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Abstract: Electrochemical biosensors are widely used in a multitude of applications, such as medical,
nutrition, research, among other fields. These sensors have been historically used and have not
undergone many changes in terms of the involved electrochemical processes. In this work, we
propose a new approach on the immobilization and enhancement of the electrochemical properties of
the sensing layers through the control and bioconjugation of hemoproteins (hemoglobin, myoglobin,
and cytochrome C) on anisotropic gold nanoparticles (gold nanotriangles (AuNTs)). The hemeproteins
and the AuNTs are mixed in a solution, resulting in stable bioconjugates that are deposited onto the
electrode surface to obtain the biosensors. All the systems proposed herein exhibited direct well-
defined redox responses, highlighting the key role of the AuNTs acting as mediators of such electron
transfers. Several protein layers surrounding the AuNTs are electroactive, as demonstrated from
the charge measured by cyclic voltammetry. The retention of the stability of the hemeproteins once
they are part of the bioconjugates is evidenced towards the electrocatalytic reduction of hydrogen
peroxide, oxygen, and nitrite. The parameters obtained for the proposed biosensors are similar or
even lower than those previously reported for similar systems based on nanomaterials, and they
exhibit attractive properties that make them potential candidates for the latest developments in the
field of sensing devices.
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1. Introduction

Most of the commercial and non-commercial biosensor devices used are based on
electrochemical enzymatic sensors that perform indirect measurements based on the quan-
tification of species such as oxygen (O2) and hydrogen peroxide (H2O2) [1]. These sensors
are classified as enzymatic biosensors of first-generation. The first enzymatic sensor was
developed by Clark et al. [2]. In this pioneering work, they developed a sensor based on
the indirect measurement of the O2 generated as a consequence of the selective reaction of
glucose with the enzyme glucose oxidase. However, it presented several limitations that
needed to be addressed, such as its dependence on O2 or the interference of electroactive
species [3,4]. Since its apparition, a multitude of approaches have been described for the
determination of species with high importance and relevance in medicine and in nutrition,
such as glucose [5,6], vitamin C [7,8], and lactate [9,10], among others. In the case of second-
generation enzyme sensors, the electrochemical response occurs because of electron transfer
mediated by the use of electroactive species with the active center of the enzyme. This fact
eliminates the dependence on O2 and H2O2 for this type of sensors, and also allows the
decrease of the applied potential, avoiding interferences, although it presents problems
in terms of stability, and therefore, possible leaching of the mediator, losing activity of
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the sensor. These problems of leaching and therefore loss of activity can be solved by
the development of third generation sensors, where there is a direct electronic transfer
(DET) from the electrode surface to the active site of the enzyme, so it is of special interest
regarding its study and optimization [11]. On the other hand, it is worth highlighting the
great progress that is being made in the development of non-enzymatic sensors. These
sensors are based on the direct detection of the analyte through the use of composites and
nanomaterials related to the analyte of interest, as has been observed for molecules such as
H2O2, sulphites, and nitrites [12–15]. These sensors have some advantages over enzymatic
sensors—such as the lack of need for biological compounds that can degrade and therefore
lead to a loss of sensor performance—but also have a number of limitations—such as the
passivation of its surface by poisoning with other materials, or the low specificity with the
analyte of interest that instead offers the enzymatic sensors to their analytes.

Over the years, new methodologies have been developed to improve the sensing
properties of electrodes with the introduction of electroactive species, such as mediators [16]
and nanoparticles [17,18], for the optimization and development of first-, second-, and
third-generation sensors. The latter are particularly interesting and, within the wide variety
of systems that are reported, those based on gold nanoparticles (AuNPs) stand out [19].
This can be easily explained by considering the excellent biocompatibility of AuNPs [20],
among their attractive surface chemistry and optical properties [21–23].

In this regard, the evaluation of the direct electrochemistry that proteins and enzymes
present with when they are immobilized at electrodes can be used as a starting point
for building electrochemical instrumentation, such as biosensors, bioreactors, and even
medical devices [24]. Furthermore, these studies can also establish models to accurately
understand the electron transfer process in real biological systems. As mentioned above, to
achieve this, it is essential to select a suitable film or support for the electrode surface. In a
previous work, we have described the direct electrochemistry and electrocatalysis towards
H2O2 and O2 of bioconjugates formed by the electrostatic interaction of Hb immobilized
on spherical AuNPs, deposited on a glassy carbon electrode [25]. The results obtained
revealed that the mode of binding of the hemeprotein on the AuNP surface does not affect
its structural integrity, and we have taken them as a starting point for a more advanced
design, as is the one proposed in this paper. More recently, Niu et al. have proposed a
new third generation biosensor based on the use of triangular gold nanoparticles (AuNTs)
together with horseradish peroxidase (HRP) [19]. The use of AuNTs constitutes a kind
of nanomaterial that presents important improvements in the electrochemical signals,
mainly due to the presence of hot spots in the vertices of the nanostructures, as it has been
demonstrated by their extensive use in photothermal and theragnostic applications, that
are mainly based on the Raman enhancement and the near infrared absorption properties.
In this system, the presence of AuNTs produces an improvement of the electron transfer
rate constant with respect to the direct immobilization of HRP on the electrode thanks to its
physicochemical properties, such as large surface area and high conductivity, as already
observed in the development of other biosensors based on AuNTs [26–29].

The design proposed herein is prepared through a new protocol for the design of
the sensing layer of future electrodes, favoring their optimization, and leading to the
improvement of their electrical properties. For this purpose, different hemeproteins have
been used to determine the different electron transfer constants established with AuNTs.
Specifically, we have selected proteins that are key to the O2 transport, such as Hemoglobin
(Hb) and Myoglobin (Mb) [30], in addition to Cytochrome c (Cyt c), which is involved in
the electron transport chain of mitochondria [31]. The confirmation of the functionality
of the bioconjugated hemeproteins was addressed by checking their redox response once
deposited on a glassy carbon electrode, and by evaluating the electrocatalytic response
towards the reduction of H2O2, O2, and nitrite ions. We have selected these analytes
considering their importance for both analytical and synthetic purposes, in natural and
artificial systems [32–34].



Biosensors 2023, 13, 467 3 of 16

2. Experimental Section
2.1. Chemicals

Hemoglobin from bovine blood (Hb), Myoglobin (Mb), and Cytochrome C (Cyt c)
were purchased from Sigma-Aldrich and used without further purification. Hydrogen
tetrachloroaurate trihydrate (from 99.99% pure gold), sodium thiosulfate hexahydrate, and
all the supplementary chemicals were of analytical grade, and solutions were prepared
with 18.2 MΩ deionized water by Millipore system.

2.2. Characterization Techniques

The TEM images were obtained with a JEOL JEM 1400 instrument operating at
80–120 kV, and analyzed using Image Pro Plus software (Servicio Apoyo a la Investi-
gacion (SCAI) Universidad de Córdoba). Samples were prepared onto formvar-coated Cu
grids (400 mesh, Electron Microscopy Sciences). The grids were immersed in an AuNT
diluted solution for at least one hour and after that time, then dipped in water for an extra
hour to ensure the removal of unfixed particles, and finally dried at room temperature.

The absorbance spectra between 250 and 1600 nm (fixed 1 nm bandwidth) were
recorded using a Jasco V-670 UV-vis-NIR spectrophotometer using a UV quartz cell of
2 mm path length.

Electrochemical experiments were performed using an Autolab (Ecochemie model
Pgstat30) instrument controlled by GPES 4.9 software for the recording of the experiments
and data acquisition. A standard three-electrode cell comprising of a platinum coil as
the counter electrode, a 3 M Ag/AgCl electrode as the reference electrode, and a glassy
carbon (GC) as the working electrode (BASi Research Products, 3.0 mm diameter) were
used. All measures concerning bioconjugates were recorded in 10 mM phosphate buffer
solution at pH 7.4, unless otherwise stated. Before each experiment, the GC electrode was
polished with 0.3 µm alumina on a microcloth and subsequently sonicated in an ultrasound
bath. For the different measurements, the dissolved oxygen was removed by bubbling
and maintaining an N2 atmosphere. Finally, the clean electrode was cycled in a 50 mM
phosphate buffer solution at pH 7.4 until a stationary voltammogram (potential range
between −1.1 and 1.1 V)—characteristic of a clean GC electrode—was obtained.

2.3. Synthesis of AuNTs

The synthesis of AuNTs was made by following the seed-mediated growth method,
described and optimized by several research groups (Scheme 1a) [35,36]. Briefly, we obtain
the nanoparticles from the reduction of HAuCl4 by Na2S2O3 in an aqueous media. On a
first step, the seed solution is prepared by mixing 30 mL of 0.5 mM Na2S2O3 with 25 mL of
2 mM HAuCl4 in a 100 mL Erlenmeyer flask. The previous solution is kept under stirring
for 9 min and, during this time, it changes its color from an initial pale yellow, to light
brown, dark brown, and, finally, deep red. After that time, a second addition of 12.5 mL of
0.5 mM Na2S2O3 promotes the growth of the seeds, and thus, the formation of the AuNTs.
The previous mixture is kept under stirring for 45 min and, as a result, we obtain a colloidal
suspension of AuNTs of different sizes, which should be capped with thiosulphate anions.
The evolution of the reaction was monitored by UV-vis-NIR spectroscopy and, at the end
of the process, the LSPR band presented a maximum absorbance centered at ca. 970 nm,
confirming the effectiveness of the synthesis (Figure S1a). TEM micrographs of the obtained
AuNTs allow us to confirm that our nanoparticles present an average side length of 80 nm
(Figure S1b).

2.4. Formation of the Colloidal Suspension of Bioconjugates

To ensure the stability of the colloidal suspension, the concentration of AuNTs was
adjusted to 0.07 nM in the presence of 10 µM protein (Hb, Mb, or Cyt c) in an aqueous
solution (Scheme 1b). The immobilization of the protein around the gold core is mainly
taking place by electrostatic interactions giving place to a protein corona that is composed
of several protein layers. Once prepared, the samples were incubated at 4 ◦C for at least
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30 min. Prior to use, they were centrifugated to obtain concentrated samples that ensure
the acquisition of good quality electrochemical signals. Through this methodology, the
optimization of the protein concentration immobilized on the gold nanoparticles is carried
out in the solution before its immobilization on the electrode. This optimization has been
taken into account for the electrochemical experiments carried out, saving in the amount of
protein used and avoiding the interference and unspecific protein adsorption on the clean
electrode that occurs with other methodologies used, such as the direct drop casting of the
proteins on the electrodes already modified with nanomaterials.
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Scheme 1. Schematic representation of (a) the synthesis procedure for preparation of AuNT using a
seed-mediated protocol, (b) immobilization of the hemeproteins onto AuNT, and (c) modification of
the solid GCE by drop casting employing concentrated bioconjugate solutions.

2.5. Preparation of the Biosensor Platforms

Freshly prepared and concentrated bioconjugates were deposited by drop casting on
the surface of a clean GC electrode (3 µL/sample) and were left to dry at room temperature
(Scheme 1c). The high solubility of the bioconjugates recommended the use of a thin film of
Nafion (0.1% ethanolic solution) to ensure integrity of the platform during the experimental
measurements, and thus the electrochemical response does not disappear for the long time
experiments. This thin Nafion layer shows no electrochemical signal in the measurements.

3. Results and Discussion
3.1. Electrochemical Behavior of Hemeproteins Immobilized on AuNT

The presence of heme iron porphyrin in the structure of some proteins makes direct
electron transfer possible through the heme Fe(III)/Fe(II) species. However, this reac-
tion is slow due to the location of the electroactive group buried in the nonconductive
peptide chains. The enhancement of this electron transfer process can be achieved by
modifying the electrode surface [37,38] or by using composite materials that include the
protein together with some conductive elements, as is the case of the gold nanoparticles
forming nanobioconjugates [25]. In the present case, the strategy followed had been the
preparation of the bioconjugates AuNT-protein that, upon stabilization, were deposited
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on a GC electrode surface by a drop casting methodology for electrochemical evaluation.
Then, nanobioconjugates formed by AuNTs, with either Hb, Mb, or Cyt c, were checked
for electron transfer capability. As it is shown in Figure 1, the presence of Hb-AuNTs
bioconjugates on the electrode surface brings about the appearance of the Fe(III)/Fe(II)
redox signal at −0.300 and −0.237 V, in contrast to the behavior observed when only Hb is
deposited on the surface that shows no peak in the potential interval where the redox pair
is currently observed.
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Figure 1. Cyclic voltammograms of Hb and Hb-AuNTs drop casted on a GC electrode in a 10 mM
phosphate buffer at pH 7.4 (scan rate 0.1 V/s).

The cathodic and anodic peaks observed for Hb-AuNTs show a peak separation of
63 mV and an E◦’ value of −0.268 V. When the cyclic voltammograms are recorded as a
function of the scan rate, increases of the current density and peak potential separation
are obtained (Figure 2A). The current increase with the scan rate shows a linear variation,
indicating that the process is taking place on the surface, as is also evidenced by the
logarithmic plot that gives slopes close to unity according to Equation (1) (Figure 2B,C).

Ip =
n2F2

4RT
·v·A·Γ =

nFQv
4RT

(1)

In these systems, the charge involved in the electron transfer process can be determined
from the integration of the voltammetric peaks upon background subtraction, and the
results are plotted in Figure 3 as a function of scan rate, along with the values of the peak
half width, W. The shape of the cathodic and anodic peaks of the voltammograms are
nearly symmetric but present a half width higher than the theoretical value for an ideal
process (90.6/n mV). This fact can be explained either as a consequence of the spatial
distribution of redox centers in multilayers surrounding the nanoparticle [39], or as a
consequence of a heterogeneous population of proteins adsorbed in a non-uniform manner
that gives rise to different adsorption environments and hence a distribution of different
redox states [40–42]. The W parameter presents a smaller value at low scan rates and
suddenly increases, achieving a constant value at scan rates higher than 5 V/s. A parallel
comportment to W can be observed in the charge involved in the anodic and cathodic
processes that decrease to reach a constant value. This behavior has been seen in other
systems and has been explained as due to the presence of protein multilayers adsorbed on
the surface of the electrode and that, only at low scan rates, they can undergo the redox
process efficiently. However, when the scan rate increases, the charge density decreases
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until it reaches a constant value, evidencing that the electron exchange only occurs with the
protein layers closest to the electrode surface [42]. Based on the above, an analysis of the
situation can be made, considering the Equation (2), which allows determining the surface
coverage (Γ) if the charge involved (Q) and surface area (A) are known.
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Q = n·F·A·Γ (2)

The surface coverage determined at the lower scan rates is 2.17 × 10−10 mol/cm2, and
decreases up to 7.02 × 10−11 mol/cm2 at scan rates where the amount of charge becomes
constant. Comparing to the theoretical monolayer coverage (5.18 × 10−12 mol/cm2) for
Hb and, considering that each unit is composed of 4 monomers with its corresponding
heme group that could exchange 4 electrons, the amount of electroactive protein molecules
is much greater than the corresponding to a monolayer, in particular, at the low scan rate
regime. When analyzing the result at higher scan rates, the charge density corresponds to
the monitorization of two to three layers of protein around the AuNT—that is, only the
first two protein layers are involved in the electronic exchange.
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The time scale required to change the oxidation state of a redox species confined to
the surface comprises of two complementary mechanisms. On the one hand, the charge
transfer mechanism involves the direct electron transfer between the electrode and the
redox site located at a distance at which, probably, the tunnel effect must act. On the other
hand, the spread of redox reactions within the film and beyond the tunnel distance from
the electrode requires the exchange of electrons between neighboring sites. This process,
known as charge transport, is diffusive in nature and is assisted by segmental movements
of the polymeric film, making it easier for neighboring redox sites to approach each other
long enough for an electron hopping event to occur [43]. The transport and charge transfer
rates and their dependence on the experimental variables have been studied, and it has
been found that the results obtained in randomly arranged films cannot be extrapolated
to the organized multilayers cases that exhibit the ability to control the nature and the
charge of the layers. The model of Laviron [39,44] deals with redox centers located in
well-defined planes, while the real cases have a less homogeneous distribution. A more
recent model [43] allows the potential to vary with the distance from the redox center to the
electrode surface. In this case, the potential difference between the oxidation and reduction
peaks (∆E) at low scan rates increases as the apparent diffusion coefficient decreases. This
effect is associated with limitations in charge transport. In this case, ∆E reaches a constant
value at about 58 mV, very close to the value expected for a diffusion-controlled system.
The Laviron model that considers redox sites located in planes parallel to the electrode
predicts a decrease in this value when there is an increase in v, but this occurs when the
diffusion can penetrate only the first plane and, therefore, the thin-film behavior is restored.
When the charge transfer is slower than the charge transport, the first process masks the
separation of peaks and does not allow observing the diffusive phenomenon.

As seen in Figure 4, the peak potentials for the Hb-AuNTs shows a small separation
of peaks at a low scan rate, which increases slightly up to the change, becoming more
important at very high scan rates showing two branches that seem to retain some symmetry
with respect to the values of the average potentials (Figure 4). Under these conditions, it is
possible to determine both the values of α and ks based on the Laviron method [39,44]. At
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high speeds, the values of Ep vary linearly with log v and, since these branches reach values
of ∆E > 200/n mV, the Equations (3)–(5) can be used to determine the α and ks parameters.

Ep = Eo’ +
2.303RT
αnF

(
logαnF

RT− logks

)
+

2.303RT
αnFlogv

(3)

logks = α× log (1− α) + (1− α)× logα− log
RT
nFv
− α·(1− α)nFη

2.3RT
(4)

ks =
α·n·F·v

RT
(5)
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In the present case, values for α and ks of 0.5 and 138 s−1, respectively, have been
obtained. The ks value is much greater than those found for this same protein forming
parts of different composite materials, both nanometric and polymeric, or with nanotubes
or carbon aerogels [45], Fe3O4 nanostructured materials [46], gold nanorods modified with
silica [47], gold nanoparticle assembled capsules [48], multiwalled carbon nanotubes-zinc
oxide composites [49], gold nanoshells [50], and nickel oxide nanoparticles [51].

The results obtained for the Mb- and Cyt c-AuNTs are similar to these described for
the Hb-AuNTs system, also showing voltammogram shapes that are typical for redox
processes in the adsorbed state. The parameters obtained for the studied systems are
gathered in Table 1.

Table 1. Electrochemical parameters obtained from the analysis of the bioconjugates.

Biconjugate Ec/V Ea/V E◦’/V ∆E/mV ks/s−1

Hb-AuNT −0.300 −0.237 −0.268 63 138.0

Mb-AuNT −0.280 −0.237 −0.258 43 104.1

Cyt c-AuNT −0.290 −0.252 −0.271 38 148.4

These data show that the presence of the AuNTs facilitates the fast electron transfer of
the heme iron groups in the three proteins studied. It is interesting to note that although
both Hb and Mb possess a 5c heme b as a prosthetic group with a His as the proximal
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ligand, and Cyt c has a different one, the three nanobioconjugates behave similarly. In the
case of Cyt c, the native protein possesses a heme c with a 6c conformation that involves
the axial coordination of Met 80 and His 18 that are responsible for the relatively high redox
potential that allows the protein to exert its functional role in the respiratory chain [24]. It
has been reported that the coordination of the Fe ion changes upon interaction with some
nanomaterials, changing the coordination of Met 80 by a His residue that gives place to
a bis-His complex that shifts the redox potential negatively and induces a structure that
presents peroxidase activity [52].

3.2. Electrocatalysis of the Nanobioconjugates

Taking into account the redox response of the nanobioconjugates, it seems interesting
to check their capacity as sensor systems against some molecules, such as H2O2 [53–55],
NaNO2 [56,57], and O2 [57,58], that have been shown to be catalyzed by these proteins un-
der determined conditions. Figure 5 shows the voltammograms of the Hb-AuNT deposited
on a GC electrode obtained in solutions with increasing amounts of H2O2 in a phosphate
buffer at pH 7.4. It is observed that the reduction current gradually increases, while the
oxidation rate decreases until finally disappears. This behavior is typical of electrocatalytic
systems, in which the reduced state of Hb that is generated is immediately oxidized with
the H2O2 present in solution. While in the absence of H2O2, the voltammogram presents
characteristic redox peaks of Hb at E◦’ of −0.268 V; the addition of hydrogen peroxide
results in a current increase of the Hb-Fe(III) reduction peak, concomitant with the decrease;
and finally the disappearance of the Hb-Fe(II) oxidation peak intensity. Such behavior indi-
cates that this platform functions as a biosensor and shows excellent electrocatalytic activity
towards H2O2 reduction [59]. The cathodic current (measured at a constant potential of
−0.30 V) increases linearly with the analyte concentration until c.a. 500 µM. Up to this
value, a constant intensity current is assessed—that is, reaches a plateau—characteristic of
the Michaelis–Menten mechanism. The apparent Michaelis–Menten constant (KM

app) is a
reflection of the analyte-substrate kinetics, and it can be obtained from the electrochemical
version of the Lineweaver–Burk equation (Equation (6)),

1
Jss

=
1

Jmax
+

Kapp
M

Jmax·C
(6)

where Jss is the steady-state current after the addition of the substrate, C is the substrate
bulk concentration, and Jmax is the maximum current measured under saturated substrate
conditions. Thus, KM

app values are obtained from the analysis of the slope and the intercept
for the plot of the reciprocal of the steady state current versus the reciprocal concentration
of the analyte. The effectiveness of the proposed biosensors, as evidenced by the calculated
KM

app values (summarized in Table 2), are comparable to or lower than those previously
reported in the literature for similar systems that present good response for the electrocatal-
ysis of H2O2 and that involve the use of hemeproteins: Hb-cAuNP/GCE (1.2 mM) [21],
Mb-AuNPs-CNs/GCE (0.3 mM) [60], and Cyt c/AuNP/carbon paste (2.3 mM) [61] within
others [24,62]. In addition, it is noteworthy that the values presented in this work were bet-
ter than those reported for nanozymes based on hemeprotein active sites for the detection of
H2O2 in living cells [63]. Thus, the obtained results indicated that the biosensors maintain
a higher biological affinity to H2O2 because the hemeproteins retain their catalytic activity.

The nitrite reductase activity of the Fe-heme group of these proteins upon bioconjugate
formation has also been examined. One of the most accepted mechanisms for the heme
iron catalytic nitrite reduction [62,64–66] consists of the disproportionation reaction of the
HNO2 species that occurs in acid media, giving place to NO and NO3

− anions (reactions (i)
and (ii)). The NO species interact with the heme-Fe(II) form of the protein (reaction (iii)),
forming the ferrous nitrosyl complex (reaction (iv)) that reduces at the electrode releasing
heme-Fe(II) that continues the catalytic cycle (reaction (v)). The later reaction occurs at
around −0.71 V.
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Table 2. Electrocatalytic parameters determined for H2O2 and NO2
− analytes in the presence of

heme-based bioconjugates dropped in a GC electrode.

Platform Hb-AuNT Mb-AuNT Cyt c-AuNT

H2O2

KM
app/mM 0.808 0.602 0.195

Jmax/µA 50.2 38.0 15.5

S/µA·mM−1 48.7 45.6 45.4

LOD/µM 18 27 39

NO2
−

KM
app/mM 49 5.3 2.9

Jmax/µA 17.8 7.7 3.2

S/µA·mM−1 0.2 0.3 0.3

LOD/mM 1.7 0.8 1.2

NO−2 + H+ � HNO2 (i)

3HNO2 −→ 2NO + NO−3 + H+ + H2O (ii)

Heme− Fe(III) + H+ + e− � Heme− Fe(II) (iii)

NO + Heme− Fe(II) −→ Heme− Fe(II)−NO (iv)

Heme− Fe(II)−NO + H+ + e− −→ Heme− Fe(II) + product + H2O (v)

However, there have been many works related to this topic as the obtained voltam-
metric behavior is very dependent on the experimental conditions and the nature of the
enzyme used to build the biosensor. In the present systems, a reduction peak at −0.71 V
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appeared in the presence of nitrite concentrations, which increased with an increasing
concentration from 1 mM up to 50 mM NaNO2, where it reached saturation (Figure 6). The
electrochemical reduction of nitrite ions is a very complex process, and an important pH
influence was also observed. In this sense, the peak at −0.3 V obtained in the present case,
is not always present. We observed the peak at −0.3 V only at low nitrite concentrations
and, at higher concentrations, this peak moved to negative values in parallel with the
appearance of the peak at −0.71 V, to only the latter was observed. It can be speculated
that there are two different regimes for nitrite reduction, and these take place through the
Fe(II) and Fe(I) states of the protein. Under these conditions, in our system, we could see
both routes, catalysis through Fe(II) at −0.3 V and through Fe(I) at −0.71 V, the latter being
the predominant under most of the experimental conditions.
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The observed behavior is similar for the three protein bioconjugates, indicating that it
is dictated by the used nanomaterials and the type of interactions, and less dependent on the
nature of the protein. We have also analyzed the systems by following Michaelis–Menten
formalism and the KM

app values obtained are gathered in Table 2. The best performance of
the Cyt c-AuNTs could be ascribed to the smaller size of the protein and the change in the
heme conformation as described above.

Finally, we have checked the ability of these platforms against the reduction of O2. The
presence of O2 molecules in the solution provoked a pronounced increase in the reduction
current (Figure 7a, red line) in respect to the signal obtained with the bare GC electrode.
Moreover, a displacement of the reduction signal of around 0.2 V is obtained that should
be ascribed to the electrocatalytic reaction [67]. The reaction involved can be expressed
as follows:

O2 + 2 heme-Fe(II) + 4H+ + 2e− ↔ 2 heme-Fe(III) + 2H2O

Besides the mentioned decrease in the overpotential necessary to observe the O2
electrocatalysis, we have also studied the sensitivity to its detection (Figure 7b). To get
these data, we first eliminated the oxygen present at the equilibrium concentration in the
buffer solution by bubbling N2. Then, a controlled amount of air was introduced within
the cell through a syringe and the concentration was determined by considering the air
composition (21% O2).

The catalytic efficiency is expressed as the ratio of the reduction peak current in the
presence (Jc) and absence of oxygen (Jd). We have plotted the ratio Jc/Jd against the O2
concentrations monitored, and a linear behavior had been obtained with slopes of 79,
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88 and 170 M−1 for Cyt c-, Mb-, and Hb-AuNTs bioconjugates, respectively. These values
can be correlated with the sensitivity of these platforms to O2 electrocatalysis.
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Overall, the three platforms studied in this work constitute good systems for the sens-
ing of H2O2, nitrite ions, and molecular O2. As far as we know, the mediation of the AuNTs
to sensing analytes through heme-proteins have only been applied with horseradish perox-
idase by a different approach of constructing an AuNTs/CILE electrode, with very good
results for trichloroacetic acid and nitrite [19]. These results, together with other findings
where these nanomaterials have been proven to be effective in high signal improvement
for sensing [26–28], open new avenues for their use in biosensors of high performance.

Although this work presents a different methodology to the one used for the generation
of new, more efficient and sensitive biosensors, and therefore we do not emphasize in the
repeatability, stability, and reproducibility of the platforms, we must mention that thanks to
the preparation in the first instance of the bioconjugate and its subsequent deposition on the
electrode, a greater reproducibility is achieved, as well as a greater stability of the protein
against factors such as pH and temperature, as we have been able to prove in previous
studies [25].

4. Conclusions

Herein, we have demonstrated how the configuration and formation of stable biocon-
jugates of hemoproteins with AuNTs can increase the sensitivity of biosensors by increasing
their electron transfer rate constant. The determination of H2O2, nitrite ions, and molecular
O2 based on the catalytic behavior that different hemeproteins (Hb, Mb, and Cyt c) present
when they were conjugated to AuNTs and deposited onto GC surfaces was tested. All the
proposed systems present a couple of peaks characteristic of a redox quasi-reversible pro-
cess through a direct electron transfer through the AuNTs with the surface of the electrode,
and based on our calculations, the registered current is caused by at least two protein layers
surrounding the AuNTs, meaning that only such layers can exchange electrons effectively
enough to participle in the electron transfer process.

In comparison with previous studies, the electron transfer constants obtained are
higher, indicating that the electron transport is favored. This different behavior observed
may be related to the optimization of the conformation of the protein layers surrounding the
complete surface of the AuNTs, in comparison to the excess of proteins on the nanomaterial
previously deposited on the surface as is made in the previously reported cases. This
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improved immobilization of the proteins on the surface of the AuNTs, and their subsequent
deposition on the electrode, also enhances the analytical properties for the detection of
H2O2, NaNO2, and O2. This proof of concept can be applied for the prior modification of
nanoparticles with stabilizing proteins or enzymes for the future development of enzymatic
biosensors of first-, second-, and third-generations and its application to commercial devices
such as a glucometer or continuous system. Besides, the response of the biosensor to nitrite
detection is also remarkable, considering the significantly smaller number of devices
capable of detecting this analyte.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/bios13040467/s1, Figure S1: (a) UV–visible-NIR spectra
recorded at the end of the t-AuNT synthesis procedure. (b) TEM image of the same sample before the
formation of the bioconjugate.
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