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Abstract: Surface plasmon resonance sensors have been widely used in various fields for label-free
and real-time detection of biochemical species due to their high sensitivity to the refractive index
change of the surrounding environment. The common practices to achieve the improvement of
sensitivity are to adjust the size and morphology of the sensor structure. This strategy is tedious and,
to some extent, limits the applications of surface plasmon resonance sensors. Instead, the effect of
the incident angle of excited light on the sensitivity of a hexagonal Au nanohole array sensor with a
period of 630 nm and a hole diameter of 320 nm is theoretically investigated in this work. By exploring
the peak shift of reflectance spectra of the sensor when facing a refractive index change in (1) the bulk
environment and (2) the surface environment adjacent to the sensor, we can obtain the bulk sensitivity
and surface sensitivity. The results show that the bulk sensitivity and surface sensitivity of the Au
nanohole array sensor can be improved by 80% and 150%, respectively, by simply increasing the
incident angle from 0◦ to 40◦. The two sensitivities both remain nearly unchanged when the incident
angle further changes from 40◦ to 50◦. This work provides new understanding of the performance
improvement and advanced sensing applications of surface plasmon resonance sensors.
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1. Introduction

Surface plasmon resonance (SPR) supported by noble metal nanostructures can con-
centrate optical fields into nanoscale space and significantly enhance the near-field inten-
sity [1–3], bringing in sensitive response to the refractive index change of the surrounding
environment [4–7]. Because of this characteristic, SPR sensors have been widely used in
the fields of medical diagnosis, food safety regulation and environmental monitoring in
the past few decades [8–16]. The sensing performance of an SPR sensor can be evaluated
by sensitivity, which is defined as the spectral shift of the sensor per refractive index unit
(RIU) [17]. The pursuit of high sensitivity has therefore attracted much attention in the field
of surface plasmon resonance sensing.

The traditional methods to obtain high sensitivity mainly focus on the construction
of SPR sensors with strong near-field enhancement. Some sensor nanostructures, such
as nanohole [18–21], nanoring [22–25], nanodisk [26], nanodimer [27] and closely packed
nanoclusters [28] with narrow nanogap, have been demonstrated to be highly sensitive
to slight changes in the surrounding medium. However, the strategy relies heavily on
the size/gap of the SPR sensor structures. Another effective way to improve sensitivity
is to couple different resonance modes into an SPR sensor structure to greatly enhance
the near-field intensity [29–32]. For example, Cetin and Altug fabricated an asymmetric
ring/disk structure on a Au layer to produce Fano resonance [33]. Compared with the
concentric ring/disk structure, the asymmetric structure exhibited a noticeably stronger
near-field intensity, resulting in a higher sensitivity. As another example, Ye’s group
proposed a Au nanoring-SiO2 spacer-Au film nanostructure [34]. Compared with the Au
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cavity structure made of two Au films, the sandwich configuration can generate a strong
Fano resonance by coupling the localized surface plasmon resonance (LSPR) mode of the
nanoring array and the cavity mode of the structure. Therefore, the near-field distributions
can be transferred from the SiO2 layer to the sensor surface, which allows the access of
electromagnetic sites by the surrounding target. In addition, the near-field intensity can be
significantly enhanced, leading to an excellent sensing performance. The challenge of this
strategy is that it requires an elaborate structure design to achieve the effective couplings
of different resonance modes. In addition to the structural size and morphology, material
composition can also influence the sensitivity of an SPR sensor. Maier et al. investigated
and compared the refractive index sensing sensitivity of 17 materials, including noble
metals, refractory metals, transition metal nitrides and conductive oxides [35]. Ag shows
the highest sensitivity due to its extremely low plasmon loss compared with other materials.
However, Ag is easily oxidized under ambient conditions; Au is popularly chosen due to
its excellent chemical stability and excellent plasmonic property [36,37].

Alternatively, the sensitivity of an SPR sensor may be improved by adjusting the
incident angle of excited light. In the work of Odom’s group, they showed that the average
near-field intensity of a two-dimensional Au nanoparticle array can be improved noticeably
as the incident angle increases [38]. It means that the adjustment of incident angle could be a
convenient way to tune the sensitivity of an SPR sensor. In this work, we utilized a 3D finite
difference time-domain (FDTD) method and theoretically investigated the effect of incident
angle on the sensitivity of a widely used hexagonal Au nanohole array sensor [17,20].
Interestingly, we found that the bulk sensitivity and the surface sensitivity in different
spatial regions away from the sensor surface can be significantly improved by increasing
the incident angle from 0◦ to 40◦. The sensitivity improvement can be negligible as incident
angle further increases from 40◦ to 50◦. Compared with the common strategy focusing on
the morphology/size/composition adjustment, this work provides a simple way for the
sensitivity improvement of SPR sensors.

2. Methods

The simulation method is similar to our previous work [17]. Briefly, the FDTD simula-
tion (Lumerical Solutions, Vancouver, Canada) was performed to investigate the resonance
properties of the hexagonal Au nanohole array (the array period was 630 nm, the hole
diameter was 320 nm and the array thickness was 100 nm), where the periodic boundary
conditions in the xy-plane (structured surface plane) and perfectly matched layer condi-
tions at the z axis were adopted. The simulation time was set to 1000 fs to guarantee the
convergence. The Yee cell size was 2 nm × 2 nm × 2 nm. The dielectric functions of Au
and Si were taken from a multi-coefficient fitting model offered by the FDTD software
(2020 R2).

Figure S1 (Supplementary Materials) gives the flow chart of the manufacturing process
of the hexagonal Au nanohole array. Firstly, the lift-off and SU-8 2000.5 resists were coated
on a silicon wafer by spin coating. The substrates then underwent holographic lithography,
where three prefabricated diffractive gratings orientated 120◦ to each other produced an
ordered periodic pattern on the photoresist-coated substrate because of the interference
of the first-order laser beams from the gratings. Then, reactive ion etching (RIE) was used
to remove the exposed lift-off resist with the SU-8 2000.5 nanopillar array as the mask.
Afterwards, a Au film was deposited on the substrate by electron beam evaporation. Thus,
the hexagonal Au nanohole array was finally obtained after the lift-off process.

3. Results and Discussion

Figure 1a illustrates the schematic view of the hexagonal Au nanohole array sensor.
The period of the array sensor (the spacing between the center of two adjacent nanoholes)
was 630 nm. The diameter and height of the nanohole were 320 nm and 100 nm, respectively.
We first simulated the spectral response of the array sensor to refractive index change of
the surrounding environment (nenv) when the incident angle (θ) was 0◦ (namely, under
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a normal incidence condition, see Figure 1b). Figure 1c shows the obtained reflectance
spectra of the Au nanohole array when nenv was of 1.00 to 1.10 with a step of 0.02. It is
clear that the reflectance spectrum continuously shifts to a longer wavelength with an
increase in nenv, demonstrating that the Au nanohole array is sensitive to the change of the
surrounding medium.
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Figure 1. (a) The schematic and (b) excitation view of the hexagonal Au nanohole array sensor.
(c) The reflectance spectra of the hexagonal Au nanohole array sensor when nenv increases from 1.00
to 1.10 with a step of 0.02. θ is 0◦.

Next, we investigated the resonance property of the Au nanohole array under oblique
incidence. The corresponding excitation view can be found in the inset of Figure 2a, where θ
ranges from 0◦ to 50◦ with a step of 10◦ and nenv is 1.00. From the results shown in Figure 2a,
we can see the reflectance spectrum red shifts noticeably as θ increases. Figure 2b displays
the peak position (λ) of the nanohole array under different θ. It is clear that λ increases
from about 620 nm to about 870 nm as θ changes from 0◦ to 50◦. Since sensing sensitivity
mainly depends on the electromagnetic field intensity of SPR sensors, we further analyzed
the near-field distributions of the Au nanohole array under different θ, as exhibited in
Figure 2c. On the one hand, the near-field distributions of the array sensor are mainly
localized at the top edge of the Au nanohole. On the other hand, we can see that the
enhanced electromagnetic sites can be also observed at the bottom edge of the nanohole
when θ is within a large range (such as 40◦; see Figure 2c(v)). In addition, it is clear that the
near-field intensity of the Au nanohole array is improved from about 105 to 106 (see the top
edge of the nanohole) as θ increases from 0◦ to 50◦. This indicates that a better near-field
enhancement can be obtained by increasing θ and thus improve the sensitivity of the Au
nanohole array sensor.

We then focused on the difference in the sensing sensitivity of the Au nanohole ar-
ray sensor when θ ranged from 0◦ to 50◦. Figure S2 (Supplementary Materials) shows
the obtained reflectance spectra of the array sensor under different θ and nenv conditions
(The excitation view is displayed in Figure 3a). We can see that the resonance spectrum
shifts toward longer wavelength noticeably when nenv rises from 1.00 to 1.10, regard-
less of θ. Figure 3b,c illustrate λ and the corresponding spectral shift (∆λ, compared
with the inherent λ when nenv is 1.00) of the nanohole array, respectively. According to
sensitivity = ∆λ/∆nenv, we can obtain the bulk sensitivity (shown in Figure 3d) of the array
sensor under different θ by calculating the slope of each curve (see Figure 3c). It can be seen
that the sensitivity of the Au nanohole array sensor rises from about 450 nm/RIU to about
800 nm/RIU as θ increases from 0◦ to 40◦ and remains nearly unchanged when θ further
increases from 40◦ (800 nm/RIU) to 50◦ (815 nm/RIU). The phenomenon is consistent with
the variation trend of near-field intensities shown in Figure 2c, demonstrating the feasibility
of improving the sensitivity of the Au nanohole array sensor by increasing θ appropriately.
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Figure 3. (a) The excitation diagram of the hexagonal Au nanohole array sensor. (b) The peak
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between ∆λ and ∆nenv. (d) The obtained bulk sensitivities of the Au nanohole array sensor under
different θ.



Biosensors 2023, 13, 654 5 of 8

In the previous section, we analyzed the change in sensitivity of the Au nanohole array
sensor under different θ when facing a refractive index variation in the bulk environment.
We then focused on the surface sensitivity of the Au nanohole array in different spatial
regions away from the sensor surface. To facilitate the subsequent analysis, a target layer of
n = 1.05 was applied to the surface of the nanohole array when nenv was 1.00, as shown
in Figure 4a. Figure 4b exhibits the change in the reflectance spectra (θ = 0◦) of the Au
nanohole array when the thickness (t) of the target ranged from 0 nm to 500 nm with a step
of 50 nm. We can see that the peak position of the Au nanohole array at first noticeably shifts
towards longer wavelengths as t increases, but the moving speed slows down gradually.
The reflectance spectrum keeps nearly the same when t is large enough (in the range from
300 nm to 500 nm). Figure 4c shows ∆λ (compared with the inherent λ of the Au nanohole
array when t is 0 nm and nenv is 1.00) of the Au nanohole array sensor under different t. It
is clear that ∆λ increases from about 10 nm to about 22 nm when t changes from 50 nm to
300 nm and remains nearly unchanged when t further increases from 300 nm to 500 nm.
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Figure 4. (a) The schematic view of the hexagonal Au nanohole array sensor covered by a layer of
target (n = 1.05) with a thickness of t. (b) The reflectance spectra and (c) ∆λ of the Au nanohole array
sensor when t ranges from 0 nm to 500 nm with a step of 50 nm. nenv = 1.00 and θ is 0◦.

In addition to the normal incidence condition, we also obtained the reflectance spectra
change of the Au nanohole array sensor at different t when θ ranged from 0◦ to 50◦ with
a step of 10◦, as shown in Figure S3 (Supplementary Materials). It can be seen that the
resonance spectrum of the array sensor red shifts significantly with the increase in t when
t is small (such as in the range of 0 nm to 200 nm), but remains nearly unchanged when
t falls within a much higher range (such as from 400 nm to 500 nm), regardless of θ. The
change in ∆λ with t under each θ and the corresponding comparison results are illustrated
in Figure S4 (Supplementary Materials) and Figure 5a, respectively. Under a fixed t, it is
clear that ∆λ increases noticeably with an increase in θ. For example, when t is 300 nm,
∆λ values reach about 21 nm, 25 nm, 30 nm, 33 nm, 38 nm and 37 nm when θ is 0◦, 10◦,
20◦, 30◦, 40◦ and 50◦, respectively. This indicates that the response performance of the Au
nanohole array sensor to slight changes in refractive index within different spatial regions
away from the sensor surface can be tuned by adjusting θ. The quantitative analysis of
the surface sensitivity of the Au nanohole array sensor is different from the calculation
method of bulk sensitivity shown in Figure 3c and can be approximately achieved through
the following equation [39,40]:

m =
∆λ

(nadsorbate − nenv)

(
1− e

−2t
ld

) (1)

where m (nm/RIU) is the sensitivity factor (namely sensing sensitivity), nadsorbate and nenv
are the refractive index values of the target (ntar = 1.05) and the environment (nenv = 1.00),
respectively, and ld is the decay length of the near field of the Au nanohole array sensor.
Under normal incidence, ld is set as 300 nm for the calculation, considering ∆λ nearly
remains unchanged when t reaches 300 nm (see Figure S4a, Supplementary Materials).
Similarly, we chose ld as 350 nm when θ ranged from 10◦ to 40◦ and as 400 nm when θ was
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50◦ (Figure S4b–f, Supplementary Materials). On the one hand, the setting is approximately
consistent with the calculation results of the change in ∆λ at different t when θ increases
from 0◦ to 50◦. On the other hand, we can see the variation of ld under different θ according

to the formula [41] ld = λ
2π

∣∣∣∣ εd+ε
′
m

ε2
d

∣∣∣∣ 1
2
, where λ represents resonance wavelength, εd and

ε
′
m are dielectric constants of the surrounding environment and metal material (real part),

respectively. When θ increases from 0◦ to 50◦, λ of the Au nanohole array sensor shows sig-
nificant red shift (displayed in Figure 2a,b). In this case, a larger ld can be achieved, roughly
consistent with the above setting. Figure 5b shows the calculated surface sensitivities of the
Au nanohole array sensor under different t and θ conditions. When θ is fixed (such as 20◦),
it is clear that as t increases from 50 nm to 500 nm, the obtained sensitivity value decreases
dramatically at first and then remains nearly unchanged. This indicates that the response
sensitivity of the Au nanohole array weakens significantly as the spatial region where the
refractive index varies moves away from the sensor surface. This can be attributed to the
rapid decay in near-field intensity with increased distance away from the surface of the
Au nanohole array sensor. When t is large enough (such as 500 nm), we can see that the
obtained surface sensitivities under each θ are almost equal to the corresponding bulk
sensitivities shown in Figure 3d. This illustrates that the target layer completely serves
as the bulk medium background of the Au nanohole array in this case. In addition, the
phenomenon demonstrates the feasibility of the setting values of ld used in Equation (1)
for the calculation of surface sensitivities under different θ. When only the change in θ
is considered, we can see the surface sensitivity of the Au nanohole array sensor rises
significantly with the increase in θ from 0◦ to 40◦ and remains nearly unchanged when
θ further increases from 40◦ to 50◦. For example, at a t of 50 nm, the obtained surface
sensitivity rises from about 750 nm/RIU to 1850 nm/RIU when θ increases from 0◦ to
40◦/50◦, nearly a 1.5 times improvement. The sensitivity changes of the Au nanohole
array sensor under different θ when facing a slight variation in the refractive index of the
bulk environment (shown in Figure 3d) and in different spatial regions away from the
sensor surface (shown in Figure 5b) together demonstrate the possibility of tunning sensing
performance of the hexagonal Au nanohole array by adjusting θ.
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Figure 5. (a) The obtained ∆λ and (b) surface sensitivities of the hexagonal Au nanohole array when
t ranges from 50 nm to 500 nm with a step of 50 nm and θ ranges from 0◦ to 50◦ with a step of 10◦.
nenv = 1.00.

4. Conclusions

In summary, with the utilization of the FDTD method, we have systematically studied
the effect of incident angle on the sensing sensitivity of a hexagonal Au nanohole array
sensor. By adjusting the incidence angle from 0◦ to 40◦, the bulk sensitivity of the sensor
can be increased gradually and eventually reaches an 80% improvement. Meanwhile, the
surface sensitivity can be improved by 1.5 times. Both the bulk sensitivity and surface
sensitivity remain nearly unchanged with the further change in incidence angle from 40◦ to
50◦. The incident angle-dependent sensitivity shown in this work can be used to optimize
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the sensing performance of SPR array sensors, which provides new understanding for
advanced sensing applications of SPR sensors in the future.
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1.10 with a step of 0.02. Figure S3: The reflectance spectra of the Au nanohole array when t increases
from 0 nm to 500 nm with a step of 50 nm. Figure S4: ∆λ of the Au nanohole array when t increases
from 0 nm to 500 nm with a step of 50 nm.
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