numerous
techniques suitable for its measure [3,4]. Unlike other physiological variables (including
tidal volume, V), fR is closely associated with perceived exertion [5-9], and its time course
reflects changes in exercise tolerance [10]. The fact that the depth (i.e., V1) and rate (i.e., fR)
of breathing provide different information is supported by their differential control, as V
and fr are mainly modulated by metabolic and non-metabolic inputs, respectively [8,10-12].
As such, fr has been defined as the behavioral component of minute ventilation [1,10].

The notion that fR is a valid marker of physical effort, especially at high intensities, is
particularly evident during cycling exercise and applies to a variety of exercise paradigms,
including incremental exercise [13], time trial [6,8,14], time to exhaustion [5], trapezoidal
exercise [11], all-out exercise [15], and high-intensity interval training (HIIT) [8,14,16]. HIIT
shows a feature of fr that distinguishes the behavioral component of minute ventilation
from commonly monitored physiological variables such as oxygen uptake, heart rate, and

Biosensors 2023, 13, 369. https:/ /doi.org/10.3390/bios13030369

https:/ /www.mdpi.com/journal /biosensors


https://doi.org/10.3390/bios13030369
https://doi.org/10.3390/bios13030369
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com
https://orcid.org/0000-0003-3525-0213
https://orcid.org/0000-0002-4716-1667
https://orcid.org/0000-0002-6893-1907
https://orcid.org/0000-0002-5365-5161
https://orcid.org/0000-0002-9696-1265
https://orcid.org/0000-0002-3090-5623
https://doi.org/10.3390/bios13030369
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com/article/10.3390/bios13030369?type=check_update&version=3

Biosensors 2023, 13, 369

2 of 20

blood lactate. Indeed, fr responds rapidly to the alternation of work and recovery, while
the other variables show a delayed response both at the onset and offset of the work
phase [8,16-18]. This offers an advantage in monitoring cycling exercise as well as other
sports that are characterized by intermittent activities [1,7].

While the measurement of fr and other ventilatory variables has a long tradition
in exercise physiology laboratories, interest in custom-made and commercial wearable
devices suitable for fg monitoring in applied exercise settings has increased substantially in
recent years [1,2]. Different methods can be used to monitor f in applied exercise settings,
and some of them are attracting particular attention, including the techniques recording
chest wall movements and those extracting fr from physiological signals modulated by
breathing (e.g., the electrocardiographic signal). Among the sensors recording chest wall
movements, those measuring strain can be easily integrated into clothes or textiles, which
facilitates the development of unobtrusive devices. Different wearables integrating strain
sensors have been developed and tested during exercise, generally showing a relatively
good performance in measuring fr [19-27]. The other emerging trend in the field of
exercise is the attempt to extract fg from cardiac signals registered from heart rate straps
or other devices, where the main advantage is that these signals are already recorded by
many athletes and exercise practitioners [28,29]. However, the error in estimating fr from
cardiac signals is usually higher than that found when strain sensors are used [28,29]. A
common problem of the aforementioned techniques is that the registered respiratory signal
is susceptible to motion artefacts, which implies that the evaluation of the validity of fr
measurement should be sport specific. Indeed, motion artefacts may affect the quality of the
respiratory signal more in some sports (e.g., running) than others (e.g., cycling). However,
even in cycling, some exercise paradigms may challenge the quality of the respiratory
signal. For instance, we found that the error in measuring fg was higher during HIIT
compared to incremental exercise, even when the signal was recorded with a differential
pressure sensor and was thus minimally affected by motion artefacts [30]. Hence, the
use of HIIT in validation studies is encouraged but currently underappreciated. Another
important overlooked requirement of validation studies is the need to assess the quality
of the respiratory signal at a breath-by-breath level because different respiratory services
may need such a level of detail (e.g., real-time monitoring) [1,30]. The quality of validation
studies performed during exercise should improve accordingly.

The variety of sensors available for measuring fr allows for the identification of other
wearable solutions that have so far been considered to a limited extent and may partially
solve some of the above-mentioned problems. We have recently started exploiting the
very good metrological characteristics of some temperature sensors recording a respiratory
waveform that is minimally affected by motion artefacts [31]. This feature of temperature
sensors has long been appreciated in the field of exercise physiology, where thermistors or
thermocouples have been used for the assessment of the locomotor-respiratory coupling
phenomenon [32-37], which requires a very good signal quality for its detection. However,
the characteristics of temperature sensors have rarely been exploited for the development
of wearable sensors suitable for exercise monitoring, which is currently facilitated by the
miniaturization of electronics. In a first attempt, we located a thermistor embedded into
a small electronic board close to the orifice of a face mask used for laboratory exercise
testing, and we found relatively low errors in measuring fr [31]. However, this preliminary
solution was still far from the usability requirements needed for exercise monitoring in
applied settings. Hence, in this study, we present the design and testing of a new solution
exploiting the use of a temperature biosensor located in a facemask for fg monitoring
during cycling exercise.

2. Smart Facemask: Design and Description

The smart device presented in this paper has been designed from both a hardware
and software perspective to meet the requirements of fgr monitoring during cycling ex-
ercise without restricting the athlete’s mobility or influencing the proper execution of
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exercise sessions. Hence, in the design and development of the smart device, we consid-
ered the following requirements: (i) keep the weight and dimensions as low as possible;
(ii) guarantee the washability of components in contact with the athlete after use, to have
the correct level of hygiene; (iii) guarantee the continuous data acquisition for more than
10 h, which is a duration that largely exceeds the usual requirements of elite cyclists [38];
(iv) ensure low air resistance to the athlete’s respiratory flow; (v) ensure low motion
artefacts sensitivity.

To fulfil all the requirements, the system’s design was intended to avoid any sensing
element in contact with the subject and to maximize the sensitivity to respiratory activity
while minimizing the influence of motion artefacts. We decided to develop a smart facemask
with a modular architecture that consists of four main units: (i) central data logger: designed
for data acquisition, digitalization, and transmission; (ii) remote base station: designed
for sending data messages to the central data logger and to store the raw sensor data;
(iii) sensor unit: designed to be the sensing part of the whole system; (iv) case unit: designed
to fit the subject’s face and to integrate both the central data logger and the sensor unit. An
example of all the main units and their modules is shown in Figure 1.

CASE UNIT

Housing for . z
central data logger ™74 71 x

Pull-out module i VHousing for
: = voltage
"""" divider
Housings for |
headband | c‘ :
Tip of the
thermistor

Housing for the

Voltage divider Thermistor Core module reference flowmeter

Motion module Breathing module

Figure 1. Schematization of the system architecture with the main units (i.e., remote base station,
central data logger, sensor unit, and case unit) and their modules.

The characteristics of the four main units of our system are as follows:

(1) The sensor unit includes three modules: (i) a breathing module that uses an NTC Radial
Glass Thermistor (model number: G10K3976B1, TE connectivity, Resistance and Tolerance
@ +25 °C: 10 kQ) and 1%; time response in stirred oil: 0.4 s; Beta Value 25/85: 3976 K) and a
voltage divider with a fixed resistance of 10 k(). The glass body of the selected thermistor
provides a hermetic seal and voltage insulation; hence it can operate in high temperature
and moisture environments. This module was designed to monitor respiratory activity by
collecting the temperature of the airflow exhaled by the nose and mouth (i.e., Tgxp); (ii) a
motion module that consists of a triaxial accelerometer (model Bosch® BMI160) with +16 g
scale. This module was added to provide an estimation of exercise-induced head accelerations
that may provide information on the athlete’s movement (e.g., pedalling cadence); (iii) an
external temperature module that consists of a surface-mount temperature sensor (model number
NCP15XH103F03RC, accuracy +5 °C) positioned so as not to be hit by the flow of air exhaled
by the subject. This module was selected to collect the external temperature (i.e., system’s
working temperature, henceforth Tg).

(2) The central data logger consists of a small (diameter: 24 mm, height: 6 mm) and
low-weight (56.7 g) electronic board that integrates a Bluetooth low energy (BLE) module
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(Bluetooth LE 4.2-2.4 GHz), the motion module and the external temperature module. In
addition, it has four general-purpose I/O (GPIO) ports, a power supply port (3 V), and a
10-bit analog to digital converter (ADC). One of the GPIOs houses the breathing module
that is also supplied by the power supply port. The analog-acquired signal is then sent to a
10-bit ADC in the acquisition board for digitalization. This module allows us to receive
data messages from the remote base station. The central data logger is supplied by an
interchangeable lithium coin cell (capacity up to 240 mA /h, 20-54 °C) that guarantees more
than 700 h of continuous acquisition, widely sufficient for a typical training session.

(3) The remote base station consists of a Raspberry Pi that allows sending data messages
in a Python environment to the central data logger to provide instructions to (i) set the
sampling frequency of each sensor unit (i.e., 50 Hz for the breathing and motion modules;
1 Hz for the external temperature module) and start the data recording inside the central
data logger internal memory (8 MB); (ii) stop the data acquisition; (iii) begin the data
download; (iv) retry the connection during the download in the case of connection drops.
Additionally, it allows us to store the raw sensor data in a csv format when sent from the
central data logger via BLE.

(4) The case unit was designed with two detachable modules. The first module is
called the pull-out module and is made up of a housing for the sensor unit and a housing
for the central data logger, as shown in Figure 1. This is made up of 3D-printed polylactic
acid with a Creality Ender-3 v2 in the shape of a ‘spoon’ with an overall weight of 7 g.
The design was intended so that most of the nose and mouth airflow hits the tip of the
thermistor (approximately 2 cm away from the tip of the mouth) of the breathing module,
which emerges from the concave side of the spoon (see Figure 1). This configuration makes
it possible to record temperature changes during the inspiratory and expiratory phases of
breathing. On the other hand, the ‘spoon’ was specifically designed to make the thermistor
unexposed to wind. At the top of the ‘spoon’, we designed housing for the central data
logger positioned in the central part of the subject’s head to obtain a more reliable signal of
the head’s accelerations from the motion module. The second module of the case unit is
called the core module and was realized to be completely electronics-free. It is a facemask
made from 3D-printed Thermoplastic Polyurethane 95A, with an overall weight of 45 g.
This module was designed to accommodate the pull-out module so that the latter can be
hooked during the test and unhooked when the facemask is washed and sanitized. It also
has a 40 mm diameter hole in the front to ensure low air resistance to the athlete’s airflow.
This prevents the proposed mask from forming a closed space around the nose and mouth
once fitted. Finally, it has four housings for the headband that can be worn and set by the
athlete so that the facemask properly fits the face.

In this paper, we will focus mainly on the breathing module of the sensor unit (see
Figure 1) and its performance. The system’s working principle, the developed algorithm
for respiratory analysis, preliminary tests, and the validation process conducted against a
reference flowmeter on athletes are presented below.

3. System’s Principle of Working and fr Estimation: Algorithm Design

The operating principle of our system for collecting respiratory biosignals is based on
variations in the air temperature flowing out of the nose and mouth during the breathing
activity to which it is exposed. Our sensor has a variable resistance (R) as the temperature
(T) varies with a negative transformation coefficient. Therefore, when the T increases, the
R decreases. In the absence of exhaled airflow (e.g., sensor not worn by the subject or
during apnea), the respiratory module is surrounded by T, so the output temperature
signal (and the resistance signal) remains stable. On the other hand, during exhalation,
the airflow impinges on the respiratory module at a temperature (Tgyp) of approximately
37 °C [39]. Thus, the behavior of the biosensor is as follows:

e  If Tgxp > TE, the temperature measured by the respiratory module increases, and its
resistance decreases (see c,d in Figure 2);
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o If Tgxp < T, the temperature measured by the respiratory module decreases, and its
resistance increases;

e  If Tgyp = TE, the temperature (and the resistance) measured by the respiratory module
remains stable (see a,b in Figure 2).

Ty

(A) T nrmmnan ». | == inspiratory phase
. : i | == expiratory phase

Time (s)

Figure 2. Example of a normalized resistance signal (A) and the resulting normalized temperature
signal (B) collected during breathing from the smart facemask. Black line (a-b) is the end-inspiratory
apnea; blue line (c-d) is the expiratory phase; red (d—e) is the inhalation phase. In (C), the normalized
signal was collected during breathing from the reference flowmeter used in the validation phase. The
black dashed line (a-b) is the end-inspiratory apnea; the blue dotted line (c-d) is the expiratory phase,
and the red dotted one (d—e) is the inhalation phase.

Instead, in the inhalation phase, the respiratory module sensor is re-exposed to Tg.
Therefore, the phenomenon is ‘passive’” and behaves as follows:

o  If Tgyp > T, the temperature measured by the respiratory module decreases, and its
resistance increases (see d,e in Figure 2);

e  If Tgyp < Tg, the temperature measured by the respiratory module increases, and its
resistance decreases.

To extract fr from the collected respiratory signals Y, two different algorithms were
implemented, as shown in Figure 3. The first algorithm was used to extract the breath-by-
breath fr, while the second algorithm was used to extract the average fr in 30 s windows.
In both algorithms, the breathing signal was filtered with a Butterworth band-pass filter
(BPF) with cut frequencies of 0.01 Hz and 2 Hz to obtain Y [1,40,41]. Hence, the components
of physiological breathing frequency values are preserved in the signal.

Subsequently, with Algorithm#1, the fg was directly extracted from the Y. For this
purpose, the peaks corresponding to the end of exhalation were selected with an algorithm
based on both temporal and amplitude criteria to exclude artefacts. The temporal criterion
states that two consecutive peaks are selected as separate events if their distance exceeds
a minimum value set at 0.6 s because, even during maximal effort exercise, the fr of
human adults usually remains below 1.67 Hz (100 breaths/min) except for extreme exercise
conditions [15]. Regarding the amplitude criterion, we set a percentage threshold of 2%
of the maximum peak-to-peak amplitude of the signal in order to be robust to changes
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in signal amplitude. Only peaks exceeding this threshold were selected as breathing
events, while the others were discarded. The distance between two different breathing
cycles (Tk) was calculated as the elapsed time between two consecutive breathing events.
Consequently, the breath-by-breath fx (i.e., fi) was calculated as 60/ Tk.

(A) Algorithm #1 (B) Algorithm #2
Y v L T
....... ». BPF st BPF s i Windowing
14 0%
J— A v, S Lwl
; Prominence * O LA ‘
., evaluation | ¢ Prominence Y
' i Peaks . evaluation
detection | e g Peaks
freeerereaenenn ; .................................. > detection
L' ...................................
R v
extraction i
extraction

Figure 3. (A) Block diagram of Algorithm#]1 for extracting the breath-by-breath respiratory frequency
from the respiratory signal; (B) block diagram of Algorithm#?2 for extracting the average respiratory
frequency in 30 s windows of the respiratory signal. BPF: band-pass filter; fi: i-th respiratory
frequency; f§': mean respiratory frequency in the w-th window.

Algorithm#2 employs the previously described algorithm (Algorithm#1) within
30 s windows. Thus, in each window, the breath-by-breath fr (i.e., ;'éw) was computed, and
the average one was calculated (e.g., f§’ in the w-th window). This resulted in an average
fR value for each window.

4. In-Lab Tests with the Mechanical Ventilator: Description and Results

To assess the feasibility of the smart facemask in monitoring fr, preliminary tests
were conducted in the laboratory. The aim of this preliminary analysis is to investigate
the behavior of the entire system when it is provided with simulated respiratory flows
at set frequencies ranging from 5 to 75 bpm. For this purpose, we used an experimental
setup consisting of (i) a mechanical ventilator (SERVO VENTILATOR 300, SIEMENS,
fr accuracy 1 bpm or 10% of the set value) used to provide frequency-controlled air flows;
(ii) a humidifier (MR850ALU, Fisher&Paykel HEALTHCARE) used to heat and humidify
the air coming out of the mechanical ventilator; (iii) a 3D-printed Polylactic Acid PLA
box containing the smart facemask. This box is designed with a front hole to convey the
airflow onto the breathing module and a rear hole that allows the airflow to pass through,
minimizing losses; (iv) a coolant box that aims to keep the Ty outside the facemask almost
constant at ~25 °C; (v) a lung simulator that aims to simulate the adult’s respiratory airways.
Thus, the airflow originating from the mechanical ventilator passes through the humidifier
to be heated and humidified (temperature 37 °C, relative humidity 100%). The heated
and humidified flow is directed into the PLA box through a corrugated tube connected
to the front hole and impinges on the thermistor of the respiratory module of the smart
facemask. Subsequently, the flow exits through the rear hole and reaches the test lung
simulator, which captures the flow and then returns it to the mechanical ventilator. An
example of the whole system is shown in Figure 4.
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Figure 4. Schematization of the experimental setup for preliminary in-lab tests with the
mechanical ventilator.

Experiments were conducted to simulate eight different fr levels. The set fr ranged
from 5 bpm to 75 bpm in steps of 10 bpm to investigate the typical frequencies of a subject
at rest and during exercise [1]. For each set fr, 10 respiratory acts were simulated.

To evaluate the performance of the developed device, the breath-by-breath fr was
extracted from the respiratory module signal with Algorithm#1 and compared to the
frequency values set on the mechanical ventilator. For each set fr, the measured values
were reported as shown in Equation (1):

meis :]?R:téer (1)

where fr denotes the mean of the measurements and ¢ fr 1s the uncertainty calculated using
Student’s distribution and expressed as follows in Equation (2):

Sf
O =k \/% , )
where k is equal to 2.306 and denotes the coverage factor considering a 95% confidence level,
S fr is the standard deviation of the measurements, and N is the number of the extracted
fr values (i.e., 9). The deviation obtained by comparing the values measured with the
developed system and those set on the mechanical ventilator is shown in Figure 5.

(A) (B)
80 : . . , tof set Set fp [bpml] Measured /5
I Measured f, Iz fr e+ 5;8/) : [bpm]
[ Seis, = : (e s o)
60| = 1 5.00 £0.50 5.00 £ 0.02
e = 2 15.00 £ 1.00 15.58 £0.10
o
'% 4071 - 3 25.00 + 1.00 25.03 +0.26
= — 4 35.00 £ 1.00 34.89 +0.45
201 - 5 45.00 £ 1.00 45.32 £ 0.64
- 6 55.00 + 1.00 55.34 +0.77
O " "
. 2 3 4 5 6 7 8 7 65.00 = 1.00 64.67 +0.92
8 75.00 £ 1.00 75.24 +1.34

#of set fp

Figure 5. Mean and uncertainty of the values measured with the smart facemask (in blue) and the
values set with the mechanical ventilator (in red) (A) and related table (B).

We examined the discrepancy between the measurements provided by the two in-
struments, defined as the difference between two measured values of the same quantity
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with both the device and the reference system. Hence, we assessed whether there were

system 5 5system

any points in common between the interval |fp ;i stem, ;yswm +05, and the
. ref ref  ref ref . . .
interval |fp” —¢ (37 s ) fo ‘ Figure 5 shows that there is no discrepancy between the

two measurements for all the tested fr. Additionally, the results exhibit an average error
of less than 0.6 bpm with a maximum deviation of the mean values of 0.58 bpm for a set
frequency of 15 bpm and an overall overestimation of the proposed system with respect to
the reference in all but two set frequencies (i.e., 35 and 65 bpm).

5. Validation of the Smart Facemask and Algorithms: Experimental Tests on Athletes

Experimental tests were carried out to validate the proposed smart facemask against a
reference instrument for g monitoring and pedalling cadence estimation.

(1) Population, Experimental Setup, and Protocol: Ten trained healthy non-smoker cyclists
(10 males, mean =+ SD: age 25 £ 6 years, body mass 68 * 6 kg, height 174 £ 5 cm) were
enrolled for this purpose. The study was approved by the Institutional Review Board of
the University of Rome “Foro Italico” (CAR 112/2021). The principles of the Declaration of
Helsinki were followed in all steps of the study, and written informed consent for study
participation was signed by all volunteers. To validate the proposed device, we conducted
an indoor testing session at Tg of about 26 °C (obtained by averaging all the recorded Tg
during the indoor tests). A gold-standard flowmeter (Quark PFT, COSMED S.r.l., Rome,
Italy) was used to collect reference respiratory airflow (¢) at 50 Hz.

Before starting the test, each volunteer was asked to wear the developed smart face-
mask with a properly adjusted headband to keep it fixed on the face. The flowmeter was
placed in a dedicated hole realized on the core module of the smart facemask. The test
was performed on a cycle-ergometer (WattBike Pro, model WAT-1W51-015-15) that was set
for each participant based on comfort and anthropometric characteristics. After an initial
familiarization phase and a 3 min warm-up, participants were encouraged to perform
a starting sequence consisting of three deep breaths followed by apnea. This procedure
was used to synchronize the respiratory signals collected with the smart facemask and
the reference system. Then, they were asked to complete two different exercise protocols
interspersed by 3 min of recovery (see Figure 6A):

1.  Ramp incremental respiratory frequency test (henceforth referred to as RIFT), where
participants were asked to replace spontaneous breathing with the fr paced by a
metronome. This test lasted 5 min, and the fr paced by the metronome increased
from 20 bpm to 75 bpm in an exponential fashion. Participants were asked to cycle
during this test and to self-select pedalling cadence and power output according to
preference. The execution of this test has several advantages: (i) the time course of
fr resembles the response commonly observed during incremental exercise [10,42];
(ii) the range of fr values exceeds the range of values commonly observed during
cycling exercise [1,6,14]; (iii) it allows for the evaluation of the quality of the respiratory
signal even when no reference system is used (see Section 6 Outdoor Tests).

2.  High-intensity interval training (henceforth referred to as HIIT) test composed of
eight repetitions of 20 s of work and 40 s of recovery. The work-phase power output
was self-selected by the cyclist to reach approximately a value of 19 of the Borg’s
6—20 ratings of perceived exertion scale [43] on the last of the eight repetitions.

5.1. Breathing Module for fr Monitoring

Prior to data analysis, all the signals recorded with the facemask (Tgx, signal,
TE signal, motion module signal) were synchronized with the ¢ reference signal starting
from the third deep breath of the starting sequence. The reference ¢ provides a pseudo-
periodic signal with a negative phase corresponding to inspiration and a positive phase
corresponding to expiration (see Figure 2C); ¢ signal was integrated to obtain a volume
signal (V), in accordance with previous studies [44,45]. V has an increasing trend during
exhalation and a decreasing trend during inhalation, comparable to the signal acquired
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with our device. Algorithm#1 and Algorithm#2 were applied to Tgy, and V to estimate the
fr (breath-by-breath fg) and f§' (average fg in 30 s-windows), respectively.

(A) (B)
Familiarization and warm-up VY T .
Starting sequence :
for synchronization BEERing Sequenos

Ramp Incremental Respiratory Ramp Incremental Respiratory

Frequency Test (RIFT) — 5 min Frequency Test (RIFT) — 5 min
High Intensity Interval Training (HIIT) — High Intensity Interval Training (HIIT) —
8 min (20 s of work and 40 s of recovery) 8 min (20 s of work and 40 s of recovery)

Tp~26°C Tgp~32°C

. od e
> 3 2 S
S

Reference
flowmeter

)

<
Smart Cycle- Smart Cycle-
facemask ergometer facemask ergometer
Tz Texp Acc  Cadence Te Tegxp Acc  Cadence

Figure 6. Description of the experimental protocol carried out during the (A) indoor testing session for
the validation of the smart facemask for respiratory frequency monitoring (at average Tg = 26 °C) and
(B) the outdoor testing session (at average Tg = 32 °C), and schematic representation of the devices used.

For both algorithms, comparison between data provided by the developed system and
those from the reference device was performed using the Bland-Altman analysis [46]. The
latter was carried out to assess bias between the two measurement systems and expressed
in terms of the mean of differences (MOD) and limits of agreement (LOAs), calculated as
1.96 times the standard deviation of the differences between the fr values estimated by the
two methods.

In addition, the following statistical indexes were calculated: the mean absolute
error (MAE) and the mean absolute percentage error (MAPE), respectively, defined as in
Equations (3) and (4):

MAE [bpm Z ‘fR device fR reference |’ (3)

N fR device ~ fR reference

MAPE [%] = «100, @)

j=1 f R device

where N represents the number of breaths extracted or the number of windows when using
Algorithm#1 or Algorithm#2, respectively.

Table 1A,B shows the number of breaths extracted using Algorithm#1, the
MOD =+ LOAs from the Bland-Altman analysis, and the MAE and MAPE values cal-
culated for the RIFT test and HIIT test, respectively. Table 2A,B shows the results of the
30 s-window analysis extracted using Algorithm#2 and the number of windows in which
the signals were windowed.
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Table 1. Breath-by-breath analysis results: (A) RIFT test and (B) HIIT test.

(A) (B)
Breath-by-Breath Analysis—Rift Test Breath-by-Breath Analysis—Hiit Test
. Bias . Bias
Cyclist #Breathing [MOD - LOAs] MAE M{.&PE Cyclist #Breathing [MOD - LOAs] MAE M1°\PE
Events [bpm] [%] Events [bpm] [%]
[bpm] [bpm]
1 173 —0.02 £2.57 0.89 2.30 1 320 —0.04 £3.85 1.00 2.54
2 177 —0.01 £2.50 0.93 2.48 2 371 —0.01 £1.68 0.60 1.29
3 174 —0.23 +4.84 1.02 2.60 3 416 0.00 £ 2.00 0.68 122
4 175 —0.01 £292 1.10 2.74 4 290 —0.03 £2.26 0.85 2.33
5 179 —0.03 £4.62 1.75 4.50 5 245 —0.01 £231 0.77 2.58
6 174 —0.02 £+ 2.58 0.75 1.82 6 283 0.00 £ 1.40 0.50 1.43
7 179 —0.01 £2.08 0.66 1.72 7 306 —0.04 £1.32 0.48 1.13
8 179 —0.02 £2.68 1.05 2.74 8 331 —0.03 £1.85 0.59 1.48
9 174 —0.11 £ 2.87 0.98 2.34 9 362 —0.06 £+ 3.43 0.75 1.67
10 174 —0.02 £252 0.84 2.31 10 377 0.00 +£2.25 0.66 1.28
Overall 1758 —0.05 + 3.37 1.00 2.56 Overall 3301 —0.02 £+ 2.37 0.69 1.64
Table 2. 30 s window analysis results: (A) RIFT test and (B) HIIT test.
(A) (B)
30 s—Window Analysis—Rift Test 30 s—Window Analysis—Hiit Test
Bias Bias
Cyclist  #Windows [MOD =+ LOAs] MAE MAPE[%] Cyclist #Windows [MOD =+ LOAs] MAE MéPE
[bpm] [bpm] [%]
[bpm] [bpm]
1 10 —0.03 £0.31 0.10 0.28 1 16 —0.13£0.28 0.14 0.38
2 10 —0.01 £ 0.26 0.10 0.34 2 16 —0.01 +£0.14 0.06 0.13
3 10 —0.10 £ 042 0.17 0.58 3 16 —0.06 £ 043 0.09 0.16
4 10 —0.04 £0.29 0.10 0.27 4 16 —0.03 £0.15 0.07 0.19
5 10 —0.02 £+ 0.54 0.18 0.62 5 16 0.00 £ 0.20 0.08 0.27
6 10 —0.05£0.12 0.06 0.20 6 16 0.00 +£0.10 0.04 0.13
7 10 —0.02 £0.15 0.06 0.19 7 16 0.04 +0.53 0.12 0.30
8 10 —0.06 = 0.22 0.09 0.27 8 16 —0.02 £0.13 0.06 0.15
9 10 —0.04 £1.16 0.30 0.75 9 16 0.01 +£0.78 0.19 0.39
10 10 0.00 £ 0.19 0.07 0.25 10 16 —0.07 £0.28 0.09 0.19
Overall 100 —0.02 £ 045 0.12 0.37 Overall 160 —0.03 £ 0.37 0.09 0.23

For the sake of clarity, the graphs of the Bland—Altman analysis performed for both
the HIIT and RIFT test by all subjects in the indoor test are shown below (see Figure 7).

5.2. Motion Module for Cadence Estimation

The motion module placed on the smart facemask was used to assess the ability to
estimate the cycling cadence from the accelerations at the level of the head when compared
to the cycling cadence extracted from the cycle-ergometer. The idea is that the y-axis
(i.e., lateral axis as in Figure 1) of the accelerometer has a cyclical pattern at a frequency
resembling that of cycling with a peak local maximum for each pedal stroke of the same
foot (defined as an event). Indeed, it is conceivable that the cyclist tends to slightly move
his head according to changes in weight distribution during pedalling.

The y-axis accelerations of the motion module were analyzed in the MATLAB environ-
ment. Data collected with the cycle-ergometer (reference cadence values) and the motion
module were synchronized and split into RIFT traces and HIIT traces. Then, two main
steps were performed on the motion module signal to extract the cycling cadence:

- Signal filtering;
- Event-by-event extraction in the time domain.
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Figure 7. Bland-Altman graphs for both the RIFT test and the HIIT test.

The signal filtering stage involves the implementation of a first-order BPF with a lower
cut-off frequency of 0.01 Hz and a higher cut-off frequency of 3 Hz to better emphasize the
contribution of head movement due to the cycling activity. The event-by-event extraction in
the time domain consists of selecting the maximum peaks in the signal and computing their
distance in time. This corresponds to the period (i.e., T;y4ence) Petween a head movement
between one pedalling cycle and the following one. We then computed the cycling cadence
as Tmi(:m expressed in revolutions per minute (rpm). Finally, we applied a Hampel filter to
detect and remove outliers, defined as the samples that differ from the median by more
than three standard deviations.

Cadence values extracted from the motion module were then compared with those
extracted from the cycle-ergometer, used as reference ones. To compare the results, the
cadence values extracted from the reference cycle-ergometer and our device were resampled
at 1 Hz to have one cadence value per second for both devices. A graphical comparison
between the cadence values extracted from the two devices for all subjects is shown in Figure 8.
In addition, the MAE value for each subject was calculated as shown in Equation (3).
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Figure 8. Comparison between the cadence values extracted from the motion module and the reference
values extracted from the ergometer for the RIFT test (left panels) and the HIIT test (right panels).

6. Outdoor Tests

On a subset of the participants (six), we carried out a second testing session to assess
the feasibility of using our system in an outdoor setting with an external temperature (Tg)
higher than 32 °C, and thus closer to Tgx, compared to the indoor setting (see Figure 6B).
No reference system was used in these tests performed outdoors because the stationary
metabolic cart we used could not be transpo