
Citation: Butt, M.A.; Kazanskiy, N.L.;

Khonina, S.N.; Voronkov, G.S.;

Grakhova, E.P.; Kutluyarov, R.V. A

Review on Photonic Sensing

Technologies: Status and Outlook.

Biosensors 2023, 13, 568.

https://doi.org/10.3390/

bios13050568

Received: 26 April 2023

Revised: 18 May 2023

Accepted: 19 May 2023

Published: 22 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biosensors

Review

A Review on Photonic Sensing Technologies: Status and Outlook
Muhammad A. Butt 1,* , Nikolay L. Kazanskiy 1,2 , Svetlana N. Khonina 1,2 , Grigory S. Voronkov 3 ,
Elizaveta P. Grakhova 3 and Ruslan V. Kutluyarov 3

1 Samara National Research University, 443086 Samara, Russia
2 IPSI RAS—Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
3 Ufa University of Science and Technology, Z. Validi St. 32, 450076 Ufa, Russia
* Correspondence: butt.m@ssau.ru

Abstract: In contemporary science and technology, photonic sensors are essential. They may be
made to be extremely resistant to some physical parameters while also being extremely sensitive
to other physical variables. Most photonic sensors may be incorporated on chips and operate with
CMOS technology, making them suitable for use as extremely sensitive, compact, and affordable
sensors. Photonic sensors can detect electromagnetic (EM) wave changes and convert them into
an electric signal due to the photoelectric effect. Depending on the requirements, scientists have
found ways to develop photonic sensors based on several interesting platforms. In this work, we
extensively review the most generally utilized photonic sensors for detecting vital environmental
parameters and personal health care. These sensing systems include optical waveguides, optical
fibers, plasmonics, metasurfaces, and photonic crystals. Various aspects of light are used to investigate
the transmission or reflection spectra of photonic sensors. In general, resonant cavity or grating-based
sensor configurations that work on wavelength interrogation methods are preferred, so these sensor
types are mostly presented. We believe that this paper will provide insight into the novel types of
available photonic sensors.

Keywords: photonic sensor; optic fiber; optical waveguide; photonic crystal; metasurface; plasmonics

1. Introduction

In the realm of optical signal development for sensing applications in many fields, par-
ticularly in chemical and biochemical detection, angular rate rotation estimation and electric
field detection waveguide (WG)-based devices are becoming more and more appealing.
The fascination with optical sensing is supported by unparalleled benefits made possible
by photonic technologies such as high sensitivity (S), compatibility with electronic de-
vices, compactness, metal-free operation, affordability, and EM resistance. Ring resonators
(RRs) [1–3] and surface plasmons (SPs) [4] have recently caught the attention of scientists
since they can significantly improve the effectiveness of integrated photonic sensors [5,6].
Photonic sensors built on fiber and WG technology have drawn much attention because
they have a broad range of possible uses [7]. Because they are immune to EM fields, optical
sensors function better than other types of sensors, especially in severe conditions like those
found in electrical power generating and conversion plants. Distributed fiber sensors open
new possibilities for monitoring cables, pipelines, and locations that require high levels of
security. Additionally, optical biosensors are becoming more and more crucial, for instance,
in solutions for labs-on-chips in health care [8].

By effectively transforming the bio-entity into an electrical form that can be studied
using a spectrometer, photonic sensors are designed to detect a range of bio analytes [9]. It
is possible to distinguish between normal and cancerous cells using electrical properties
and examining the electric field [10]. In addition, the refractive indices of different analytes
become an important factor in creating accurate biosensors [11–13]. Label-free biosensors
are a potential type of biomolecular detector since they do not require a fluorescent, radio,
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or enzymatic label. Depending on such a label to recognize a biomolecular interaction
might negatively influence the sensing performance, either by interacting with the bind-
ing event or by non-specific adsorption of the labeling molecule [14]. There are several
well-developed approaches for direct label-free detection of bound target biomolecules,
comprising optical [15,16], electrical [17], and acoustic sensing devices [18]. Due to their
ability for multiplexed detections, ability to work in aquatic conditions, and capacity to fo-
cus EM energy into tiny mode volumes, optically resonant devices are gaining significance
within the larger class of label-free sensing tools. To create optically resonant biosensors, a
variety of architectural designs such as photonic crystals (PCs) [19], microtoroids [20], and
ring/racetracks [1,21,22] have been studied.

Liquid biopsy is a non-invasive technique used to detect and analyze biomarkers
in a patient’s bodily fluids such as blood, urine, or cerebrospinal fluid [23]. It offers
several advantages over traditional tissue biopsies as it provides real-time and dynamic
information about a patient’s condition, enables monitoring of disease progression or
treatment response, and can be performed repeatedly with minimal discomfort to the
patient. Liquid biopsy can benefit from the use of photonic sensors, which leverage the
principles of optics and photonics to detect and analyze biomarkers in bodily fluids [24].
For instance, surface plasmon resonance (SPR) can be employed to detect biomarkers by
immobilizing specific capture molecules such as antibodies or aptamers onto a sensor
surface. When target biomarkers bind to the capture molecules, it causes a shift in the SPR
signal, enabling their detection and quantification. PC-based sensors can be functionalized
with specific biomolecule receptors to capture and detect target biomarkers in liquid
biopsy samples. Binding events between the biomarkers and the receptor molecules
cause changes in the sensor’s optical properties, enabling sensitive detection. Optical
fiber sensors are versatile sensing platforms that can be used for various applications
including liquid biopsy. Functionalized optical fibers can also be used to selectively capture
biomarkers from the sample. Changes in the refractive index or fluorescence properties of
the captured biomarkers can be measured using light propagation within the fiber, enabling
their detection and analysis [25].

The study of nonlinear optics and machine learning techniques provides a compre-
hensive overview of optical biosensors that can be enhanced [26]. A wide variety of viruses
have been successfully detected by optical biosensors. In particular, the SARS-CoV-2 virus
has caused havoc throughout the world, and biosensors have become essential for offering
an analysis based on physical and chemical phenomena. In this view, a multiphoton inter-
action that may be the cause of the increased sensitivity displayed by biosensors has been
examined. The nonlinear optical effects give rise to several possibilities for expanding the
uses of optical biosensors. Computer techniques and nonlinearities work well together to
identify complicated low-dimensional agents. The detection of dynamic objects inside the
human body and the identification of viruses, dangerous organisms, and unusual kinetics
in cells are two examples of how machine-learning techniques may approximate functions
to uncover patterns [26].

In this paper, recent advancements in the field of photonic sensors based on optical
WGs, optical fibers (OFs), metasurfaces (MSs), PCs, and plasmonics are thoroughly dis-
cussed for numerous sensing applications (Figure 1). These sensors are highly appealing
due to their compact size and high sensitivity. These sensors can register various changes in
the parameters of optical radiation (phase, polarization) with environmental changes [27].
For example, Rayleigh scattering affects radiation modes polarized along the x and y axes
differently, which leads to a change in the polarization of light in the fiber. Change in the
permittivity of the environment or optical propagation medium due to external influences
for example. The KerrA effect leads to a change in the optical length of the fiber and a
change in phase shifts. In Section 2, recent advances in photonic sensors based on WGs
are discussed. Several novel WG designs are investigated to enhance the S of the photonic
sensors. Section 3 discusses the progress in OF-based sensors, which can be utilized for
diverse applications including biochemical sensing and environmental monitoring. PC-
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based fibers are susceptible to the ambient medium, which opens the way for advancing
highly sensitive fiber-based sensors. Section 4 discusses the recent developments in PC
WG-based sensors. The application of PCs in photonic sensor design is extensive. One can
identify any physical processes such as temperature, pressure, strain, and the presence of
chemicals and biomolecules that can alter the periodicity and refractive index (RI) of the
formation of the PC by monitoring optical properties like the spectral trend of reflected
and transmitted power. Over the past 20 years, metamaterials have attracted much interest
because of their outstanding EM features. The MS’s transient reaction is necessary for
applications in modern science and technology, but the traditional MS’s functionality is
restricted in terms of tuning and customization. The structure, shape, and topology of the
meta-atoms in conventional MSs normally govern their static, preset optical capabilities. In
Section 5, the recent advances in MS-based photonic sensors are discussed. Last but not
the least, plasmonic sensors are currently a hot topic, which has fascinated researchers to
develop eye-catching and highly sensitive plasmonic devices. In Section 6, the plasmonic
sensors established on a metal-insulator-metal (MIM) WG are thoroughly discussed. The
paper ends with concluding remarks, as mentioned in Section 7.
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(d) PC [31], and (e) plasmonics [32] discussed in this paper.

2. Optical Waveguide-Based Sensors

Devices that can track changes in light speed include optical WGs made of various
materials [33]. Nowadays, the production of silicon (Si) WGs can be done affordably
and effectively with the help of silicon foundries and modern technologies [34]. In this
domain, it may make sense to detect various materials while taking different WG de-
signs into account such as the buried channel WG [35], slot WG [36], and rib WG [37].
A good approach to this issue is to consider how this technology may also be useful
for communication systems and generating THz. Future research for this study might
include optical WG and quantum computing [38]. Using optical Si WGs in this field is
crucial, as demonstrated by recent work with Intel on quantum computers [39]. Thanks
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to optical memory, computers will soon be able to speed up even more and circumvent
Moore’s law [40]. The WG design is one of the intriguing concepts in optical WGs. Another
aspect that can enhance the device’s functionality is WG structural optimization. For this
kind of study, simulation and manufacturing techniques are essential because they allow
for time and cost savings while providing a more accurate picture of real devices.

The appropriate selection of operational wavelength plays a crucial role in biosensing,
particularly in techniques such as optical sensing and spectroscopy [41]. Biomolecules such
as proteins, DNA, and other cellular components exhibit specific absorption, reflection, or
scattering properties at certain wavelengths of light. By selecting an appropriate wave-
length, biosensors can target specific biomolecules and analyze their behavior or presence
in a sample. The choice of wavelength can significantly affect the sensitivity and selectivity
of biosensors. Different biomolecules have characteristic absorption or fluorescence spectra,
and by using appropriate wavelengths, biosensors can detect and distinguish specific
targets from complex samples.

Si photonic biosensors that use the SOI platform detect molecular contact events using
near-infrared light constrained in an optical WG. The evanescent field, or fraction of the E-field
of the light that travels beyond the WG, can interplay with the adjacent volume to form an
external RI-sensitive zone [42]. The aggregation of molecules with various refractive indices
modifies the exterior RI. It disturbs the evanescent field when target molecules connect to
receptors at the surface of the WG, which then affects how guided light behaves inside the WG,
as shown in Figure 2. Analytes of concern can be found instantly by observing the outgoing
light’s coupling and/or propagation characteristics [43]. Since the evanescent field decays
linearly into the bulk medium over a distance of a few tens to a few hundreds of nanometers,
the sensing signal of an analyte collected within the decay length differs noticeably from the
signal of an analyte drifting far from the surface. Thus, depending on the evanescent field
sensor’s response, we can discriminate between the target molecules still in bulk solution (bulk
sensing) and those trapped on the surface (surface sensing). Moreover, optical WGs based
on SOI platforms offer an elegant alternative for detecting trace gases that utilize evanescent
field absorption sensing. Gas sensors that rely on evanescent field absorption can only be
used when the gas being monitored exhibits the expected absorption line at the appropriate
wavelength. The optical attenuation at a certain wavelength and the gas concentration are
also related. Several gas sensors built on OF [44,45] and WGs [37,46,47] have been suggested
to function on this phenomenon.
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Figure 2. A WG evanescent field sensor is shown the an image. At the WG surface, receptor molecules
catch molecular targets, modifying the WG mode effective index. As a result, the propagating optical
mode is thus phase-shifted.

Due to their capability for multiplexed detection and their capacity to concentrate
EM energy into tiny mode volumes, optically resonant devices hold promise as label-free
biomolecular sensors. The fact that biomolecular interactions are restricted to the resonant
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device’s surface and the strongest EM energy is confined inside the core is a basic constraint
of current optical biosensor technology. Ring resonator (RR)-based nanoporous polymer
optofluidic devices indicate a 40% improvement in polymer device S that is ascribed
to the surge in light–matter interactions [28]. To couple light into polymeric WGs, an
Ando AQ4321D laser source (tunable between 1520 nm and 1620 nm) was employed. The
chip and fiber are positioned on 3-axis stages to guarantee precise alignment. To avoid
picking up dispersed light, the WG’s input and output facets are moved inward by 3 mm.
Figure 3a illustrates how light entering the WG is gathered, collimated, and then routed via
a polarizer to only choose the TM mode before arriving at the photodetector [28]. A RR
imaged through the device and covered in an aqueous solution is shown in Figure 3b [28].
Figure 3c displays a standard spectrum from the RRs. Water serves as the cladding liquid,
and a 1 mW laser pulse is connected to the WG. Roughly 40–100 microwatts of electricity
are gathered at the detector after coupling and scattering losses. Extinctions between
3 and 15 dB at the resonant wavelength and Q-factors between 1000 and 3000 are seen,
relying on the fabrication perfection of the RR [28].
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In the preceding ten years, several analytical research has been carried out to improve
WG geometries for optical sensing [48,49]. Figure 4 illustrates the three predominant
types of WGs that are commonly used. These consist of slot WGs, strip WGs, and rib
WGs [50–52]. The top cladding material, which contains the analyte, is being substantially
penetrated by the guided mode’s evanescent field. The amount of light that enters the upper
cladding of each WG structure varies, and this variation correlates to unwanted optical
losses; the more light that enters the upper cladding, the bigger the optical losses through
absorption and scattering. Light is mostly constrained inside the high index Si core of WG
structures like strips and ribs, but in slot WG design, light can be significantly trapped in
the subwavelength low index medium sandwiched between two Si rails. Slot WGs are
far more sensitive than ridge WGs because there is more spatial interaction between the
evanescent and sensing environments. Slot WGs are hence a well-liked option for bulk
index sensing. A proper WG type must be chosen according to the situation. Low optical
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losses are attained at the cost of S of the rib WG. Conversely, slot WGs have excellent S but
a considerable optical loss. As demonstrated in Figure 4, ridge WGs, on the other hand,
offer a superb combination of loss and S. The S of the WG typically increases along with
the strength of the light–matter interaction, although optical losses also increase. Table 1
presents some novel works on photonic sensors established on different WG components.
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Figure 4. Widely utilized SOI WG structures for optical biosensing.

Another way of developing SOI-based RR sensor systems includes structures with
Bragg gratings (BGs) and slot WGs [53–56]. The interest in grating structures is caused by
the desire to increase the interaction zone of the ring with the analyzed substance (weakly
manifested in the standard strip RR), which allows for increasing the S of the sensor [57].
The periodically corrugated WG region can be used as a light coupling area, which is very
sensitive to changes in the RI of the background environment, which can be expressed in
a shift of the resonant wavelength in the spectrum. There are a variety of combinations
of grating structures with µ-RRs: BG-based RR with directional WG [58]; slot directional
WGs with slot RR and BGs [59]; SWG racetrack RR [57]. The combination of RR and BG
structures reduces fabrication tolerances and environmental perturbations on the resulting
characteristic, which occurs in the resonant structure [58].

Table 1. Recently proposed photonic sensors established on different optical WG components.

Device Type Experiment/
Simulation Sensitivity FOM Q-Factor LOD Ref.

RR established on ridge WG Experiment 112 nm/RIU - - 1.6 × 10−6 [60]
PC heterostructure cavities Experiment 1500 nm/RIU - 7.8 × 10−6 [61]

RR established on ridge WG Experiment 2169 nm/RIU - - 8.3 × 10−6 [62]
2D PC microcavity Experiment 200 nm/RIU - 400 0.002 [63]

RR established on ridge WG Simulation 167 nm/RIU 49.9 561.6 2.75 × 10−2 [64]
PC slot microcavity Experiment 370 nm/RIU - 7500 2.3 × 10−5 [65]

RR established on slot WG Experiment - - - 5 × 10−6 [66]
RR established on slot WG Experiment 298 nm/RIU - - 4.2 × 10−5 [67]

Mach–Zehnder interferometer Experiment 2.5 pm/K - - - [68]
RR established on SWG double

slot WG Simulation 840 nm/RIU 6461.5 9246.2 - [1]

Grating sensor Experiment 1606.2
nm/RIU - - 3 × 10−5 [69]

PC point defect resonant cavity Simulation 330 nm/RIU - 3820 0.001 [70]
Young Interferometer Experiment 2.2 rad/◦C - - 6.4 × 10−6 [71]
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Table 1. Cont.

Device Type Experiment/
Simulation Sensitivity FOM Q-Factor LOD Ref.

PC ring-slot structure Simulation 160 nm/RIU - 107 8.75 × 10−5 [72]
RR established on SWG hybrid

plasmonic WG Simulation 1000 nm/RIU 287.35 441.05 - [73]

Young interferometer Experiment 0.051 - - 1 × 10−6 [74]
RR coupled phase-shifted BG

resonator Simulation 297.13
nm/RIU - 2000 1.1 × 10−4 [59]

Slot RR and BG Simulation 211.43
nm/RIU - 1720 1.26 × 10−3 [75]

RR established on SWG Simulation 7061 nm/RIU - 1.74 × 10−5 [57]

RR established on SWG Experiment
2659 nm/RIU
(3.76 × 10−4

RIU/nm)
- 2.72 × 105

at 1587 nm
- [76]

3. Optical Fiber-Based Sensors

Utilizing the concept of total internal reflection, OFs allow for the correlation of the
light intensity measured at the detector with the original target concentration [77]. To
interact with the target analyte, bio-receptors such as oligonucleotides, antibodies, and
enzymes can be mounted on the core surface of the fiber. Following the creation of a
standard reference curve, this interplay will affect the sensitive layer’s characteristics and
be correlated with the analyte concentration. Fiber-optic biosensors have the benefits
of high S, resilience, durability, quick detection, high S, and real-time surveillance and
are immune to EM interference [78]. These characteristics help OF biosensors work well
because they can simultaneously and discretely transmit light of several wavelengths. They
may be employed for multiple analyte detection employing numerous DNA probes [79].
They can be carried out label-free or label-based and can be integrated on a single chip. OF
sensors come in a wide range of configurations. There are many options for OF sensors
to detect different physical, chemical, and biological factors since the optical properties of
most materials are inherently sensitive to their environment.

A uniform WG with periodic RI fluctuations running across it is known as a BG
structure. Because of these irregularities, any broadband signal passing through the WG
will only reflect a portion of its spectrum in a 1D-photonic bandgap. Intuitively, BG WGs are
similar to the well-established fiber Bragg gratings (FBGs). For almost 30 years, lasers have
been used to create FBGs, which are narrowband mirrors built into OFs that are frequently
used for WDM adjustable filtering, and—when chirped—dispersion compensation in
optical communications systems. These systems are frequently used in sensing areas since
their resonant (reflected) wavelength is very receptive to environmental variables like
temperature [80], RI [81,82], and strain [83]. In 1978, Ken Hill made the discovery of FBG at
the Canadian Communication Research Center [84,85]. Since their creation, grating patterns
have attracted a lot of attention in the field of optical sensing due to their great qualities
including their affordable, small size, real-time reaction, high accuracy, high sensitivity,
and EM interference. It is feasible to measure several properties such as temperature,
pressure, tension, and RI utilizing grating-based devices. Today, FBGs are used in a wide
variety of fields including high-temperature sensors, medical and biological devices, harsh
environments, structural engineering, the oil industry, radioactive settings, and aircraft,
marine, and civil engineering [86–88]. Since the effective index of the majority of glass
materials is close to 1.5, the Bragg response in the telecom band at 1550 nm necessitates a
brief grating period of around 500 nm. LPG, EFBG, tilted FBG, microstructured FBG, PC
fibers, LPG inscribed in PCF, and tilted FBG coupled with SPR are a few illustrations of
OF grating-based biosensors that are documented to function following diverse operating
principles. The evolution of chemo- and biosensors is increasingly dependent on optical
grating sensors such as LPG, EFBG, and tilted FBG sensing apparatuses due to their



Biosensors 2023, 13, 568 8 of 33

label-free RI measuring characteristics. Some of these FBG biosensor concepts have been
investigated for thrombin biosensor development [89–91].

The evolution of carbon dioxide (CO2) detection is crucial for the preservation of the
environment. To overcome this difficulty, a novel polyether sulfone (PES)-coated FBG
sensor is presented [92]. When exposed to CO2, the PES coating displays volume dilatation
and can transmit stress to the grating, changing the grating’s period and RI. The low-
temperature spin coating and high-temperature curing processes are used to provide a
standardized and homogeneous PES coating, which is essential for the reproducibility and
durability of the sensing device. Investigations were conducted on the effectiveness of the
FBG sensor and its influencing elements. The greatest Bragg wavelength shift was inversely
correlated with temperature and highly associated with coating thickness. The PES-coated
FBG sensor had a minimum reaction time of 3.27 min and exhibited strong selectivity to
CO2. For CO2 detection, the LOD can be as low as 0.78%. Eventually, a system for over-conc.
alerts was created for online CO2 monitoring. The PES-coated FBG sensor’s exceptional
qualities, together with its inexpensive and straightforward construction technique, open
a wide range of application possibilities. An over-conc. alert system was created to be
used with the PES-coated FBG sensing device in online checking systems as shown in
Figure 5a–d [92]. The apparatus continually records the current value of the wavelength for
each group after receiving the initial wavelength values for the experimental group and the
control group. When the limit is exceeded, the created software raises an alert and turns on
the warning light when the change in Bragg wavelength shift between the experimental
group and the control group is larger.
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Figure 5. (a) Snapshot of the CO2 volume percentage in the gas chamber rising [92], (b) when the
CO2 percentage in the gas chamber is over the threshold, the warning light turns on, and the output
signal changes from “safe” to “dangerous” [92], (c) Image of the gas chamber with the CO2 conc.
reduced [92], (d) when the CO2 conc. in the gas compartment is below the threshold, the warning
light turns off, and the signal that was previously outputted as “dangerous” changes to “safe” [92].

As intriguing alternatives to the most conventional ones established on SPR or inter-
ferometric setups, OF gratings are being presented more commonly as optical platforms for
label-free biosensing [93,94]. The effectiveness of OF gratings is comparable to that of more
traditional optical platforms but with the inherent benefits of OFs including exhibiting a
significant and prospective compact size, high compatibility with optoelectronic devices
(both sources and detectors), and finally, multiplexing and remote measurement possibility
because the signal is spectrally modulated. Traditional prism-coupling-based SPR sensing
apparatuses come in two forms: Kretschmann [95] and Otto [96] arrangements. These
sensor designs are established on attenuated total reflection as their underlying operat-
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ing principle. Kretschmann-based SPR pattern devices are widely employed in sensor
applications due to their exceptional performance, although they are subject to several
limitations. These instruments are frequently large and made with moving parts. As a
result, they cannot be utilized for remote monitoring or other portable applications. Addi-
tionally, spectral-based measurements are costly to apply realistically, and scaling down the
sensor size is less likely. To effectively handle these upcoming difficulties, OF-based SPRs
have been implemented. The OFs are compact and inexpensive. Total internal reflection
underlies the transmission of light via OFs, and a SPR sensor configuration established on
OFs offers several advantages over one established on prisms [97]. Additionally, the OF’s
compactness allows for a considerable reduction in the size of the sensor that might be
employed for remote sensing purposes. OF-based SPR sensing apparatuses provide a larger
dynamic range for recognition and higher resolution but are only useful for constrained
acceptance angles [98]. Numerous OF SPR sensing apparatuses have been identified in
theoretical and experimental research [99,100].

Jorgenson et al. proposed the first OF-based SPP setup without the bulk prism in
1993 [101]. The interplay of evanescent waves with SPPs was used to show an OF-based SPP RI
sensor. The fiber cladding was partially removed, and a highly reflective coating was applied
to the exposed area. The transmission or reflection properties of the light propagating are
often the basis for the operating mechanism of the plasmonic sensing apparatuses produced
on OFs [102]. Noble metal and immobilized ligands are used in transmission probe-based OF
sensing apparatuses to detect unidentified analytes [103]. In contrast, the backlight is reflected
to the fiber by a mirror in sensing apparatuses established on a reflection probe. With noble
metals assembled on the engraved cladding section of the transmission probe, a variety of
fiber-optic plasmonic sensors have previously been investigated. These include single-mode
fibers (SMFs) [104], multi-mode fibers (MMFs) [105], wagon wheel fibers [106], U-shaped
fibers [107,108], D-shaped fibers [109,110], and FBGs [111], among others [112,113].

In 1978, the photonic crystal fiber (PCF) idea was initially proposed. A comparable
idea to 1D-PC was to clad a fiber core with BG. A 2D-PC with an air core-based PCF
was previously suggested in 1992, and it was disclosed at the Optical Fiber Conference
(OFC) in 1996. Figure 6 summarizes the evolution of PCF. Similar to a standard OF, PCFs
include a core and cladding, but they also have periodic air-holes in the cladding area
that control light transmission. By adjusting the air hole geometries and ring counts, it is
feasible to control how light propagates. Recently, researchers have analyzed the pattern
of the E-field in a straightforward 2D PCF structure to analyze the sensing of malignant
cells. Human immortalized normal oral keratinocytes, which belong to the category of
normal cells, and YD-10B cells, which are malignant, were both regarded to be clusters
of cell lines [114]. A new study used a SPR-based PCF biosensor construction to look at
early cancer cell detection [115]. Both spectral interrogation and amplitude techniques are
used to identify the RI variations of cancer cells. Based on the difference in RI between
healthy and malignant blood cells, a twin-core PCF is suggested for the early diagnosis of
blood cancer [116]. The middle air hole has been penetrated by the samples. The suggested
biosensor’s changes in coupling length and transmitted spectrum for normal and cancerous
cells have also been studied. For the identification of cancer cells in the cervical, breast, and
basal regions, dual-core PCFs have been proposed [117–119].

PCF-based SPR sensors are more effective in SPR sensing applications thanks to their
benefits of compactness, high S, and multi-parameter analysis [120]. Nevertheless, there are
currently two main issues with PCF-based SPR sensors. The first issue is the challenging
fabrication process, which includes metal coating and analyte loading. These sensors have
very tiny holes, often to the order of micrometers [120]. As a result, loading them with an
aqueous analyte within the required limits and evenly covering them with a metal layer
is challenging. The limited RI region of the sensor detection, caused by either using a low
RI or high RI PCF-SPR sensors, impedes the ability to utilize it for the substitution of the
analyte [121]. An H-shaped SPR sensor established on PCF is presented for sensing a wide
RI range, which may be either higher or lower than the RI of the fiber material utilized [122],
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as shown in Figure 7a. In contrast to previous models, the H-shaped PCF grooves, which
serve as the sensing channels, are treated with a gold film before being introduced into direct
contact with the analyte. This decreases the complexities of manufacturing and increases
reuse capacity. The cross-sectional view of the SPR sensor is shown in Figure 7b. According to
numerical data, the sensor can operate normally in the vast analyte RI range of 1.33 to 1.49,
and it can attain its high S of 25,900 nm/RIU at the RI range of 1.47 to 1.48. Additionally, the
sensor exhibits high stability within tolerances of 10% of the gold-film thickness [122]. The
experimental setup that can be used to characterize the sensor is shown in Figure 7c. Table 2
presents some recent works on OF-based sensors for several sensing applications.
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Table 2. Recently proposed photonic sensors established on different types of OFs.

Ref. Fiber Type Application Sensitivity Sensing Mechanism Year

[123] U-shaped MMF Biosensing 1251.44 nm/RIU LSPR 2020
[124] Plastic OF Cholesterol detection 140 mg/dL to 250 nm/dL - 2017
[125] SMF Temperature 210.25 KHz/◦C Vernier effect 2020

[126] Fiber tip integrated
ZnO-nanowire-nanograting Temperature 0.066 nW/◦C Bragg reflection 2023

[127] Magnetic field micro-nano fiber Magnetic field 69 pm/Gs Mach-Zehnder
interference 2022

[128] PC fiber Biosensing 12,000 nm/RIU and
16,000 nm/RIU SPR 2020

[129] D-shaped OF Biosensing 5161 nm/RIU SPR 2018
[130] D-shaped OF Biosensing 4122 nm/RIU LMR 2018
[131] PC fiber Temperature 0.1636 nm/◦C Quantum dot 2009
[132] D-shaped PC fiber Biosensing 20,000 nm/RIU SPR
[133] D-shaped PC fiber Biosensing 21,700 nm/RIU SPR 2017

[134] Octagonal PC fiber Transformer oil

(I) 31,240 RIU−1

(x-pol.),
(II) 30,830 RIU−1 (y-

pol.)
Plasmonic 2020

[135] Elliptical channel PC fiber Malaria detection
11,428.57 nm/RIU,

9473.68 nm/RIU, 9655.17
nm/RIU

- 2021

4. Photonic Crystal-Based Sensors

PCs are formations with a periodic fluctuation in one, two, or all three orthogonal
directions of the dielectric constant (RI). The three types are referred to as one (1D), two
(2D), and three-dimensional (3D) PCs, respectively. Multilayer architectures, or 1D-PCs,
have undergone extensive study and have been documented in the literature [136]. They
are made of two materials with differing refractive indices that are alternately layered,
resulting in a RI that periodically varies in one direction but is homogenous in the other
two. When the RI varies in two directions but not the third, the crystal is said to be a
2D-PC [137–139]. This may be carried out by arranging cylinders of any dielectric material
in the air or by drilling holes with triangular or square symmetry in a substance with a
high RI. The RI of 3D-PCs is altered in all three spatial directions, for example, by stacking
spheres of a dielectric substance in the air [140]. The schematic of the 1D, 2D, and 3D PC
formations is shown in Figure 8.
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ment and integration of microfluidic and photonic innovation and technology for the
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improvement of sensing performance in terms of S, limit-of-detection (LOD), and detection
multiplexing potential have been studied [141–143]. Over the past 10 years, photonic
sensors have been the focus of many studies, particularly for the recognition of a wide
range of biological and chemical substances. Since they are anticipated to have higher
S and selectivity in addition to high stability, immunity to EM interference, and quality
enhancement such as smaller integration sizes and lower costs, photonic lab-on-a-chip
systems represent the latest in photonic sensing in this perspective. Designing photonic
sensors makes extensive use of PCs. By monitoring optical properties like the spectral
trend of reflected and transmitted power, one can detect any physical processes such as
temperature, pressure, strain, and the occurrence of chemicals and biomolecules that can
change the periodicity and RI of the formation of the PC [144].

PCs have excellent optical properties that restrict light to a very tiny volume, making
it possible to identify chemical species with nanometer-sized molecules [145]. Additionally,
very good efficiency in ultra-compact sensor chips may be produced by integrating modern
chemical surface functionalization processes with microfluidic devices. For instance, func-
tionalized slotted-PC cavities with integrated microfluidics have been used in experiments
to determine soluble avidin concentrations as low as 15 nM or 1 m/mL [146]. A LOD of
less than 20 pM for anti-biotin, which equates to less than 4.5 fg of bound material on
the sensor surface and fewer than 80 molecules in the modal volume of the integrated
microcavity, has been experimentally proven to have extremely high efficiency [147]. For
diagnosing malaria, a linear WG with a nanocavity-based 2D-PC-based biosensor has been
suggested [148]. The changes in the transmission peak are studied at a wavelength of
1550 nm using a red blood cell (RBC) sample confined inside a nanocavity. A WG-based
2D-PC RR-based biosensor for diagnosing malaria has also been suggested. Utilizing a
transmission peak at a wavelength of 2.07 microns, this sensor may identify infections [149].

From a technical perspective, PC-based photonic sensors such as integrated planar
PCs and PC fibers are appropriate for multiplexing and label-free detection. For instance,
large-scale chip-integrated PC sensor microarrays for biosensing on an SOI-based frame-
work have previously been suggested and proven [142]. The creation of PCs often uses
conventional and CMOS-compatible industrial techniques such as E-beam lithography,
inductively coupled plasma (ICP) etching, and plasma-enhanced chemical vapor deposition
(PECVD), enabling these sensors to be appropriate for mass-market and low-cost produc-
tion. Ultimately, PC fibers may be produced quickly by stacking silica glass rods and tubes
into a massive structure that has the desired pattern of holes. Since several poisonous gases
(including CO2, CH4, and CO) display absorption lines in the mid-infrared wavelength
region, gas sensors constructed on PC have been proposed [150]. A PC air-slot cavity-based
high-precision gas index sensor with S = 510 nm/RIU has been suggested [151]. A high
S = 3200 nm/RIU SPR nanocavity antenna array has also been suggested for gas sens-
ing applications [152]. It is stated to have a guided-mode resonance gas sensor with an
S = 748 nm/RIU [153]. A PC/Ag/graphene (Gr) architecture with an S of 1178.6 nm/RIU
that functions as a RI sensor established on the Tamm state are suggested [154]. Some of
the recent works on PC-based sensors are presented in Table 3.

Table 3. Biosensors established on PC reported in recent years.

Polarization RI Range S (nm/RIU) Reference

(I) x-polarized mode
(II) y-polarized mode - 4156.82 (I)

3703.64 (II) [155]

y-polarized mode 1.36–1.40 33,500 [156]
(I) x-polarized mode
(II) y-polarized mode 1.33–1.45 10,448.5 (I)

8230.07 (II) [157]

(I) x-polarized mode
(II) y-polarized mode 1.330–1.370 5000 (I)

10,000 (II) [158]

(I) x-polarized mode
(II) y-polarized mode 1.33–1.40 9000 (I)

9000 (II) [159]
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Table 3. Cont.

Polarization RI Range S (nm/RIU) Reference

x-polarized mode 1.0–1.05 508 [160]
x-polarized mode - 510 [151]
y-polarized mode 1.0–1.0010 3200 [152]
y-polarized mode 1.33–1.43 2150 [161]
y-polarized mode 1.33–1.37 1000 [162]
y-polarized mode 1.4–1.44 9180 [163]

(I) x-polarized mode
(II) y-polarized mode 1.33–1.34 2000 (I)

1700 (II) [164]

x-polarized mode 1.0–1.377 160 [72]
x-polarized mode 1.0–2.0 65.7 [165]
y-polarized mode 1.0–1.8 396 [166]
y-polarized mode 1.0–1.33 300 [167]

- - 10,000–12,857
for different cancer cells [168]

It is suggested to use near-field optical trapping and light-scattering methods to
analyze free-solution interactions between a single influenza virus and certain antibodies
at the single particle level [169]. By examining how the virus’s Brownian fluctuations
have changed, it is possible to determine how many antibodies are binding to an optically
imprisoned influenza virus. The enlarged size of the virus brought on by antibodies
attaching to the viral membrane is calculated using an analytical model. The stoichiometric
values of anti-flu antibodies for binding to an H1N1 influenza virus are shown to be
26 ± 4 (6.8 ± 1.1 attogram). The nanophotonic tweezer can tackle molecules with a
diameter of tens to thousands of nanometers, hence this method may be used for a variety
of chemical interactions. The particle is optically trapped by using a PC cavity, as shown in
Figure 9a [169]. Due to their powerful light confinement, PCs make an appealing sensing
platform. PCs can be made to localize the E-field in the low RI region, which renders the
sensors incredibly sensitive to a small RI change caused by bio-molecule immobilization
on the pore walls. This contrasts with many sensing platforms that rely on the interaction
between the small evanescent tail of the EM-field and the analyte. Point defects can
draw defect states down from the air band or up from the substrate band when they are
included in a PC. The resultant optical spectrum displays sharp transmission peaks inside
the bandgap, and the exact locations of these peaks are governed by the pores’ refractive
indices. The E-field confinement in the cavity is shown in Figure 9b [169]. The 3D model of
the integrated optofluidic device is shown in Figure 9c [169].

Although the recognition-mediated detection of viruses or simulants under flow has
been theorized, it has not yet been shown using 2D-slab PC sensors. A novel W1 WG-
coupled 2D slab-PC sensor with a shape ideally suited to virus detection was designed and
optimized in [170]. As this shape was estimated to create a transmission dip at the resonance
wavelength that was neither too broad nor too shallow, the large-hole defects were placed
either four rows or five rows distant from the W1 WG, as shown in Figures 9d and e,
respectively. The H-field and E-field distributions were taken at the resonant wavelength
in the PC sensor, as shown in Figure 9f–h [170]. The sensor was proven to be capable of
responding to the penetration of a single particle in both air and beneath an aqueous cover
layer during proof-of-concept tests using fluorescent latex particles. The capability of the
device to identify virus-sized particles under flow via a recognition-mediated mechanism
was validated in further studies using antibody-functionalized sensors and viral simulants.
The groundwork for the integration of 2D slab-PC sensors into fully integrated photonic
sensor systems is laid out in [170].
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A 2D-PC microcavity biosensor with extreme S is presented in [171]. The structure
shown in Figure 9i is made up of a 400 nm-thick silicon slab segregated from the Si substrate
by 1 micron of silica layer, which effectively confines the transmission modes vertically.
The PC has a pore diameter of 270 nm and a lattice constant of 465 nm. The central pore
diameter was decreased to 140 nm to reveal the defect. The sensor functioned close to
its resonance at 1.58 microns and was constructed on an SOI wafer. Different amounts of
resonance redshift are produced when proteins of various sizes are applied to the sensor’s
interior surface. The current technology may detect a molecular monolayer with a total
mass as tiny as 2.5 fg. The device’s functioning was confirmed by detecting the redshift
associated with the binding of glutaraldehyde and bovine serum albumin. The theoretical
predictions and ellipsometric measurements made on a flat oxidized silicon wafer surface
are well-supported by the experimental findings [171].

The fluid sensing application is presented for a dielectric PC device [31]. Focused
ion-beam milling lithography was utilized to build the suggested nanosensor device, which
was made of low-cost dielectric materials including SiO2 and Nb2O5. The instrument
was evaluated quantitatively as a sensor for the range of biological refractive indices from
1.33 to 1.4. Following the manufacturing outcomes, the performance aspects of the biosen-
sor device were investigated for 12 alternative structural profiles. It was demonstrated that
the angular-wall profile of the manufactured structures degrades the sensor’s performance
and that the ideal value of hole depth should fall between 930 and 1500 nm to achieve
optimal functioning. For the device’s ideal design, an S of 185.117 nm/RIU and a FOM of
9.7 were obtained. Due to its inert material features, reliable construction, and simple inte-
gration with fiber-optic setups, the device is advocated for several biosensing applications.
Figure 10a,b shows the SEM images of the cross-section and top view of the manufactured
device. Figure 10c depicts the numerical model of the sensing apparatus. As the RI of the
upper cladding of the device increases, the transmission spectrum performs a redshift, as
shown in Figure 10d [31].
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5. Metasurface-Based Sensors

Due to their exceptional EM properties, metamaterials have generated great interest
during the past 20 years [172–175]. Metamaterials such as negative-index media [176],
zero-index materials [177], and ultra-high-index materials [178] are arrays of specially
structured scattering components that have been systematically created. MS, the two-
dimensional equivalent of metamaterials, is significantly simpler to create and use [179,180].
It can demonstrate the incredible ability to manipulate EM wavefronts, which is primarily
brought about by the interaction of an EM wave with these meta-atom constructions
and their functional configurations. It has been suggested that biosensing and chemical
detection are two applications for metamaterial-based sensors, which have been studied in
the optical and microwave domains. The S of the sensor will also be enhanced by making
use of the plasmon-induced transparency [181–183].

Modern contemporary science and technology applications require the MS’s transient
response; however, traditional MS has limitations on its functioning in terms of tunability
and customization. Typical MSs offer static, predetermined optical functionalities that are
typically controlled by the configuration, shape, and topology of meta-atoms. Scientists
have recently been focusing on creating flexible and reconfigurable MSs, where the meta-
atoms’ size, form, and placement may be tweaked or changed in response to outside
signals [184]. In addition, a significant number of investigators are constantly working to
access reprogrammable MS [185] and multi-purpose MSs [182,186].

In our earlier work, we thoroughly analyzed the sensing properties of a hybrid meta-
surface perfect absorber (HMSPA) established on square meta-atoms and hollow square
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meta-atoms [186]. Both designs are suitable for filtering operations since they can deliver
>90% absorption in the narrowband area. In comparison to a square meta-atom, a HMSPA
with a hollow square meta-atom is far more sensitive to minute changes in the RI of the
surrounding medium, making it the perfect choice for biosensing applications. The hol-
low square meta-atom may increase the S of the square meta-atom-based HMSPA from
135 nm/RIU to 355 nm/RIU. Additionally, use of the suggested device for thermal sensing
is made possible by placing a material that measures temperature on the surface of the MS.
The hollow square meta-atom-based HMSPA has a temperature S of 0.18 nm/◦C over the
temperature range of 20 ◦C to 60 ◦C thanks to the exceptional thermo-optic coefficient of
PDMS. With their simplicity in device manufacturing and strengths in light coupling, the
suggested HMSPA constructions have the potential to be beneficial for filtering, biosensing,
and temperature-sensing purposes [186]. The square meta-atom-based HMSPA and the
TRA graph are illustrated in Figure 11a,b, respectively. The E-field and H-field distribution
at the resonant wavelength is shown in Figures 11c–f and 11g, respectively.
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of the norm. E-field distribution [186], (d) 3D E-field distribution [186]. Cross-sectional view of the
norm, (e) E-field distribution at the resonant wavelength [186], (f) E-field distribution at non-resonant
wavelength [186], (g) H-field distribution at resonant wavelength [186], (h) graphical illustration
of the tunable optical plasmonic Gr MS [187], (i) top view of the unit cell [187], (j) transmission
spectrum [187], (k) E-field mapping at the dip for the bright mode [187], (l) E-field mapping at the
peak for plasmonic-induced transparency [187], (m) theoretical coupled model [187].

For terahertz detection and slow light purposes, a simple graphene MS with a contin-
uous and truncated Gr strip was constructed and studied [187], as shown in Figure 11h,i.
The findings show that destructive interference between bright and dark modes may result
in plasmonic-induced transparency on the Gr MS. The Fermi level efficiently tunes the
optical response’s transmission, reflectivity, and absorbance spectra. The polarization
angle of the linearly polarized plane light is another factor that may be used to modify the
plasmonic-induced transparency window. Interestingly, the suggested Gr MS exhibited
interesting optical applications including sensing and slow light due to the field increase
in the surface plasmon and significant dispersion. For the sensing attributes, the S, and
figure of merit (FOM) may be up to 0.7928 THz/RIU and 8.12, respectively [187]. The
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suggested Gr-based MS might thus be anticipated to play a significant role in slow light
devices and micro-nano optical sensing. In Figure 11j, the optical transmission pattern is
shown as a black line when the Gr strip is shortened. The incident wave can effectively
excite the truncated Gr strip, which can then function as a brilliant mode. When there
is only a continuous Gr strip, the solid red line represents the optical transmission spec-
trum. The continuous Gr strip can function as a dark mode and cannot be effectively
stimulated. When two Gr strips are present (Figure 11j), the solid blue line displays a
plasmonic-induced transparency window. A peak is created in the bright mode’s spectrum
thanks to the involvement of the dark mode, and two troughs are simultaneously produced
in the plasmonic-induced transparency spectrum. Consequently, the plasmonic-induced
transparency spectrum displays three transmittance bands. Under the excitation of the
incident wave, the physical mechanism that causes the destructive interference effect is
the interplay of two modes [187]. The E-field distribution diagram is then used to confirm
that the analysis presented above is accurate. According to Figure 11k, the left and right
sides of the truncated Gr strip have large concentrations of electrons, creating a powerful
E-field. This shows that the incident wave immediately excites the truncated Gr strip.
Many electrons are collected between two Gr strips in Figure 11l, which result in powerful
E-fields. As a result, when the truncated Gr strip is inserted, the continuous Gr strip will
be stimulated. Figure 11m describes the bright-dark mode resonant coupling theoretical
paradigm [187]. Table 4 enlists the novel designs of the MS perfect absorbers suggested for
sensing applications.

Table 4. Recent advances in narrowband MS perfect absorbers for sensing applications.

Ref. Device Design Material Wavelength Range Application Sensitivity

[186] Square and hollow
square meta-atoms Si-dielectric-metal NIR

(I) Temperature
(II) Biosensing

(I) −0.18 nm/◦C
(II) 355 nm/RIU

[188] Nano-trench Graphene NIR Biosensing 500 nm/RIU to 1000 nm/RIU
[189] Rectangular strip Dielectric-metal MIR Biosensing 1800 nm/RIU
[190] Square Si-dielectric-metal NIR Biosensing 460 nm/RIU to 492 nm/RIU
[191] Square Metal-dielectric NIR Biosensing 840 nm/RIU

[192] Cylinder InSb THz Biosensing 1800 GHz/RIU to 1900
GHz/RIU

[193] Cylinder Metal-dielectric-
metal NIR Biosensing 1109 nm/RIU to 1290

nm/RIU

[194] C-shape split ring GST phase changing
material NIR Biosensing 1000 nm/RIU

[195] Metal disc Metal-graphene FIR Biosensing 3.98 µm/RIU to 5.06 µm/RIU
[182] Cylinder Si-dielectric-metal NIR Gas 17.3 pm/ppm
[196] Vertical strip-ring Metal THz Biosensing 908 nm/RIU to 4367 nm/RIU
[197] - Gold-Si-Graphene THz Biosensing 66 GHz/RIU

[198] Cross array Si-gold THz Biosensing 25.3 THz/RIU to 41.3
THz/RIU

[199] Square MoS2-TiO2 on SiO2 680–720 nm Biosensing 222 nm/RIU

6. Plasmonic Sensors Based on Metal-Insulator-Metal Waveguide

One fascinating method used in integrated photonic sensors for the detection of
chemical and biological species is surface plasmon resonance (SPR), which has been briefly
discussed in [4]. Two distinct fundamental approaches have been proposed to implement
optical sensing into planar WGs established on surface plasmon polaritons (SPP). The first
necessitates the activation of a surface plasmon wave, while the second strategy entails the
stimulation of “pure” plasmons [200]. In any event, the excited surface plasmon wave, or
SPP, at the dielectric–metal interface is modified by a localized alteration of the RI close to
the WG surface, which forms the basis of the sensing concept.

From straightforward distance sensing to providing artificial vision for object identifi-
cation, optical sensors are employed in a wide variety of applications [77]. The exploration
of innovative nanostructures with custom functionality is one of the major problems that
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the current sensor industry faces [201,202]. The concept of using surface plasmon po-
laritons (SPPs) among other nanotechnologies distinguishes itself from its rivals [203].
Metallic nanostructures have the potential to generate and disperse EM radiation in com-
pletely unimaginable ways. SPPs are synchronized oscillations of free electrons at the
metal/dielectric contact [204,205]. Plasmonic sensors have recently shown their benefits
in several fields including chemical sensing [206], biological species [207], environmental
monitoring [208], food safety [209], and medical diagnostics [210], thanks to the notable
advancements achieved in micro- and nano-fabrication technology in recent years, as
shown in Figure 12. These sensors are notable for their distinctive qualities in biochemical
studies. A SPP-based test paper for the quick identification of COVID-19 has just been made
available in Japan [211]. A unique coloration is visible when COVID-19 viruses are bound
to antibiotic-coated gold nanoparticles that endure resonance peak shifts. Comparable
techniques are frequently used in pregnancy tests.

Biosensors 2023, 13, x FOR PEER REVIEW 20 of 35 
 

wave, or SPP, at the dielectric–metal interface is modified by a localized alteration of the 
RI close to the WG surface, which forms the basis of the sensing concept. 

From straightforward distance sensing to providing artificial vision for object identi-
fication, optical sensors are employed in a wide variety of applications [77]. The explora-
tion of innovative nanostructures with custom functionality is one of the major problems 
that the current sensor industry faces [201,202]. The concept of using surface plasmon po-
laritons (SPPs) among other nanotechnologies distinguishes itself from its rivals [203]. Me-
tallic nanostructures have the potential to generate and disperse EM radiation in com-
pletely unimaginable ways. SPPs are synchronized oscillations of free electrons at the 
metal/dielectric contact [204,205]. Plasmonic sensors have recently shown their benefits in 
several fields including chemical sensing [206], biological species [207], environmental 
monitoring [208], food safety [209], and medical diagnostics [210], thanks to the notable 
advancements achieved in micro- and nano-fabrication technology in recent years, as 
shown in Figure 12. These sensors are notable for their distinctive qualities in biochemical 
studies. A SPP-based test paper for the quick identification of COVID-19 has just been 
made available in Japan [211]. A unique coloration is visible when COVID-19 viruses are 
bound to antibiotic-coated gold nanoparticles that endure resonance peak shifts. Compa-
rable techniques are frequently used in pregnancy tests. 

 
Figure 12. Applications of SPR sensors in telemedicine [212], medical diagnostic [213], early disease 
detection [214], colorimetric sensors [215], food safety, temperature sensors, and bioimaging [216]. 

A comparison of plasmonic sensors to those established on other platforms such as 
Si photonics or OF revealed that plasmonic sensors have a much smaller footprint and 
higher sensing capacities, making them very appealing and in high demand. With the 
assumption of achieving exceedingly integrated optical circuits due to their minor foot-
print, ease of incorporation, and good balance between light localization and transmission 
loss, SPP WG structures, mainly MIM WGs, have received much consideration due to 
their capacity to withstand the diffraction limit of light. With an S of 235 nm/RIU, a bio-
sensing semiconductor nanowire RI sensor has been established [217]. Furthermore, the 
use of long-period fiber gratings as the foundation for OF RI sensors has been proposed 
[218]. According to Xu et al., the greatest experimental S for quasi-TM RRs is 135 nm/RIU 

Figure 12. Applications of SPR sensors in telemedicine [212], medical diagnostic [213], early disease
detection [214], colorimetric sensors [215], food safety, temperature sensors, and bioimaging [216].

A comparison of plasmonic sensors to those established on other platforms such as
Si photonics or OF revealed that plasmonic sensors have a much smaller footprint and
higher sensing capacities, making them very appealing and in high demand. With the
assumption of achieving exceedingly integrated optical circuits due to their minor footprint,
ease of incorporation, and good balance between light localization and transmission loss,
SPP WG structures, mainly MIM WGs, have received much consideration due to their
capacity to withstand the diffraction limit of light. With an S of 235 nm/RIU, a biosensing
semiconductor nanowire RI sensor has been established [217]. Furthermore, the use of
long-period fiber gratings as the foundation for OF RI sensors has been proposed [218].
According to Xu et al., the greatest experimental S for quasi-TM RRs is 135 nm/RIU [219].
By changing the WG thickness, it was possible to demonstrate a bulk S of 270 nm/RIU [220].

One of the fascinating subjects is sensing, and over the past years, numerous plasmonic
sensing devices established on MIM WGs have been investigated numerically and proposed
for use in temperature [221], gas [222], and RI sensing [223–226]. The suggested designs
primarily support one function (either temperature or RI detection) at a time, despite the
high S of these devices. Furthermore, because of their added intricate geometric elements,
it is difficult to manufacture these patterns without leaving a few nanometers of error. To
measure the RI, a plasmonic sensor was presented that combined a RR with circular tapered
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dots and a MIM WG with tapered dots [227]. The device’s S is around 1295 nm/RIU, but
because of the complexity of its design, even a manufacturing mistake of a few nanometers
can impair the function of the device. Another complex RI sensor was presented in [228]
and consists of a MIM WG with two symmetric triangle stubs connected to a circular
split-ring resonator cavity; the device has an S = 1500 nm/RIU [228]. Several parameters
for this sensor arrangement must be carefully tuned to obtain the best sensing performance.
With the suggested designs [229,230], a similar circumstance takes place. Although the
numerical findings presented in this research look promising, the actual difficulties arise
during the manufacturing stage of these devices when several factors must be tuned at a
nanometer scale.

Recent research has shown that MIM plasmonic WG devices may be effectively used
for temperature sensing applications when paired with thermal sensing media like ethanol
or polydimethylsiloxane (PDMS) [231]. Zhu et al. suggested a sensor prototype with a very
high S of −3.64 nm/◦C that can only be utilized for temperature detection [232]. Additionally,
Zhu et al. quantitatively examined a small Fano resonance temperature sensor using a sealed
semi-square ring resonator made of PDMS. The sensors established on PDMS are extremely
vulnerable to temperature changes because of their material’s high thermo-optic coefficient.
Applications that require a high level of precision for temperature monitoring may benefit
from the sensor. However, the cavity design is so complicated that at least five to six variables
must be tuned to provide the greatest sensing performance. The S is around −4 nm/◦C [233],
which limits how flexible the manufacturing process may be. Using ethanol in a resonant
cavity, Kong et al. suggested a temperature sensor with an S of 0.36 nm/◦C [234]. In our
previous work, a novel design of a plasmonic sensor was proposed for the simultaneous
detection of temperature and analytes [231]. Figure 13 presents the different plasmonic MIM
WG sensor designs for temperature and biosensing applications.
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Figure 13. Graphic illustration (top view) of plasmonic sensors established on MIM WG,
(a) RR linked to a MIM WG with tapered defects [227], (b) two triangle stubs paired with a split-ring
nanocavity [228], (c) two stubs and a RR [229], (d) two baffles and a coupled ring cavity [230]. Thermal
sensing devices, (e) ethanol-sealed asymmetric ellipse resonators [232], (f) ethanol-filled resonator
cavity [234], (g) dual laterally side-coupled hexagonal cavities [235], (h) simultaneous temperature
sensor and biosensor [231].
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A functional polymer called polyhexamethylene biguanide (PHMB) has a linear re-
lationship with the CO2 level. As a result, it is conceivable to use this material to cre-
ate CO2 gas sensors. By shifting the gold nano-blocks that are cyclically stacked in the
MIM WG away from the line of symmetry, the plasmonic BG structure is asymmetrically
changed [236], as shown in Figure 14a. Consequently, in conjunction with the broadband
Bragg reflection, a narrowband MZI resonance dip also develops in the transmission con-
tinuum. Figure 14b shows that when the CO2 conc. rises from 0 ppm to 524 ppm, the
MZI dip undergoes a blueshift. The recommended device’s CO2 S is 226 pm/ppm for the
215 ppm to 434 ppm range of gas concentrations, which is considerably greater than most of
the previously proposed sensor designs. The CO2 gas conc. versus resonance wavelength
graph is shown in Figure 14c. This paves the way for the realization of a single plasmonic
sensor for multiple applications [236]. Table 5 highlights the noteworthy works related to
MIM WG plasmonic sensors recently proposed for several remarkable applications.
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Figure 14. Modified plasmonic BG structure, (a) sensor design [236], (b) transmission spectrum [236],
(c) S analysis [236].

Table 5. Recently proposed highly attractive plasmonic sensors established on MIM WG.

Ref. Application Sensitivity FOM Q-Factor Year

[237]
(I) Gas
(II) Biochemical

(I) 3639.79 nm/RIU,
(II) 7530.49 nm/RIU 91.02 99.75 2022

[236] Gas 226 pm/ppm 0.004 24.7 2022
[238] Bio-analytes 3000 nm/RIU 9.7 × 105 - 2022

[231]
(I) Bio-analytes
(II) Temperature

(I) 700 nm/RIU,
(II) −0.35 nm/◦C

(I) 21.9,
(II) 0.008 - 2021
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Table 5. Cont.

Ref. Application Sensitivity FOM Q-Factor Year

[239]
(I) Bio-analytes
(II) Temperature

(I) −0.58 nm/◦C and
−0.64 nm/◦C

(II) 1240 nm/RIU and
1350 nm/RIU

(I) 8.6 and 1955.2,
(II) 18.74 and 691 - 2022

[240] Bio-analytes 1578 nm/RIU 175 - 2022

[241]
(I) Temperature
(II) Glucose

(I) 1.55 nm/◦C,
(II) 4074 nm/RIU 2.45 × 10−6 - 2022

[242] Bio-analytes 825.7 nm/RIU 13.14 - 2022
[243] Bio-analytes 7872 nm/RIU 394 - 2022
[244] Pressure 10.96 and 10.5 nm/MPa - - 2022
[245] Bio-analytes 2473 nm/RIU 34.18 56.35 2021
[246] Pressure 25.4 nm/MPa - - 2021
[247] Pressure 16.5 nm/MPa - - 2018
[248] Bio-analytes 1948.67 nm/RIU 29.52 29.90 2020
[249] Bio-analytes 2300 nm/RIU 31.5 31.1 2020
[222] Gas 135.95 pm/ppm - - 2021
[250] Bio-analytes 793.3 nm/RIU 52.9 82.1 2019

[251]
(I) Bio-analytes
(II) Temperature

(I) 1406.25 nm/RIU
(II) 0.45 nm/◦C 156.25 - 2021

[252]
(I) Temperature
(II) Glucose

(I) 1.525 nm/◦C
(II) 0.45 nm·L/g 52.73 - 2021

7. Concluding Remarks and Outlook

Due to the growing need for sensing applications in industries including health
care, defense, security, automotive, aerospace, the environment, and food quality control,
to mention a few, photonic sensors have seen significant advancement in the last few
decades [90,91,242]. Concerning the CMOS-compatible SOI technology, the development,
and integration of microfluidic and photonic innovation and technology for the improve-
ment of sensing performance in terms of sensitivity, the limit of detection (LOD), and
detection multiplexing potential have been studied. Over the past few decades, photonic
sensors have been the focus of many studies, particularly with regard to the detection of a
wide range of biological and chemical substances. In this regard, photonic lab-on-a-chip
systems offer cutting-edge photonic sensing because they are anticipated to have higher
sensitivity and selectivity in addition to high stability, immunity to EM interference, and
product advancements such as relatively small assimilation scales and lower costs. In
this review, recent advances in numerous sensing technologies such as optical WG-based
sensors, optical fiber-based sensors, photonic crystal-based sensors, metasurface-based
sensors, and MIM WG-based-plasmonic sensors were extensively presented.

There are several uses for WG-based optical sensors including the label-free detection
of chemical or biological analytes that precisely attach to functionalized WG surfaces. By
leveraging well-known photonic integration platforms like silicon or silicon nitride, these
sensors show significant prospects for downsizing and economical mass manufacturing.
The most popular types of sensor configurations are established on interferometers such
as those in the Mach–Zehnder and Young configuration [74], or on resonant components
including ring, disk, and Bragg resonators, which may be improved even further by
making use of the Vernier effect [62]. These sensor designs, which enable long effective
contact durations with the analyte and combine high sensitivity with a compact device
footprint, are well-suited for high-density integration into massive parallel arrays. Various
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methods for optimizing certain kinds of WG have been reported in recent years for both
surface sensing and the detection of bulk changes in RI in the WG cladding (homogeneous
sensing). These studies, however, frequently focus on a few WG types and geometries
on a small number of material platforms such as silicon [2], silicon nitride (Si3N4) [34],
and polymers [74]. Therefore, the greatest surface sensitivities across various WG types
and integration platforms cannot be compared generically. Additionally, the majority of
sensitivity assessments only take into account specified surface layers with predetermined
refractive indices.

EM interference and radio frequency interference do not effect OF-based sensors. It is
secure and suitable for use in harsh situations with high vibration. It is tolerant of corrosive
conditions and high temperatures. Due to its high sensitivity, even minor variations in the
ambient medium may be observed [80–83]. Its size and weight are both small and man-
ageable. A large bandwidth and a broad dynamic range are provided. Both multiplexing
and remote sensing functions are available. It has several sensing applications including
mechanical measurement, electric measurement, magnetic measurement, chemical and
biological sensing, among others. Nearly all physical measurements including temperature,
pressure, flow, liquid level, displacement, vibration, rotation, magnetic and electric fields,
and acceleration can be determined.

MSs are now considered as emerging study areas because of their peculiar and highly
controllable light scattering in ultracompact volume characteristics. The geometric dimen-
sions of each meta-atom, a key MS component, and their subwavelength spacing determine
how well MSs perform [181–183]. Meta-atoms are made up of one or more subwavelength
nanostructures made of high-index dielectrics or noble metals. They are designed to display
the appropriate effective local optical responses, which may be described in terms of electric
and magnetic polarizabilities as well as amplitude and phase. Exotic functions with several
possible uses including transmission, virtually perfect absorption, and negative RI have
been identified. RI bio-sensing is the most practical and illustrative of the potential uses,
which also include superlens, slow light, and cloaking devices. Changes in refractive in-
dices are caused by bio-molecular interactions in the analyte layers [189]. To be an essential
component of diverse chemical and biological sensing technologies, the RI sensor must
provide distinct capabilities for sensitive and label-free biochemical experiments [188].

PCs offer an exciting method for achieving excellence in sensing applications. Since many
photonic designs have been extensively studied and used in photonic sensing, PCs show the
strong optical confinement of light to a very tiny volume, permitting the detection of chemical
species with nanometer-scale dimensions. Additionally, very effective ultra-compact sensor
chips may be produced by integrating modern chemical surface functionalization processes
with microfluidic devices. From a technical perspective, PC-based photonic sensors such as
integrated planar PCs and PCFs are appropriate for multiplexing and label-free detection. For
instance, large-scale chip-integrated PC sensor microarrays for biosensing on an SOI-based
framework have recently been suggested and proven [142]. PCs are typically manufactured
using conventional and CMOS-compatible technical techniques such as E-beam lithography,
ICP etching, and PECVD, rendering these sensors appropriate for mass-market and low-cost
manufacturing. Ultimately, PCFs may be produced quickly by stacking silica glass rods and
tubes into a huge structure that has the desired pattern of holes.

Because of its adaptable on-chip inclusion, little bending loss, increased propagation
length, subwavelength confinement, and relative simplicity of manufacturing, plasmonic
MIM WGs formed on SPPs have been thoroughly explored as a potential area of optical
WGs [227]. Due to the demand for ultra-high sensitive biological sensors, plasmonic
RI sensors produced on MIM WGs have attracted a lot of attention [4]. Compared to
more conventional approaches like fluorescence analysis, sensors established on the SPP
phenomenon are more analyte-compliant and do not need additional processing steps such
as labeling [209]. The use of SPPs has also attracted significant consideration in the field of
optical sensing since its initial gas sensing demonstration. Plasmonic sensors made possible
by MIM WGs may be used for a variety of tasks including the detection of temperature,
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pressure, and RI. There are several applications for RI sensors in the biological sciences. For
instance, monitoring changes in the RI makes it possible to determine the solution conc.
and pH level [239,250].

Describing the technologies of optical sensor systems, one cannot but briefly mention
Raman spectroscopy. This is a vast topic that deserves a separate article. However, we
will briefly dwell on this topic in the current work. Raman spectroscopy is one of the
most common spectroscopy technologies in biosensors today [253]. Raman scattering is a
non-elastic phenomenon in which incoming photons either absorb energy from or release
energy to the vibrational and rotational movements of a target molecule. Consequently, the
Raman spectra generated contain bands that are specific to the molecular structure, thereby
producing distinct chemical signatures unique to each molecule [254,255].

SERS has become very widespread as a method of tissue analysis in diagnosing various
diseases including cancer [256] and intraoperative diagnostics [257]. For example, Raman
systems have shown promising results in distinguishing between cancerous and healthy
brain tissue with high accuracy. In [258], a hand-held optic Raman probe and a 785 nm NIR
Laser were utilized to achieve a sensitivity of 93% and a specificity of 91% for the brain
tissue analysis. In the study of pancreatic cancer, the authors, using the Raman system,
detected the MUC4 biomarker at a wavelength of 632.8 nm [259]. Further studies [260]
when detecting CA19-9, MMP7, and MUC4 markers characteristic of pancreatic cancer
using SERS at a wavelength of 785 nm showed the great potential of the method for
early diagnosis of the disease. Raman spectroscopy can also be successfully used for viral
diagnostics. In [261], the authors provide an example of the successful detection of common
viruses including the SARS-CoV-2 coronavirus.

Raman spectroscopy is successfully used to analyze biological processes occurring
in plant tissues [262,263]. Thus, [264] illustrated the possibility of using Raman spec-
troscopy to determine melon seeds infected with the bacterium Acidovorax citrulli. The
authors of [265] showed that by using Raman spectroscopy, it is possible to achieve high (up
to 82.8%) accuracy in determining the damage to tomatoes by the bacterium Candidatus
Liberibacter solanacearum (type B). It should be noted that the further development of
the use of SERS is inextricably linked to the use of machine learning methods to improve
the accuracy of diagnostics. In [266,267], the authors provide an overview of intelligent
algorithms used to classify Raman spectrograms and identify diseases including analy-
sis based on deep learning methods, binary classification, support vector machines, and
various types of neural networks.
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