The Optimization of a Label-Free Electrochemical DNA Biosensor for Detection of Sus scrofa mtDNA as Food Adulterations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Electrodeposition of Gold onto SPCE
2.3. Modification of Gold-SPCE with Streptavidin (SA)-Biotynlated DNA Probe
2.4. Optimization of Box–Behnken Experimental Design
2.5. Determination of DNA Biosensor Response to Synthetic Target DNA
2.6. Extraction of DNA
2.7. Characterization of DNA Extracts with BamHI Restriction Enzymes
2.8. Determination of DNA Biosensor Current Response to DNA Samples
2.9. Aplication Biosensor for Real Sample
3. Results and Discussion
3.1. Immobilization of Biotinylated Probe DNA and Hybridization of Probe-Targeted DNA
3.2. Optimal Experimental Conditions with Box–Behnken Experimental Design
3.3. Calibration Curves and Analytical Parameters
3.4. Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wolf, C.; Lüthy, J. Quantitative competitive (QC) PCR for quantification of porcine DNA. Meat Sci. 2000, 57, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Kesmen, Z.; Gulluce, A.; Sahin, F.; Yetim, H. Identification of meat species by TaqMan-based real-time PCR assay. Meat Sci. 2009, 82, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Zia, Q.; Alawami, M.; Mokhtar, N.F.K.; Nhari, R.M.H.R.; Hanish, I. Current analytical methods for porcine identification in meat and meat products. Food Chem. 2020, 324, 126664. [Google Scholar] [CrossRef] [PubMed]
- Yin, R.; Sun, Y.; Wang, K.; Feng, N.; Zhang, H.; Xiao, M. Development of a PCR-based lateral flow strip assay for the simple, rapid, and accurate detection of pork in meat and meat products. Food Chem. 2020, 318, 126541. [Google Scholar] [CrossRef]
- Köppel, R.; van Velsen, F.; Ganeshan, A.; Pietsch, K.; Weber, S.; Graf, C.; Murmann, P.; Hochegger, R.; Licina, A. Multiplex real-time PCR for the detection and quantification of DNA from chamois, roe, deer, pork and beef. Eur. Food Res. Technol. 2020, 246, 1007–1015. [Google Scholar] [CrossRef]
- Kang, S.J.; Jang, C.S.; Son, J.M.; Hong, K.W. Comparison of Seven Commercial TaqMan Master Mixes and Two Real-Time PCR Platforms Regarding the Rapid Detection of Porcine DNA. Korean J. Food Sci. Anim. Resour. 2021, 41, 85–94. [Google Scholar] [CrossRef]
- Qin, P.; Qu, W.; Xu, J.; Qiao, D.; Yao, L.; Xue, F.; Chen, W. A sensitive multiplex PCR protocol for simultaneous detection of chicken, duck, and pork in beef samples. J. Food Sci. Technol. 2019, 56, 1266–1274. [Google Scholar] [CrossRef]
- Wu, H.; Qian, C.; Wang, R.; Wu, C.; Wang, Z.; Wang, L.; Zhang, M.; Ye, Z.; Zhang, F.; He, J.-S.; et al. Identification of pork in raw meat or cooked meatballs within 20 min using rapid PCR coupled with visual detection. Food Control. 2019, 109, 106905. [Google Scholar] [CrossRef]
- Chiş, L.-M.; Vodnar, D.C. Detection of the Species of Origin for Pork, Chicken and Beef in Meat Food Products by Real-Time PCR. Safety 2019, 5, 83. [Google Scholar] [CrossRef] [Green Version]
- Balakrishna, K.; Sreerohini, S.; Parida, M. Ready-to-use single tube quadruplex PCR for differential identification of mutton, chicken, pork and beef in processed meat samples. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2019, 36, 1435–1444. [Google Scholar] [CrossRef]
- Liu, R.; Wang, X.; Wang, X.; Shi, Y.; Shi, C.; Wang, W.; Ma, C. A simple isothermal nucleic acid amplification method for the effective on-site identification for adulteration of pork source in mutton. Food Control. 2018, 98, 297–302. [Google Scholar] [CrossRef]
- Orbayinah, S.; Widada, H.; Hermawan, A.; Sudjadi, S.; Rohman, A. Application of real-time polymerase chain reaction using species specific primer targeting on mitochondrial cytochrome-b gene for analysis of pork in meatball products. J. Adv. Vet.-Anim. Res. 2019, 6, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Raharjo, T.J.; Chudori, Y.N.C.; Agustina, F.W. TaqMan probe real-time polymerase chain reaction targeting the ATPase 6 gene for the detection of pork adulteration in meat and meatballs. J. Food Saf. 2019, 39, e12715. [Google Scholar] [CrossRef]
- Skouridou, V.; Tomaso, H.; Rau, J.; Bashammakh, A.S.; El-Shahawi, M.S.; Alyoubi, A.O.; O’Sullivan, C.K. Duplex PCR-ELONA for the detection of pork adulteration in meat products. Food Chem. 2019, 287, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Murugaiah, C.; Noor, Z.M.; Mastakim, M.; Bilung, L.M.; Selamat, J.; Radu, S. Meat species identification and Halal authentication analysis using mitochondrial DNA. Meat Sci. 2009, 83, 57–61. [Google Scholar] [CrossRef]
- Alves, E.; Ovilo, C.; Rodriguez, M.C.; Silio, L. Mitochondrial DNA sequence variation and phylogenetic relationships among Iberian pigs and other domestic and wild pig populations. Anim. Genet. 2003, 34, 319–324. [Google Scholar] [CrossRef]
- Ardhiyana, R.; Haditjaroko, L.; Mulijani, S.; Wicaksono, R.A.; Ranasasmita, R. DNA-based gold nanoprobe biosensor to detect pork contaminant. Rasayan J. Chem. 2017, 10, 1037–1042. [Google Scholar]
- Ali, M.E.; Hashim, U.; Mustafa, S.; Man, Y.B.C.; Yusop, M.H.M.; Kashif, M.; Dhahi, T.S.; Bari, M.F.; Hakim, M.A.; Latif, M.A. Nanobiosensor for Detection and Quantification of DNA Sequences in Degraded Mixed Meats. J. Nanomater. 2011, 2011, 781098. [Google Scholar] [CrossRef] [Green Version]
- Ali, E.; Hashim, U.; Mustafa, S.; Man, Y.B.C.; Yusop, M.H.M.; Bari, M.F.; Islam, K.N.; Hasan, M.F. Nanoparticle sensor for label free detection of swine DNA in mixed biological samples. Nanotechnology 2011, 22, 195503. [Google Scholar] [CrossRef]
- Ali, M.E.; Hashim, U.; Mustafa, S.; Man, Y.B.C.; Islam, K.N. Gold Nanoparticle Sensor for the Visual Detection of Pork Adulteration in Meatball Formulation. J. Nanomater. 2012, 2012, 103607. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.; Hashim, U.; Mustafa, S.; Man, Y.C.; Adam, T.; Humayun, Q. Nanobiosensor for the detection and quantification of pork adulteration in meatball formulation. J. Exp. Nanosci. 2012, 9, 152–160. [Google Scholar] [CrossRef]
- He, Z.; Yang, H. Colourimetric detection of swine-specific DNA for halal authentication using gold nanoparticles. Food Control. 2018, 88, 9–14. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, Y.; Chen, Y.; Xu, X.; Zhou, G. Rapid Visual Detection of Eight Meat Species Using Optical Thin-Film Biosensor Chips. J. AOAC Int. 2015, 98, 410–414. [Google Scholar] [CrossRef] [PubMed]
- Torelli, E.; Manzano, M.; Marks, R.S. Chemiluminescent optical fibre genosensor for porcine meat detection. Sens. Actuators B Chem. 2017, 247, 868–874. [Google Scholar] [CrossRef]
- Wu, Y.; Dong, Y.; Shi, Y.; Yang, H.; Zhang, J.; Khan, M.R.; Deng, S.; He, G.; He, Q.; Lv, Y.; et al. CRISPR-Cas12-Based Rapid Authentication of Halal Food. J. Agric. Food Chem. 2021, 69, 10321–10328. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Wang, J.; Yao, C.; Xie, P.; Li, X.; Xu, Z.; Xian, Y.; Lei, H.; Shen, X. Alkaline lysis-recombinase polymerase amplification combined with CRISPR/Cas12a assay for the ultrafast visual identification of pork in meat products. Food Chem. 2022, 383, 132318. [Google Scholar] [CrossRef]
- Suea-Ngam, A.; Rattanarat, P.; Chailapakul, O.; Srisa-Art, M. Electrochemical droplet-based microfluidics using chip-based carbon paste electrodes for high-throughput analysis in pharmaceutical applications. Anal. Chim. Acta 2015, 883, 45–54. [Google Scholar] [CrossRef]
- Hartati, Y.W.; Suryani, A.A.; Agustina, M.; Gaffar, S.; Anggraeni, A. A Gold Nanoparticle–DNA Bioconjugate–Based Electrochemical Biosensor for Detection of Sus scrofa mtDNA in Raw and Processed Meat. Food Anal. Methods 2019, 12, 2591–2600. [Google Scholar] [CrossRef] [Green Version]
- Munirah, H.; Roy, S.; Ying, J.L.; Rahman, I.A.; Ahmed, M.U. Rapid detection of pork DNA in food samples using reusable electrochemical sensor. Sci. Bruneiana 2016, 15, 91–98. [Google Scholar] [CrossRef]
- Hasbullah, S.A. Fabrication of Porcine DNA Biosensor Based on Ruthenium Bipyridine Complex. Malays. J. Anal. Sci. 2016, 20, 1020–1032. [Google Scholar] [CrossRef]
- Roy, S.; Wei, S.X.; Ying, J.L.Z.; Safavieh, M.; Ahmed, M.U. A novel, sensitive and label-free loop-mediated isothermal amplification detection method for nucleic acids using luminophore dyes. Biosens. Bioelectron. 2016, 86, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Hartati, Y.W.; Setiawati, T.A.; Sofyatin, T.; Fitrilawati, F.; Anggraeni, A.; Gaffar, S. Electrochemical DNA biosensor for detection of pork (Sus scrofa) using screen printed carbon-reduced graphene oxide electrode. ScienceAsia 2020, 46, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Wang, J. Electrochemical Nucleic Acid Biosensors. Perspect. Bioanal. 2005, 1, 175–194. [Google Scholar] [CrossRef]
- He, W.; Zhou, Y.-T.; Wamer, W.G.; Hu, X.; Wu, X.; Zheng, Z.; Boudreau, M.D.; Yin, J.-J. Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging. Biomaterials 2012, 34, 765–773. [Google Scholar] [CrossRef]
- Emami, T.; Madani, R.; Golchinfar, F.; Shoushtary, A.; Amini, S.M. Comparison of Gold Nanoparticle Conjugated Secondary Antibody with Non-Gold Secondary Antibody in an ELISA Kit Model. Monoclon. Antibodies Immunodiagn. Immunother. 2015, 34, 366–370. [Google Scholar] [CrossRef] [PubMed]
- Hartati, Y.W.; Wyantuti, S.; Firdaus, M.L.; Auliany, N.; Surbakti, R.; Gaffar, S. A Rapid and Sensitive Diagnosis of Typhoid Fever Based on Nested PCR-Voltammetric DNA Biosensor Using Flagellin Gene Fragment. Indones. J. Chem. 2016, 16, 87. [Google Scholar] [CrossRef] [Green Version]
- Oliveira-Brett, A.; Diculescu, V.; Piedade, J. Electrochemical oxidation mechanism of guanine and adenine using a glassy carbon microelectrode. Bioelectrochemistry 2001, 55, 61–62. [Google Scholar] [CrossRef] [Green Version]
- Tomschik, M.; Jelen, F.; Havran, L.; Trnková, L.; Nielsen, P.E.; Paleček, E. Reduction and oxidation of peptide nucleic acid and DNA at mercury and carbon electrodes. J. Electroanal. Chem. 1999, 476, 71–80. [Google Scholar] [CrossRef]
- Fajriyah, M.; Rohmatulloh, Y.; Gaffar, S.; Angraen, A.; Hartat, Y. Electrochemical Biosensor for Mitochondrial DNA of Sus Scrofa Detection Using a Cerium-Modified Screen Printed Carbon Electrode. In Proceedings of the 1st International Conference on Islam, Science and Technology, ICONISTECH 2019, Bandung, Indonesia, 11–12 July 2019. [Google Scholar] [CrossRef]
- Flauzino, J.M.; Nguyen, E.P.; Yang, Q.; Rosati, G.; Panáček, D.; Brito-Madurro, A.G.; Madurro, J.M.; Bakandritsos, A.; Otyepka, M.; Merkoçi, A. Label-free and reagentless electrochemical genosensor based on graphene acid for meat adulteration detection. Biosens. Bioelectron. 2021, 195, 113628. [Google Scholar] [CrossRef]
Factor | Unit | Level | ||
---|---|---|---|---|
−1 | 0 | +1 | ||
Time of SA incubation | min | 30 | 60 | 90 |
Concentration of probe DNA | µg/mL | 0.5 | 1.0 | 1.5 |
Time of target hybridization | min | 5 | 10 | 15 |
Methods | Limit of Detection | Linear Range (Μg/Ml) | Reference | |
---|---|---|---|---|
DNA (μg/mL) | In Mixture (%) | |||
GNP sensor (colorimetric) | 6.00 | 20 | 0.3–9.0 | [19] |
GNP sensor (colorimetric) | 4.00 | 10 | 0.4–6.0 | [20] |
Chemiluminescent optical fiber genosensor | 2.00 | 1 | 1.0–7.7 | [24] |
Gold-DNA bioconjugate electrochemical biosensor | 0.58 | 10 | 0.1–5.0 | [28] |
Graphene-based electrochemical biosensor | 1.76 | - | 1.0–10.0 | [32] |
SPCE-cerium based electrochemical biosensor | 1.44 | - | 5.0–30.0 | [39] |
Fluorescence-based CRISPR | 2.7 | - | 0–200 | [25] |
SPCE-Graphene Acid based electrochemical biosensor | - | 9 | – | [40] |
SPCE-gold-based electrochemical biosensor | 0.135 | 5 | 0.5–1.5 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hartati, Y.W.; Irkham, I.; Sumiati, I.; Wyantuti, S.; Gaffar, S.; Zakiyyah, S.N.; Zein, M.I.H.L.; Ozsoz, M. The Optimization of a Label-Free Electrochemical DNA Biosensor for Detection of Sus scrofa mtDNA as Food Adulterations. Biosensors 2023, 13, 657. https://doi.org/10.3390/bios13060657
Hartati YW, Irkham I, Sumiati I, Wyantuti S, Gaffar S, Zakiyyah SN, Zein MIHL, Ozsoz M. The Optimization of a Label-Free Electrochemical DNA Biosensor for Detection of Sus scrofa mtDNA as Food Adulterations. Biosensors. 2023; 13(6):657. https://doi.org/10.3390/bios13060657
Chicago/Turabian StyleHartati, Yeni Wahyuni, Irkham Irkham, Iis Sumiati, Santhy Wyantuti, Shabarni Gaffar, Salma Nur Zakiyyah, Muhammad Ihda H. L. Zein, and Mehmet Ozsoz. 2023. "The Optimization of a Label-Free Electrochemical DNA Biosensor for Detection of Sus scrofa mtDNA as Food Adulterations" Biosensors 13, no. 6: 657. https://doi.org/10.3390/bios13060657
APA StyleHartati, Y. W., Irkham, I., Sumiati, I., Wyantuti, S., Gaffar, S., Zakiyyah, S. N., Zein, M. I. H. L., & Ozsoz, M. (2023). The Optimization of a Label-Free Electrochemical DNA Biosensor for Detection of Sus scrofa mtDNA as Food Adulterations. Biosensors, 13(6), 657. https://doi.org/10.3390/bios13060657