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Abstract: Salmonella is one of four key global causes of diarrhea, and in humans, it is generally con-
tracted through the consumption of contaminated food. It is necessary to develop an accurate, simple,
and rapid method to monitor Salmonella in the early phase. Herein, we developed a sequence-specific
visualization method based on loop-mediated isothermal amplification (LAMP) for the detection
of Salmonella in milk. With restriction endonuclease and nicking endonuclease, amplicons were
produced into single-stranded triggers, which further promoted the generation of a G-quadruplex
by a DNA machine. The G-quadruplex DNAzyme possesses peroxidase-like activity and catalyzes
the color development of 2,2′-azino-di-(3-ethylbenzthiazoline sulfonic acid) (ABTS) as the readouts.
The feasibility for real samples analysis was also confirmed with Salmonella spiked milk, and the
sensitivity was 800 CFU/mL when observed with the naked eye. Using this method, the detection
of Salmonella in milk can be completed within 1.5 h. Without the involvement of any sophisticated
instrument, this specific colorimetric method can be a useful tool in resource-limited areas.

Keywords: loop-mediated isothermal amplification; colorimetric detection; sequence-specific;
G-quadruplex; DNA machine

1. Introduction

Foodborne disease is a growing public health problem worldwide, usually contami-
nating food through any stage of food production, delivery, and consumption chain [1].
There are nearly 1 in 10 people around the world falls ill after eating contaminated food,
which leads to over 420,000 deaths every year [2]. Salmonellosis is a common intestinal
infection caused by Salmonella spp. Salmonella has a high detection rate in raw milk, cheese,
raw meat, raw eggs, fruits, and vegetables [3], leading to diarrhea, vomiting, abdominal
pain, chills, fever, headache, etc. People will get a foodborne illness when they eat under-
cooked meat or eat other foods or beverages that are contaminated by raw meat or its juices.
However, as the “gold standard method”, the conventional culture method needs to be
pre-accumulated, with selective separation and biochemical identification of the samples.
It is accurate but time-consuming and very labor-intensive. It follows that it is necessary to
control pathogen-based food poisoning outbreaks with an earlier, more rapid, and more
sensitive method.

The nucleic acid test is a powerful technique for molecular diagnosis by analyzing
the genetic sequence in organisms. Among them, isothermal amplification technology
has drawn much attention because of the capability of on-site utilization. Compared to
methods that require thermal cycling, isothermal amplification is performed at a single
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reaction temperature, so it is more rapid and more energy efficient. Loop-mediated isother-
mal amplification (LAMP) is one of the most promising and comprehensively applied
isothermal amplification techniques. Developed by Tsugunori Notomi in 2000, LAMP is
realized with four specially designed primers recognizing six distinct sequences on the tar-
get, which ensures its high specificity [4]. The cauliflower-like structured products possess
abundant stem–loops that initiate the next cycle by hybridizing with the inner primer [4].
Therefore, the amplification can accumulate 109 copies of the target in less than an hour.
By introducing loop primers, its amplification efficiency can be further improved, and the
amplification process can be accomplished in half-hour [5]. The amplification process can
also be real-time monitored by collecting the fluorescent signal with an exclusive instru-
ment [6], which permits its wide application for the detection of foodborne pathogenic
bacteria [7,8], infectious diseases [9,10], and genetically modified organisms investigated
by the artificial mouth simulator [11,12]. In order to make full use of LAMP in point-of-care
diagnostic platforms, it is preferable to analyze the amplicons visually. With the visual
method, the nucleic acid test can be achieved at point-of-care testing with high convenience
in resource-poor settings because it does not rely on big and heavy instruments.

Recently, some ingenious colorimetric methods have been developed by detecting
the generated amplicons or by monitoring the variation of reaction compositions [13]. For
example, some intercalating dyes can bind double-stranded amplicons and indicate positive
amplification by changing color [14]. The generation of pyrophosphate ions [15,16], the
pH variation [17], and the consumption of deoxyribonucleotides (dNTPs) [18] in positive
amplifications also enable colorimetric detection by the naked eye. However, how to
visually detect the sequence-specific products of LAMP is still a great challenge.

G-quadruplex structures are composed of two or more stacked guanine (G)-tetrad
planes and a monovalent cation such as K+ or Na+, which are formed at specific G-rich
regions in the genome, mRNA, and non-coding RNA, and G-quadruplex DNAzymes
are stacked G-tetrads structure with peroxidase-like activity when binding hemin (iron
(III)-protoporphyrin IX) [19]. They can catalyze the color change of substrate, such as 2,2′-
azino-di-(3-ethylbenzthiazoline sulfonic acid) (ABTS) and 3,3′,5,5′-Tetramethylbenzidine.
Taking advantage of the catalytic activity of the G-quadruplex DNAzyme, colorimetric
sensors can be developed for the analysis of DNA amplification [20–22].

DNA machine is constructed from DNA self-assembly depending on the sequence-
specific interactions between complementary sequences [23]. The base sequence of nucleic
acids encodes substantial structural and functional information into biopolymers [24],
such as the base pairing, the pH-induced self-assembly of the C-rich sequence into i-
motif configurations [25], and the ion-induced self-organization of the G-rich sequence
into the G-quadruplex [26]. With rational design, DNA machines can perform machine-
like functions by autonomously generating expected sequences in the presence of the
appropriate trigger [27,28]. The powerful amplification ability exhibits great potential in
constructing biosensors [29–31].

Here, by combining G-quadruplex DNAzymes and DNA machine, we present a
sequence-specific method for colorimetric detection of LAMP amplicons. Typically, the
LAMP amplicons are digested into short fragments by a restriction endonuclease. A
nicking endonuclease recognition site is introduced into the inner primer to facilitate
the generation of sequence-specific single-stranded amplicons by repeatedly nicking and
extending. This restriction endonuclease and nicking endonuclease-mediated amplification
are termed as LAMP-Res-Nick. The ssDNA products from the LAMP-Res-Nick reaction can
trigger cascade amplification via DNA machine to generate G-quadruplex. The peroxidase-
like activity of G-quadruplex DNAzymes, when binding hemin, makes the colorimetric
readouts possible.
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2. Materials and Methods
2.1. Reagents and Oligonucleotides

Bst DNA polymerase (Large Fragment) was purchased from Vazyme Biotech Co., Ltd.
(Nanjing, China). Nt.BstNBI, ScrFI, DraI, and agarose were obtained from New England
Biolabs (Ipswich, MA, USA). Syto 9 was achieved from Thermo Fisher (Waltham, MA, USA).
4-(2-Hydroxyethyl) piperazine-1-ethanesulfonic acid (HEPES), hemin, dNTP mixture, and
ABTS were all supplied by Sangon Biotech (Shanghai, China) Co., Ltd. LB agar and LB
broth were offered by Beijing Land Bridge Technology Co., Ltd. (Beijing, China) 30% H2O2
was bought from Sigma-Aldrich, Inc. (Burlington, MA, USA).

The gene of invasion protein A (invA) was selected as the reference gene for amplifica-
tion (GenBank accession no. NC_003197). Conventional LAMP primers were synthesized
according to the previous report [32]. Inner primers incorporated with the recognition site
(GAGTC) of nicking endonuclease, Nt.BstNBI, are termed as Nick-BIP and Nick-FIP. All
the sequences were evaluated with IDT Oligo Analyzer 3.1 (Integrated DNA Technologies,
Coralville, IA, USA). The oligonucleotides were synthesized by Sangon Biotech (Shanghai,
China) Co., Ltd. Sequences used in this work are listed in Table S1, and the corresponding
template sequence is displayed in Figure S1.

2.2. DNA Extraction and Purification

The bacteria were separated by streak method on the LB agar plate, and a single colony
was selected for further culturing in LB broth overnight.

DNA was extracted with the Bacteria Genome DNA Isolation kit (Spin Column)
(Bioteke Corporation, Beijing, China) and stored at −20 ◦C. The concentration and purity
of the extracted DNA were determined by NanoDrop One (Thermo Fisher, Waltham, MA,
USA) for counting the copy number.

2.3. Real-Time LAMP Assay

For real-time LAMP, 10 µL amplification buffer contained 1 µL Salmonella DNA, 1.6
µM FIP and BIP, 0.2 µM F3 and B3, 0.4 µM LF and LB, 1.4 mM dNTPs, 3.2 U Bst DNA
Polymerase (Large Fragment), 1× ThermoPol Reaction Buffer, 6 mM MgSO4, 1 mM SYTO
9. The amplification was performed on CFX 96 (Bio-Rad, Hercules, CA, USA) at 65 ◦C with
fluorescence collected every 30 s. The products were analyzed with 3% agarose gel, and the
gel results were recorded via gel image system (UVP, Upland, CA, USA).

2.4. Cascade Amplification of LAMP-Res-Nick and DNA Machine

For LAMP process, the inner primer FIP was replaced by Nick-FIP, and no Syto 9 was
involved. The reaction was performed at 65 ◦C on an MSC-100 ThermoMixer (AllSheng,
Hangzhou, China) for 20 min as the protocol described in Section 2.4. A total of 20 µL
solution contained 10 µL of LAMP products, 50 mM Tris-HCl (pH 7.9), 100 mM NaCl,
6 mM MgSO4, 100 µg/mL BSA, 10 U ScrFI. The reaction was incubated at 37 ◦C for 1 h
followed at 95 ◦C for 10 min. Then, 1.5 µL 10× Isothermal Amplification Buffer II Pack,
4.8 U Bst 3.0 DNA Polymerase, 10 U Nt.BstNBI, 0.32 mM dNTPs were added to make the
solution 25 µL. The reaction was performed at 58.8 ◦C for 10 min. Thereafter, 5 µL of 1 µM
M-G was added, and the mixture was incubated at 58.8 ◦C for another 10 min. The final
products were incubated at 95 ◦C for 5 min followed on ice for 10 min.

2.5. Colorimetric Detection by G-Quadruplex DNAzyme

For colorimetric detection, the cascade amplification products were mixed with 1×
HEPES buffer (25 mM HEPES, 20 mM KCl, 200 nM NaCl, and 0.05% Triton X-100, pH 5.3),
200 nM hemin, and 1 µL of 1M HCl. Then 2 mM ABTS2− and 2 mM H2O2 were added in
the final 100 µL system for naked-eye detection in 5 min. The RGB values were extracted
by Image J.
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2.6. Sensitivity and Specificity

In order to test the sensitivity, 1 µL of a series of 10-fold diluted DNA was employed as
template. To test the specificity of the method, DNA extracted from Salmonella typhimurium
CMCC(B)50115, Vibrio parahemolyticus KP9, Vibrio parahemolyticus ATCC 17802 and
Escherichia fergusonii 19ZEF91003 were employed as the templates. DNA was amplified
and colorimetrically detected by the protocol described.

2.7. Detection of Salmonella Spiked Milk

Select Salmonella typhimurium colony and transfer it into LB broth for culturing at
37 ◦C for 6 h. The bacteria solution was then diluted 10-fold with saline and plate cultured
for counting the colony number. The diluted solution was spiked into sterile milk with
10 times dilution. Salmonella DNA was extracted by the Bacteria Genome DNA Isolation
kit. A total of 1 µL of extracted DNA was amplified and detected by the method described.
All experiments were repeated 3 times. Results were shown as mean ± standard deviation.
Differences were assessed by ANOVA.

3. Results and Discussion
3.1. Proof of Principle

In this study, the colorimetric and sequence-specific method is realized by producing
a G-quadruplex DNAzyme by the cascade amplification of restriction endonuclease- and
nicking endonuclease-mediated LAMP (LAMP-Res-Nick) and DNA machine. As shown in
Scheme 1, the recognition site of nicking endonuclease is incorporated in the inner primer
(Nick-FIP) and acts as the spacer between F1c and F2. The LAMP process produces a great
variety of stem–loop DNAs (I). These DNAs, which have different stem lengths and possess
multiple loops, provide a great number of restriction endonuclease recognition sites. Thanks
to the restriction endonuclease, these products of different structures are cleaved into short
double-helix fragments with the nicking endonuclease recognition sites embedded in them.
Thereafter, nicking endonuclease, Nt.BstNBI, will recognize these sites and produce a nick
on the double-stranded products. Meanwhile, Bst polymerase will add new free nucleotides
at the 3′ end of the nicking site and displace the original strands. The synergistic effect of Bst
polymerase and Nt.BstNBI promotes repeatedly nicking and extension that innumerable
single-stranded products are generated (III). In order to transform this DNA sequence
information into color development, a DNA machine (M-G) is added to realize cascade
amplification. The M-G compromises three parts, i.e., a complementary sequence of the
generated ssDNA products at the 3′ terminus, a nicking endonuclease recognition site in
the middle, and a C-rich sequence at the 5′ terminus. Once the ssDNAs hybridize with
the DNA machine, a great deal of G-rich sequences that can form G-quadruplex structures
with the presence of potassium ions are produced. The complex, formed by hemin binding
to the G quadruplex, possesses the peroxidase-mimicking activity, which can catalyze the
oxidation of the substrate ATBS2− to ATBS− by H2O2, thereby turning the solution green.
On the contrary, in the absence of targets, the LAMP process cannot be initiated, and the
G-rich sequence cannot be produced. Consequently, no color change is observed.

3.2. Effect of Nicking Endonuclease Recognition Site

The recognition site (GAGTC) of nicking endonuclease, Nt.BstNBI, was inserted in
the inner primers (termed Nick-FIP and Nick-BIP). We used only one or two modified
inner primers for real-time LAMP and compared them with conventional inner primers.
As shown in Figure 1A, compared with conventional inner primers, the incorporation
of a nicking endonuclease recognition site in the inner primer reduced the amplification
efficiency. However, the taking off time only delayed 2 min. The amplification was further
verified by gel electrophoresis (Figure 1B). All these positive amplifications, including
the inner primers incorporated with a nicking endonuclease recognition site, generated
ladder-like bands. In contrast, no obvious non-specific products were produced in all of
the negative samples. These results indicate that the presence of a nicking endonuclease
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recognition site in the inner primer has little effect on the LAMP process. To prove the
nicking endonuclease recognition site was successfully incorporated in the LAMP prod-
ucts, the products were incubated with the nicking endonuclease, Nt.BstNBI, for another
10 min. As shown in the electrophoresis image (Figure 1B), the ladder-like bands became
smeared when the modified inner primers were used for amplification. In contrast, the
products produced by the conventional primers were still ladder-like. This indicates the
successful incorporation of the nicking endonuclease recognition site into the LAMP am-
plicons. Since only one modified inner primer was enough for introducing the nicking
endonuclease recognition site into the LAMP products, we used modified FIP for the
subsequent experiments.
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Figure 1. Investigate the effect of inner primers incorporated with a nicking endonuclease recognition
site (termed as Nick-FIP and Nick-BIP) on LAMP process by (A) Tt values of real-time LAMP and
(B) gel electrophoresis. Nt.BstNBI was added to incubate with the LAMP products for 10 min. N
stands for no template control, P stands for positive control with 105 copies of Salmonella DNA, and
M stands for 20 bp DNA ladder.

3.3. Effect of Restriction Endonuclease

According to the previous study, the nicking and extension process prefers producing
short single-stranded DNA sequences. Since the LAMP products are cauliflower-like
structures with multiple loops, they can provide multiple nicking sites. Therefore, the
single-stranded DNA products are of different lengths because of the strong processivity of
Bst polymerase and random nicking by Nt.BstNBI. We employed restriction endonuclease,
ScrFI, and DraI, respectively, to cleave the LAMP products into small fragments which
contained the same 3′ terminus. The restriction sites of ScrFI and DraI are illustrated in
Figure S2A, and the expected cleaved products are indicated in Figure S2B. As shown in
Figure 2, after digestion by ScrFI, the ladder-like bands disappeared. Instead, the products
were enriched at around 100 bp and 200 bp, indicating the products were cleaved by ScrFI.
By contrast, when the products were treated with DraI, the products were still ladder-like
bands on the gel; this might be attributed to the poor compatibility of buffer for DraI
and LAMP.
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Figure 2. (A) In the presence of 105 copies of Salmonella DNA, LAMP products were cleaved by
restriction endonucleases ScrFI and DraI, respectively, followed by treatment with nicking endonucle-
ases Nt.BstNBI, then electrophoresis in 3% agarose gel. (B) 3% agarose gel electrophoresis showing
variability in products generated after isothermal amplification and these products cleaved by ScrFI
and Nt.BstNBI, N means no template control, N stands for no template control, P stands for positive
control with 105 copies of Salmonella DNA, and M stands for 20 bp DNA ladder.
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To further verify the cleavage of LAMP products by ScrFI, we added Nt.BstNBI into
the system and observed the generation of 73 bp products (Figure 2). This was attributed to
the synergistic effect of Bst polymerase and Nt.BstNBI, which promoted repeated nicking
and extension from the nicking site on the LAMP products and displaced the sequence
downstream of the nicking site. In contrast, when Nt.BstNBI was added to the samples
treated by DraI, and the ladder-like bands became smeared. This was probably owing to
the LAMP products not being digested before nicking, and the dissociated single-stranded
sequence being of different lengths.

Based on these results, ScrFI was used for cleaving the LAMP products into short
fragments in the following experiment.

3.4. Sensitivity

It is reported that Salmonella is one of the four key reasons that cause diarrhea dis-
eases [33]. Around 3.4 million cases of diseases are caused by invasive nontyphoidal
Salmonella annually [31]. To test the feasibility of the developed method, we chose Salmonella
typhimurium as an example. DNA extracted from Salmonella was serially diluted as
4 × 101, 4 × 102, 4 × 103, and 4 × 104 copies/µL for sensitivity evaluation, and the tem-
plate was amplified by LAMP-Res-Nick and DNA machine. The products were evaluated
by G-quadruplex DNAzyme catalyzing the color development of ABTS. Since the e RGB
pattern can effectively eliminate the error in human observation, the RGB value was also
extracted and analyzed, and the RGB values were extracted by Image J. The RGB (red,
green, and blue) is an important index for color expression. Each channel of red, green, and
blue has 256 levels of brightness, of which level 0 means the darkest and 255, the brightest.
The results are shown in Figure 3A. There was no color change in the negative control and
the sample with 4 × 101 copies of DNA. In contrast, an obvious green was developed for
samples containing 4 × 102, 4 × 103, and 4 × 104 copies of the template. The green and
blue channels were a little more sensitive, which dropped from color density 184 (without
target) to 148 (4 × 103 copies/µL target), and the best sensitivity was achieved for the red
channel as color density dropped from 184 to 94. Therefore, the red channel was chosen
for further assays as the optimal one. The results were compared with real-time LAMP
(Figure 3B), and consistent results were obtained.
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3.5. Specificity

To test the specificity of the method, DNA extracted from Salmonella typhimurium
CMCC(B)50115, Vibrio parahemolyticus KP9, Vibrio parahemolyticus ATCC 17802, and
Escherichia fergusonii 19ZEF91003 was detected. As shown in Figure 4A, only DNA
extracted from Salmonella typhimurium developed green. In contrast, other samples gave
colorless results. The results were consistent with real-time LAMP (Figure 4B).
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3.6. Detection of Salmonella in Milk

Salmonella is one of the main pathogens in raw milk, and healthy people of any age
can be gravelly sick after drinking raw milk contaminated with Salmonella, not only these
people with weakened immune systems. From 2013 to 2018, there are 75 outbreaks reported
to CDC were linked to raw milk, which included 675 illnesses and 98 hospitalizations [34].
Therefore, it is meaningful to test the practicability of the method for the detection of
Salmonella contamination in milk. Here, milk samples spiked with a series of concentrations
of Salmonella typhimurium, ranging from 8 × 106 CFU/mL to 8 × 101 CFU/mL, were
detected. As shown in Figure 5A, milk contaminated by 800 CFU/mL or more of Salmonella
turned green. As shown in Figure 5B, when the Salmonella concentration was lower
than 800 CFU/mL, the red channel was close to 180. When increasing the Salmonella
concentration made, the value of the red channel decreased significantly, indicating the
sensitivity for Salmonella detection in spiked milk was 800 CFU/mL. The results confirm
that our sensor can be used for practical sample analysis. Though this method does not
improve the sensitivity (Table 1), the method does not require an exclusive instrument, and
the colorimetric results can ensure specificity.
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Table 1. Comparison of the performance of our colorimetric method with other reported LAMP-based
methods.

Method Instrument or
Device Sensitivity Results

Determination
Method to Verify

the Specificity References

qLAMP qPCR
thermocycler

4 CFU/25 g
(chicken)

Real-time
fluorescence Melting curve [35]

LAMP-Turbidity Real-time
turbidimeter

6.1 × 103–6.1 × 104

CFU/g
Real-time turbidity Agarose gel

electrophoresis [36]

LAMP-ELISA
A thermal

cycler/water bath,
a plater reader

103 CFU/mL (spiked
meat sample)

Absorbance

Capture the
amplicons with

specific probes and
detect by ELISA

[37]

In situ LAMP
A water bath, a

fluorescence
microscope

1 CFU/cm2

(eggshells)
Microscopy fluorescence

microscope [38]

Triplex LAMP Genie III LAMP
detector

64 CFU/g (chicken
meat)

Real-time
fluorescence Melting curve [39]

LAMP on a
microfluidic
compact disc

a digital RPM
meter, a spinning

motor, an IR
thermometer

3.4 × 104 CFU/mL
(spiked tomato)

Visual observation Na [40]

Real-time LAMP Genie III LAMP
detector 1.2–12 CFU/reaction Real-time

fluorescence Na [41]

LAMP on a chip

an eight-channel
pump, a heater,
and a small ESE

log detector

50 cells/test (pork
meat)

Real-time
fluorescence Na [42]

Microfluidic
LAMP

A rotary system
consists of three
heating blocks, a

servo motor

50 CFU/mL (tap
water or milk) lateral flow strip

Capture the
amplicons with

antibody
[43]

Visual LAMP A metal heater 800 CFU/mL for
milk sample Visual observation

DNA machine for
transferring the

target sequence to
DNAzyme

This manuscript

Na: Not mentioned in the article.

4. Conclusions

In summary, the key issue to realizing colorimetric and sequence-specific detection of
LAMP amplicons is to efficiently transduce the amplification signal into color development
of ABTS. In this work, we employed a cascade amplification of restriction endonuclease- and
nicking endonuclease-mediated LAMP (LAMP-Res-Nick) and DNA machine to generate G-
quadruplex and employed the peroxidase-mimicking activity of G-quadruplex DNAzyme
to catalyze color development. The sensitivity was comparable to real-time LAMP. The
specificity was confirmed by testing four kinds of common foodborne bacteria. The method
was verified to be feasible for the detection of 800 CFU/mL Salmonella spiked milk by the
naked eye. The biggest advantage of this method is that sequence-specific colorimetric
readouts can be obtained simply, with no sophisticated instrument required during the
whole process, which is promising for point-of-care utilization.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios13050503/s1, Table S1: Sequences employed in this work.;
Figure S1: Template sequence for LAMP-Res-Nick amplification of the invA gene of Salmonella; Figure
S2: The effect of restriction endonuclease, ScrFI, and DraI, on cleaving LAMP products of invA gene

https://www.mdpi.com/article/10.3390/bios13050503/s1
https://www.mdpi.com/article/10.3390/bios13050503/s1


Biosensors 2023, 13, 503 10 of 12

of Salmonella. (A) Scheme illustrating the restriction sites of ScrFI and DraI on the long stem–loop
structure of LAMP products. Red arrows indicate the restriction site of ScrFI, and the blue arrows
indicate the restriction site of DraI. (B) The expected LAMP products extended from Nick-FIP. The
numbers in the box denote the expected length of the amplification products.
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