Electric Double Layer Based Epidermal Electronics for Healthcare and Human-Machine Interface
Abstract
:1. Introduction
2. Material Synthesis
Material | Electrical Conductivity (S/m) | Mechanical Strength (MPa) | Reference |
---|---|---|---|
Gold | 4.1 × 107 | 120 | [34] |
Silver | 6.3 × 107 | 250 | [34] |
Copper | 5.8 × 106 | 210 | [34] |
Polyimide | 1 × 10−14 | 50–170 | [35] |
PDMS | 8130 | 1–5 | [35] |
PET | 1 × 10−14 | 50–80 | [35] |
Polyaniline | 5 | 20–100 | [36] |
Polypyrrole | 40–200 | 30–80 | [36] |
PEDOT | 300–1000 | 10–20 | [36] |
Galinstan | 3.46 × 106 | N/A | [37] |
Silver Nanowire | 1 × 104–8 × 105 | 10–100 | [38] |
Collagen | 10−6–10−4 | 0.1–1 | [39] |
Chitosan | 10−5–10−4 | 1–5 | [39] |
Hyaluronic Acid | ~10−3 | 0.05–0.5 | [39] |
PCL (Poly-caprolactone) | 2.1 × 10−14 | 5–50 | [40] |
PLA (Polylactic acid) | 10−15–10−13 | 40–60 | [40] |
2.1. Metal Based Materials
2.2. Polymer-Based Materials
2.3. Bioinspired-Materials
3. Device Fabrication
3.1. Subtractive Manufacturing
3.2. Additive Manufacturing
4. Integration Techniques for Rigid and Flexible Components
4.1. Interconnects for the 2D and 3D Dimensions
4.2. Rigid IC Chip Bonding to Soft Substrates
4.3. Anisotropic Conductive Film (ACF) Bonding
4.4. Epoxy-Based Bonding
5. Applications of Epidermal Electronics in Diagnosis and Therapeutics
5.1. Diagnostic Applications of Epidermal Electronics
5.1.1. Mechanical Signal Monitoring
5.1.2. Bioelectrical Signal Monitoring
5.2. Therapeutic Applications of Epidermal Electronics
5.2.1. Therapeutic Applications in Robotics and Prosthetics
5.2.2. Therapeutic Applications in Healthcare and Fitness
5.2.3. Therapeutic Applications in Rehabilitation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.; Cui, T.; Li, D.; Ji, S.; Chen, Z.; Shao, W.; Liu, H.; Ren, T.L. Breathable Electronic Skins for Daily Physiological Signal Monitoring. Nano-Micro Lett. 2022, 14, 161. [Google Scholar] [CrossRef]
- Liu, Y.; Jain, A.; Eng, C.; Way, D.H.; Lee, K.; Bui, P.; Kanada, K.; de Oliveira Marinho, G.; Gallegos, J.; Gabriele, S.; et al. A Deep Learning System for Differential Diagnosis of Skin Diseases. Nat. Med. 2020, 26, 900–908. [Google Scholar] [CrossRef]
- Han, N.; Yao, X.; Wang, Y.; Huang, W.; Niu, M.; Zhu, P.; Mao, Y. Recent Progress of Biomaterials-Based Epidermal Electronics for Healthcare Monitoring and Human-Machine Interaction. Biosensors 2023, 13, 393. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Y.; Cai, S.; Han, Z.; Liu, X.; Wang, F.; Cao, Y.; Wang, Z.; Li, H.; Chen, Y.; et al. Flexible Hybrid Electronics for Digital Healthcare. Adv. Mater. 2020, 32, 1902062. [Google Scholar] [CrossRef]
- Bandodkar, A.J.; Lee, S.P.; Huang, I.; Li, W.; Wang, S.; Su, C.J.; Jeang, W.J.; Hang, T.; Mehta, S.; Nyberg, N.; et al. Sweat-Activated Biocompatible Batteries for Epidermal Electronic and Microfluidic Systems. Nat. Electron. 2020, 3, 554–562. [Google Scholar] [CrossRef]
- Ye, G.; Qiu, J.; Fang, X.; Yu, T.; Xie, Y.; Zhao, Y.; Yan, D.; He, C.; Liu, N. A Lamellibranchia-Inspired Epidermal Electrode for Electrophysiology. Mater. Horiz. 2021, 8, 1047–1057. [Google Scholar] [CrossRef]
- Jeong, W.; Park, Y.; Gwon, G.; Song, J.; Yoo, S.; Bae, J.; Ko, Y.H.; Choi, J.H.; Lee, S. All-Organic, Solution-Processed, Extremely Conformal, Mechanically Biocompatible, and Breathable Epidermal Electrodes. ACS Appl. Mater. Interfaces 2021, 13, 5660–5667. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Hang, C.; Yang, S.; Qi, J.; Dong, R.; Zhang, Y.; Sun, H.; Jiang, X. In Situ Deposition of Skin-Adhesive Liquid Metal Particles with Robust Wear Resistance for Epidermal Electronics. Nano Lett. 2022, 22, 4482–4490. [Google Scholar] [CrossRef]
- Liu, G.; Sun, L.; Su, Y. Scaling Effects in the Mechanical System of the Flexible Epidermal Electronics and the Human Skin. J. Appl. Mech. 2020, 87, 081007. [Google Scholar] [CrossRef]
- Nie, B.; Liu, S.; Qu, Q.; Zhang, Y.; Zhao, M.; Liu, J. Bio-Inspired Flexible Electronics for Smart E-Skin. Acta Biomater. 2022, 139, 280–295. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, Y.; Wang, Y.; Xia, K.; Yin, Z.; Wang, H.; Zhang, M.; Liang, X.; Lu, H.; Zhu, M.; et al. Physical Sensors for Skin-Inspired Electronics. InfoMat 2020, 2, 184–211. [Google Scholar] [CrossRef]
- Jia, L.; Guo, Z.H.; Li, L.; Pan, C.; Zhang, P.; Xu, F.; Pu, X.; Wang, Z.L. Electricity Generation and Self-Powered Sensing Enabled by Dynamic Electric Double Layer at Hydrogel-Dielectric Elastomer Interfaces. ACS Nano 2021, 15, 19651–19660. [Google Scholar] [CrossRef] [PubMed]
- Wu, J. Understanding the Electric Double-Layer Structure, Capacitance, and Charging Dynamics. Chem. Rev. 2022, 122, 10821–10859. [Google Scholar] [CrossRef]
- Groß, A.; Sakong, S. Modelling the Electric Double Layer at Electrode/Electrolyte Interfaces. Curr. Opin. Electrochem. 2019, 14, 1–6. [Google Scholar] [CrossRef]
- Choi, S.; Lee, H.; Ghaffari, R.; Hyeon, T.; Kim, D.-H. Recent Advances in Flexible and Stretchable Bio-Electronic Devices Integrated with Nanomaterials. Adv. Mater. 2016, 28, 4203–4218. [Google Scholar] [CrossRef]
- Zhang, Y.; Tao, T.H. Skin-Friendly Electronics for Acquiring Human Physiological Signatures. Adv. Mater. 2019, 31, 1905767. [Google Scholar] [CrossRef] [PubMed]
- Seshadri, D.R.; Drummond, C.; Craker, J.; Rowbottom, J.R.; Voos, J.E. Wearable Devices for Sports: New Integrated Technologies Allow Coaches, Physicians, and Trainers to Better Understand the Physical Demands of Athletes in Real Time. IEEE Pulse 2017, 8, 38–43. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Xing, Y.; Song, J. Thermomechanical Analysis of Epidermal Electronic Devices Integrated with Human Skin. J. Appl. Mech. 2017, 84, 11. [Google Scholar] [CrossRef]
- Alban, M.V.; Lee, H.; Moon, H.; Yoo, S. Micromolding Fabrication of Biocompatible Dry Micro-Pyramid Array Electrodes for Wearable Biopotential Monitoring. Flex. Print. Electron. 2021, 6, 045008. [Google Scholar] [CrossRef]
- Byun, S.-H.; Sim, J.Y.; Agno, K.-C.; Jeong, J.-W. Materials and Manufacturing Strategies for Mechanically Transformative Electronics. Mater. Today Adv. 2020, 7, 100089. [Google Scholar] [CrossRef]
- Fu, Y.; Zhao, J.; Dong, Y.; Wang, X. Dry Electrodes for Human Bioelectrical Signal Monitoring. Sensors 2020, 20, 3651. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Yang, Y.; Nie, S.; Liu, R.; Wan, Q. Electric-Double-Layer Transistors for Synaptic Devices and Neuromorphic Systems. J. Mater. Chem. C 2018, 6, 5336–5352. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Zhang, T. Flexible Sensing Electronics for Wearable/Attachable Health Monitoring. Small 2017, 13, 1602790. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.Y.; Chiu, C.W. Facile Fabrication of a Stretchable and Flexible Nanofiber Carbon Film-Sensing Electrode by Electrospinning and Its Application in Smart Clothing for ECG and EMG Monitoring. ACS Appl. Electron. Mater. 2021, 3, 676–686. [Google Scholar] [CrossRef]
- Yoon, H.; Ko, S.; Chhetry, A.; Park, C.; Sharma, S.; Yoon, S.; Kim, D.; Zhang, S.; Kim, D.H.; Park, J.Y. Ultra-Sensitive and Quick-Responsive Hybrid-Supercapacitive Iontronic Pressure Sensor for Intuitive Electronics and Artificial Tactile Applications. Adv. Mater. Technol. 2022, 7, 2101743. [Google Scholar] [CrossRef]
- Paulose, A.K.; Huang, C.C.; Chen, P.-H.; Tripathi, A.; Chen, P.H.; Huang, Y.S.; Wang, Y.L. A Rapid Detection of COVID-19 Viral RNA in Human Saliva Using Electrical Double Layer-Gated Field-Effect Transistor-Based Biosensors. Adv. Mater. Technol. 2022, 7, 2100842. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Park, J.; Sohn, J.; Cho, D.; Jeon, S. Bioinspired, Highly Stretchable, and Conductive Dry Adhesives Based on 1D-2D Hybrid Carbon Nanocomposites for All-in-One ECG Electrodes. ACS Nano 2016, 10, 4770–4778. [Google Scholar] [CrossRef]
- Lin, S.; Liu, J.; Li, W.; Wang, D.; Huang, Y.; Jia, C.; Li, Z.; Murtaza, M.; Wang, H.; Song, J.; et al. A Flexible, Robust, and Gel-Free Electroencephalogram Electrode for Noninvasive Brain-Computer Interfaces. Nano Lett. 2019, 19, 6853–6861. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Lin, X.; Xu, Z.; Chu, D. Electric double-layer transistors: A review of recent progress. J. Mater. Sci. 2015, 50, 5641–5673. [Google Scholar] [CrossRef]
- Yao, Y.; Huang, W.; Chen, J.; Liu, X.; Bai, L.; Chen, W.; Cheng, Y.; Ping, J.; Marks, T.J.; Facchetti, A. Flexible and stretchable organic electrochemical transistors for physiological sensing devices. Adv. Mater. 2023, 2209906. [Google Scholar] [CrossRef]
- Braendlein, M.; Lonjaret, T.; Leleux, P.; Badier, J.-M.; Malliaras, G.G. Voltage Amplifier Based on Organic Electrochemical Transistor. Adv. Sci. 2016, 4, 1600247. [Google Scholar] [CrossRef]
- Wang, L.; Yue, X.; Sun, Q.; Zhang, L.; Ren, G.; Lu, G.; Yu, H.-D.; Huang, W. Flexible Organic Electrochemical Transistors for Chemical And Biological Sensing. Nano Res. 2021, 15, 2433–2464. [Google Scholar] [CrossRef]
- Liu, N.; Chen, R.; Wan, Q. Recent Advances in Electric-Double-Layer Transistors for Bio-Chemical Sensing Applications. Sensors 2019, 19, 3425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voort, G.F.V.; Lampman, S.R.; Sander, B.R.; Anton, G.J.; Polakowski, C.; Kinson, J.; Muldoon, K.; Henry, S.D.; Scott, W.W. American Society of Materials. In ASM Handbook: Formerly Tenth Edition, Metals Handbook; ASM International: Almere, The Netherlands, 1998. [Google Scholar]
- Wessling, B. Scientific and Commercial Breakthrough for Organic Metals. Synth. Met. 1997, 85, 1313–1318. [Google Scholar] [CrossRef]
- Kataura, H.; Kumazawa, Y.; Maniwa, Y.; Umezu, I.; Suzuki, S.; Ohtsuka, Y.; Achiba, Y. Optical Properties of Single-Wall Carbon Nanotubes. Synth. Met. 1999, 103, 2555–2558. [Google Scholar] [CrossRef]
- Karcher, C.; Kocourek, V.; Schulze, D. Experimental Investigations of Electromagnetic Instabilities of Free Surfaces in a Liquid Metal Drop; International Scientific Colloquium: Hannover, Germany, 2003. [Google Scholar]
- Hu, L.; Choi, J.W.; Yang, Y.; Jeong, S.; La Mantia, F.; Cui, L.F.; Cui, Y. Highly conductive paper for energy-storage devices. Proc. Natl. Acad. Sci. USA 2009, 106, 21490–21494. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Xu, L.; Xu, Z.; Duan, G.; Wang, Y.; Cai, W.; Wang, Y.; Li, T. Response and stability improvement by fusing optimized micro-hotplatform and double layer bowl-like Nano Arrays. Sens. Actuators B Chem. 2016, 231, 450–457. [Google Scholar] [CrossRef]
- Harit, T.; Malek, F.; Ameduri, B. Fluorinated polymers based on pyrazole groups for fuel cell membranes. Eur. Polym. J. 2016, 79, 72–81. [Google Scholar] [CrossRef]
- Jeong, S.H.; Zhang, S.; Hjort, K.; Hilborn, J.; Wu, Z. PDMS-Based Elastomer Tuned Soft, Stretchable, and Sticky for Epidermal Electronics. Adv. Mater. 2016, 28, 5830–5836. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Cao, S.; Kong, D. A Stretchable and Breathable Form of Epidermal Device Based on Elastomeric Nanofibre Textiles and Silver Nanowires. J. Mater. Chem. C 2019, 7, 9748–9755. [Google Scholar] [CrossRef]
- Liu, L.; Li, H.Y.; Fan, Y.J.; Chen, Y.H.; Kuang, S.Y.; Li, Z.B.; Wang, Z.L.; Zhu, G. Nanofiber-Reinforced Silver Nanowires Network as a Robust, Ultrathin, and Conformable Epidermal Electrode for Ambulatory Monitoring of Physiological Signals. Small 2019, 15, 1900755. [Google Scholar] [CrossRef]
- Zhao, H.; Zhou, Y.; Cao, S.; Wang, Y.; Zhang, J.; Feng, S.; Wang, J.; Li, D.; Kong, D. Ultrastretchable and Washable Conductive Microtextiles by Coassembly of Silver Nanowires and Elastomeric Microfibers for Epidermal Human-Machine Interfaces. ACS Mater. Lett. 2021, 3, 912–920. [Google Scholar] [CrossRef]
- Van Dijk, N.; van der Zwaag, S. Self-Healing Phenomena in Metals. Adv. Mater. Interfaces 2018, 5, 1800226. [Google Scholar] [CrossRef]
- Kumari, S.; Dinbandhu; Abhishek, K. Study of Machinability Aspects of Shape Memory Alloys: A Critical Review. Mater. Today Proc. 2021, 44, 1336–1343. [Google Scholar] [CrossRef]
- Mellerup, S.K.; Wang, S. Boron-Based Stimuli Responsive Materials. Chem. Soc. Rev. 2019, 48, 3537–3549. [Google Scholar] [CrossRef]
- Guo, R.; Sun, X.; Yuan, B.; Wang, H.; Liu, J. Magnetic Liquid Metal (Fe-EGaIn) Based Multifunctional Electronics for Remote Self-Healing Materials, Degradable Electronics, and Thermal Transfer Printing. Adv. Sci. 2019, 6, 1901478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, W.; Ota, H.; Kiriya, D.; Takei, K.; Javey, A. Flexible Electronics toward Wearable Sensing. Acc. Chem. Res. 2019, 52, 523–533. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, L.; Ni, Y.; Liu, L.; Xu, W. Flexible Electronics and Healthcare Applications. Front. Nanotechnol. 2021, 3, 625989. [Google Scholar] [CrossRef]
- Kim, J.; Kumar, R.; Bandodkar, A.J.; Wang, J. Advanced Materials for Printed Wearable Electrochemical Devices: A Review. Adv. Electron. Mater. 2017, 3, 1600260. [Google Scholar] [CrossRef]
- Wang, C.; Hwang, D.; Yu, Z.; Takei, K.; Park, J.; Chen, T.; Ma, B.; Javey, A. User-Interactive Electronic Skin for Instantaneous Pressure Visualization. Nat. Mater. 2013, 12, 899–904. [Google Scholar] [CrossRef]
- Gerlein, L.F.; Benavides-Guerrero, J.A.; Cloutier, S.G. High-Performance Silver Nanowires Transparent Conductive Electrodes Fabricated Using Manufacturing-Ready High-Speed Photonic Sinterization Solutions. Sci. Rep. 2021, 11, 24156. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Pharr, M.; Salvatore, G.A. Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring. ACS Nano 2017, 11, 9614–9635. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zheng, J.; Gao, Q.; Zhang, J.; Zhang, J.; Omisore, O.M.; Wang, L.; Li, H. Polydimethylsiloxane (PDMS)-Based Flexible Resistive Strain Sensors for Wearable Applications. Appl. Sci. 2018, 8, 345. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Banks, A.; Cheng, H.; Xie, Z.; Xu, S.; Jang, K.I.; Lee, J.W.; Liu, Z.; Gutruf, P.; Huang, X.; et al. Epidermal Electronics with Advanced Capabilities in Near-Field Communication. Small 2015, 11, 906–912. [Google Scholar] [CrossRef]
- Kim, D.H.; Lu, N.; Ma, R.; Kim, Y.S.; Kim, R.H.; Wang, S.; Wu, J.; Won, S.M.; Tao, H.; Islam, A.; et al. Epidermal Electronics. Science 2011, 333, 838–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, S.; Zhang, Y.; Jia, L.; Mathewson, K.E.; Jang, K.I.; Kim, J.; Fu, H.; Huang, X.; Chava, P.; Wang, R.; et al. Soft Microfluidic Assemblies of Sensors, Circuits, and Radios for the Skin. Science 2014, 344, 70–74. [Google Scholar] [CrossRef]
- Park, H.; Jeong, Y.R.; Yun, J.; Hong, S.Y.; Jin, S.; Lee, S.J.; Zi, G.; Ha, J.S. Stretchable Array of Highly Sensitive Pressure Sensors Consisting of Polyaniline Nanofibers and Au-Coated Polydimethylsiloxane Micropillars. ACS Nano 2015, 9, 9974–9985. [Google Scholar] [CrossRef]
- You, L.; Shi, X.; Cheng, J.; Yang, J.; Xiong, C.; Ding, Z.; Zheng, Z.; Wang, S.; Wang, J. Flexible Porous Gelatin/Polypyrrole/Reduction Graphene Oxide Organohydrogel for Wearable Electronics. J. Colloid Interface Sci. 2022, 625, 197–209. [Google Scholar] [CrossRef]
- Fan, X.; Nie, W.; Tsai, H.; Wang, N.; Huang, H.; Cheng, Y.; Wen, R.; Ma, L.; Yan, F.; Xia, Y. PEDOT: PSS for Flexible and Stretchable Electronics: Modifications, Strategies, and Applications. Adv. Sci. 2019, 6, 1900813. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhu, C.; Pfattner, R.; Yan, H.; Jin, L.; Chen, S.; Molina-Lopez, F.; Lissel, F.; Liu, J.; Rabiah, N.I.; et al. A Highly Stretchable, Transparent, and Conductive Polymer. Sci. Adv. 2017, 3, e1602076. [Google Scholar] [CrossRef] [Green Version]
- Joo, Y.; Byun, J.; Seong, N.; Ha, J.; Kim, H.; Kim, S.; Kim, T.; Im, H.; Kim, D.; Hong, Y. Silver Nanowire-Embedded PDMS with a Multiscale Structure for a Highly Sensitive and Robust Flexible Pressure Sensor. Nanoscale 2015, 7, 6208–6215. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, T.; Takayanagi, M.; Mitsuishi, K.; Imura, M.; Ueda, S.; Koide, Y.; Higuchi, T.; Terabe, K. The Electric Double Layer Effect and Its Strong Suppression at Li+ Solid Electrolyte/Hydrogenated Diamond Interfaces. Commun. Chem. 2021, 4, 117. [Google Scholar] [CrossRef] [PubMed]
- Morgado, J. Modulation of the Electrical Double Layer in Metals and Conducting Polymers. Sci. Rep. 2022, 12, 307. [Google Scholar] [CrossRef]
- Namsheer, K.; Rout, C.S. Conducting Polymers: A Comprehensive Review on Recent Advances in Synthesis, Properties and Applications. RSC Adv. 2021, 11, 5659–5697. [Google Scholar]
- Chen, S.; Sun, L.; Zhou, X.; Guo, Y.; Song, J.; Qian, S.; Liu, Z.; Guan, Q.; Meade Jeffries, E.; Liu, W.; et al. Mechanically and Biologically Skin-like Elastomers for Bio-Integrated Electronics. Nat. Commun. 2020, 11, 1107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, D.-L.; Sun, D.-H.; Huang, P.; Huang, W.; Su, M.; Wang, Y.; Han, M.D.; Kim, B.; Brugger, J.; Zhang, H.X.; et al. Recent Progress in Silk Fibroin-Based Flexible Electronics. Microsyst. Nanoeng. 2021, 7, 35. [Google Scholar] [CrossRef]
- Chen, H.; Zeng, S.; Chen, M.; Zhang, Y.; Li, Q. Fabrication and Functionalization of Carbon Nanotube Films for High-Performance Flexible Supercapacitors. Carbon 2015, 92, 271–296. [Google Scholar] [CrossRef]
- Tao, H.; Kaplan, D.L.; Omenetto, F.G. Silk Materials-A Road to Sustainable High Technology. Adv. Mater. 2012, 24, 2824–2837. [Google Scholar] [CrossRef] [PubMed]
- Yuk, H.; Lu, B.; Lin, S.; Qu, K.; Xu, J.; Luo, J.; Zhao, X. 3D Printing of Conducting Polymers. Nat. Commun. 2020, 11, 1604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuk, H.; Zhang, T.; Parada, G.A.; Liu, X.; Zhao, X. Skin-Inspired Hydrogel-Elastomer Hybrids with Robust Interfaces and Functional Microstructures. Nat. Commun. 2016, 7, 12028. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.; Wang, H.; Leow, W.R.; Cai, Y.; Loh, X.J.; Han, M.Y.; Chen, X. Silk Fibroin for Flexible Electronic Devices. Adv. Mater. 2015, 28, 4250–4265. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Brenckle, M.A.; Yang, M.; Zhang, J.; Liu, M.; Siebert, S.M.; Averitt, R.D.; Mannoor, M.S.; McAlpine, M.C.; Rogers, J.A.; et al. Silk-Based Conformal, Adhesive, Edible Food Sensors. Adv. Mater. 2012, 24, 1067–1072. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Hwang, S.-W.; Marelli, B.; An, B.; Moreau, J.E.; Yang, M.; Brenckle, M.A.; Kim, S.; Kaplan, D.L.; Rogers, J.A.; et al. Silk-Based Resorbable Electronic Devices for Remotely Controlled Therapy and in Vivo Infection Abatement. Proc. Natl. Acad. Sci. USA 2014, 111, 17385–17389. [Google Scholar] [CrossRef]
- Aziz, S.B.; Hamsan, M.H.; Nofal, M.M.; Karim, W.O.; Brevik, I.; Brza, M.A.; Abdulwahid, R.T.; Al-Zangana, S.; Kadir, M.F.Z. Structural, Impedance and Electrochemical Characteristics of Electrical Double Layer Capacitor Devices Based on Chitosan: Dextran Biopolymer Blend Electrolytes. Polymers 2020, 12, 1411. [Google Scholar] [CrossRef]
- Narla, V.K.; Tripathi, D. Electroosmosis Modulated Transient Blood Flow in Curved Microvessels: Study of a Mathematical Model. Microvasc. Res. 2019, 123, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Cao, J.P.; Zhao, X.Y.; Zhuang, Q.Q.; Zhou, Z.; Huang, Y.; Wei, X.Y. High-Performance Electrode Material for Electric Double-Layer Capacitor Based on Hydrothermal Pre-Treatment of Lignin by ZnCl2. Appl. Surf. Sci. 2020, 508, 144536. [Google Scholar] [CrossRef]
- Eguchi, T.; Tashima, D.; Fukuma, M.; Kumagai, S. Activated Carbon Derived from Japanese Distilled Liquor Waste: Application as the Electrode Active Material of Electric Double-Layer Capacitors. J. Clean. Prod. 2020, 259, 120822. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, S.; Du, X.; Hong, S.; Zhao, S.; Chen, Y.; Chen, X.; Song, H. Boosting the Electrical Double-layer Capacitance of Graphene by Self-doped Defects through Ball-milling. Adv. Funct. Mater. 2019, 29, 1901127. [Google Scholar] [CrossRef]
- Yin, X.; Zhang, J.; Yang, L.; Xiao, W.; Zhou, L.; Tang, Y.; Yang, W. Carbon Electrodes with Ionophobic Characteristics in Organic Electrolyte for High-Performance Electric Double-Layer Capacitors. Sci. China-Mater. 2022, 65, 383–390. [Google Scholar] [CrossRef]
- Tyagi, A.; Mishra, K.; Kumar Sharma, S.; Kumar Shukla, V. Investigations on Partially Exfoliated Graphite as Electrode Material for Electric Double Layer Capacitors (EDLCs). Mater. Today 2022, 60, 1015–1020. [Google Scholar] [CrossRef]
- Munje, R.D.; Muthukumar, S.; Panneer Selvam, A.; Prasad, S. Flexible nanoporous tunable electrical double layer biosensors for Sweat Diagnostics. Sci. Rep. 2015, 5, 14586. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, K.; Ohno, Y.; Maehashi, K. Utilizing research into electrical double layers as a basis for the development of label-free biosensors based on nanomaterial transistors. Nanobiosens. Dis. Diagn. 2015, 5, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Mohd Asri, M.A.; Mak, W.C.; Norazman, S.A.; Nordin, A.N. Low-cost and rapid prototyping of integrated electrochemical microfluidic platforms using consumer-grade off-the-shelf tools and materials. Lab A Chip 2022, 22, 1779–1792. [Google Scholar] [CrossRef]
- Kim, S.; Ozalp, E.I.; Darwish, M.; Weldon, J.A. Electrically gated nanoporous membranes for smart molecular flow control. Nanoscale 2018, 10, 20740–20747. [Google Scholar] [CrossRef]
- Khodagholy, D.; Gelinas, J.N.; Thesen, T.; Doyle, W.; Devinsky, O.; Malliaras, G.G.; Buzsáki, G. NeuroGrid: Recording Action Potentials from the Surface of the Brain. Nat. Neurosci. 2015, 18, 310–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semple, J.; Georgiadou, D.G.; Wyatt-Moon, G.; Yoon, M.; Seitkhan, A.; Yengel, E.; Rossbauer, S.; Bottacchi, F.; McLachlan, M.A.; Bradley, D.D.C.; et al. Large-Area Plastic Nanogap Electronics Enabled by Adhesion Lithography. NPJ Flex. Electron. 2018, 2, 18. [Google Scholar] [CrossRef] [Green Version]
- Sadri, B.; Goswami, D.; de Medeiros, M.S.; Pal, A.; Castro, B.; Kuang, S.; Martinez, R.V. Wearable and Implantable Epidermal Paper-Based Electronics. ACS Appl. Mater. Interfaces 2018, 10, 31061–31068. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, Z.; Sun, M.; Zhu, H.; Liu, H.; Tang, C.Y.; Xu, L. Breathable and Skin-Conformal Electronics with Hybrid Integration of Microfabricated Multifunctional Sensors and Kirigami-Structured Nanofibrous Substrates. Adv. Funct. Mater. 2022, 32, 2202792. [Google Scholar] [CrossRef]
- Shahariar, H.; Kim, I.; Soewardiman, H.; Jur, J.S. Inkjet Printing of Reactive Silver Ink on Textiles. ACS Appl. Mater. Interfaces 2019, 11, 6208–6216. [Google Scholar] [CrossRef]
- Wang, Y.F.; Sekine, T.; Takeda, Y.; Hong, J.; Yoshida, A.; Matsui, H.; Kumaki, D.; Nishikawa, T.; Shiba, T.; Sunaga, T.; et al. Printed Strain Sensor with High Sensitivity and Wide Working Range Using a Novel Brittle-Stretchable Conductive Network. ACS Appl. Mater. Interfaces 2020, 12, 35282–35290. [Google Scholar] [CrossRef]
- Bártolo, P.J. Stereolithography: Materials, Processes and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany; ISBN 978-0-387-92904-0.
- Huang, Z.; Hao, Y.; Li, Y.; Hu, H.; Wang, C.; Nomoto, A.; Pan, T.; Gu, Y.; Chen, Y.; Zhang, T.; et al. Three-Dimensional Integrated Stretchable Electronics. Nat. Electron. 2018, 1, 473–480. [Google Scholar] [CrossRef]
- Hensleigh, R.; Cui, H.; Xu, Z.; Massman, J.; Yao, D.; Berrigan, J.; Zheng, X. Charge-Programmed Three-Dimensional Printing for Multi-Material Electronic Devices. Nat. Electron. 2020, 3, 216–224. [Google Scholar] [CrossRef]
- Kalkal, A.; Kumar, S.; Kumar, P.; Pradhan, R.; Willander, M.; Packirisamy, G.; Kumar, S.; Malhotra, B.D. Recent Advances in 3D Printing Technologies for Wearable (Bio)Sensors. Addit. Manuf. 2021, 46, 102088. [Google Scholar] [CrossRef]
- Jing, Q.; Choi, Y.S.; Smith, M.; Ou, C.; Busolo, T.; Kar-Narayan, S. Freestanding Functional Structures by Aerosol-Jet Printing for Stretchable Electronics and Sensing Applications. Adv. Mater. Technol. 2019, 4, 1900048. [Google Scholar] [CrossRef] [Green Version]
- Borghetti, M.; Serpelloni, M.; Sardini, E.; Spurling, D.; Nicolosi, V. Temperature Influence on Ti3C2Tx Lines Printed by Aerosol Jet Printing. Sens. Actuators A Phys. 2021, 332, 113185. [Google Scholar] [CrossRef]
- Skarżyński, K.; Krzemiński, J.; Jakubowska, M.; Słoma, M. Highly Conductive Electronics Circuits from Aerosol Jet Printed Silver Inks. Sci. Rep. 2021, 11, 18141. [Google Scholar] [CrossRef]
- Yeo, W.H.; Kim, Y.S.; Lee, J.; Ameen, A.; Shi, L.; Li, M.; Wang, S.; Ma, R.; Jin, S.H.; Kang, Z.; et al. Multifunctional Epidermal Electronics Printed Directly Onto the Skin. Adv. Mater. 2013, 25, 2773–2778. [Google Scholar] [CrossRef]
- Park, J.; Lee, Y.; Lee, H.; Ko, H. Transfer Printing of Electronic Functions on Arbitrary Complex Surfaces. ACS Nano 2020, 14, 12–20. [Google Scholar] [CrossRef]
- Linghu, C.; Zhang, S.; Wang, C.; Song, J. Transfer Printing Techniques for Flexible and Stretchable Inorganic Electronics. NPJ Flex. Electron. 2018, 2, 26. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.W.; Yang, S.R.; Hur, Y.H.; Kim, S.W.; Baek, K.M.; Yim, S.; Jang, H.I.; Park, J.H.; Lee, S.Y.; Park, C.O.; et al. High-Resolution Nanotransfer Printing Applicable to Diverse Surfaces via Interface-Targeted Adhesion Switching. Nat. Commun. 2014, 5, 5387. [Google Scholar] [CrossRef] [Green Version]
- Jang, K.I.; Li, K.; Chung, H.U.; Xu, S.; Jung, H.N.; Yang, Y.; Kwak, J.W.; Jung, H.H.; Song, J.; Yang, C.; et al. Self-Assembled Three Dimensional Network Designs for Soft Electronics. Nat. Commun. 2017, 8, 15894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, J.A.; Yeo, W.H.; Su, Y.; Hattori, Y.; Lee, W.; Jung, S.Y.; Zhang, Y.; Liu, Z.; Cheng, H.; Falgout, L.; et al. Fractal Design Concepts for Stretchable Electronics. Nat. Commun. 2014, 5, 3266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, S.; Yan, Z.; Jang, K.I.; Huang, W.; Fu, H.; Kim, J.; Wei, Z.; Flavin, M.; McCracken, J.; Wang, R.; et al. Assembly of Micro/Nanomaterials into Complex, Three-Dimensional Architectures by Compressive Buckling. Science 2015, 347, 154–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.G.; An, H.S.; Kim, J.Y.; Park, J.U. High-Resolution, Reconfigurable Printing of Liquid Metals with Three-Dimensional Structures. Sci. Adv. 2021, 5, eaaw2844. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Zhao, J.; Liu, L.; Guo, W.; Zhu, K.; Yang, G.; Li, Z.; Wu, H. Flexible Hybrid Integration Enabled xsOn-Skin Electronics for Wireless Monitoring of Electrophysiology and Motion. IEEE Trans. Biomed. Eng. 2022, 69, 1340–1348. [Google Scholar] [CrossRef]
- Lee, B.; Cho, H.; Jeong, S.; Yoon, J.; Jang, D.; Lee, D.K.; Kim, D.; Chung, S.; Hong, Y. Stretchable Hybrid Electronics: Combining Rigid Electronic Devices with Stretchable Interconnects into High-Performance on-Skin Electronics. J. Inf. Disp. 2022, 23, 163–184. [Google Scholar] [CrossRef]
- Wu, H.; Huang, Y.; Yin, Z. Flexible Hybrid Electronics: Enabling Integration Techniques and Applications. Sci. China Technol. Sci. 2022, 65, 1995–2006. [Google Scholar] [CrossRef]
- Malik, M.H.; Grosso, G.; Zangl, H.; Binder, A.; Roshanghias, A. Flip Chip Integration of Ultra-Thinned Dies in Low-Cost Flexible Printed Electronics; the Effects of Die Thickness, Encapsulation and Conductive Adhesives. Microelectron. Reliab. 2021, 123, 114204. [Google Scholar] [CrossRef]
- Lu, T.; Wissman, J.; Ruthika; Majidi, C. Soft Anisotropic Conductors as Electric Vias for Ga-Based Liquid Metal Circuits. ACS Appl. Mater. Interfaces 2015, 7, 26923–26929. [Google Scholar] [CrossRef]
- Hwang, H.; Kong, M.; Kim, K.; Park, D.; Lee, S.; Park, S.; Song, H.J.; Jeong, U. Stretchable Anisotropic Conductive Film (S-ACF) for Electrical Interfacing in High-Resolution Stretchable Circuits. Sci. Adv. 2021, 7, eabh0171. [Google Scholar] [CrossRef]
- Lin, L.; Dautta, M.; Hajiaghajani, A.; Escobar, A.R.; Tseng, P.; Khine, M. Paint-On Epidermal Electronics for On-Demand Sensors and Circuits. Adv. Electron. Mater. 2021, 7, 2000765. [Google Scholar] [CrossRef]
- Nittala, A.S.; Steimle, J. Next Steps in Epidermal Computing: Opportunities and Challenges for Soft On-Skin Devices. In Proceedings of the Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, New Orleans, LA, USA, 29 April–5 May 2022; Association for Computing Machinery: New York, NY, USA, 2022. [Google Scholar]
- Cui, Y.; Zhang, H.; Zhao, Z.; Shi, Y. A Review on the Active Thermal Management Researches of Epidermal Electronic Devices. AIP Adv. 2022, 12, 110701. [Google Scholar] [CrossRef]
- Li, P.; Xie, L.; Su, M.; Wang, P.; Yuan, W.; Dong, C.; Yang, J. Skin-Inspired Large Area Iontronic Pressure Sensor with Ultra-Broad Range and High Sensitivity. Nano Energy 2022, 101, 107571. [Google Scholar] [CrossRef]
- Zheng, W.; Zhao, Y.; Xu, H.; Yuan, Y.; Wang, W.; Gao, L. Stretchable Iontronic Pressure Sensor Array With Low Crosstalk and High Sensitivity for Epidermal Monitoring. IEEE Electron Device Lett. 2023, 44, 516–519. [Google Scholar] [CrossRef]
- Li, L.; Zhu, G.; Wang, J.; Chen, J.; Zhao, G.; Zhu, Y. A Flexible and Ultrasensitive Interfacial Iontronic Multisensory Sensor with an Array of Unique “Cup-Shaped” Microcolumns for Detecting Pressure and Temperature. Nano Energy 2023, 105, 108012. [Google Scholar] [CrossRef]
- Regmi, A.; Sarangadharan, I.; Chen, Y.W.; Hsu, C.P.; Lee, G.Y.; Chyi, J.I.; Shiesh, S.C.; Lee, G.B.; Wang, Y.L. Direct Detection of Fibrinogen in Human Plasma Using Electric-Double-Layer Gated AlGaN/GaN High Electron Mobility Transistors. Appl. Phys. Lett. 2017, 111, 082106. [Google Scholar] [CrossRef]
- Li, D.; Yao, K.; Gao, Z.; Liu, Y.; Yu, X. Recent Progress of Skin-Integrated Electronics for Intelligent Sensing. Light Adv. Manuf. 2021, 2, 39–58. [Google Scholar] [CrossRef]
- Mo, L.; Ma, X.; Fan, L.; Xin, J.H.; Yu, H. Weavable, Large-Scaled, Rapid Response, Long-Term Stable Electrochemical Fabric Sensor Integrated into Clothing for Monitoring Potassium Ions in Sweat. Chem. Eng. J. 2023, 454, 140473. [Google Scholar] [CrossRef]
- Song, Y.; Min, J.; Gao, W. Wearable and Implantable Electronics: Moving toward Precision Therapy. ACS Nano 2019, 13, 12280–12286. [Google Scholar] [CrossRef]
- Huang, C.; Hao, Z.; Qi, T.; Pan, Y.; Zhao, X. An Integrated Flexible and Reusable Graphene Field Effect Transistor Nanosensor for Monitoring Glucose. J. Mater. 2020, 6, 308–314. [Google Scholar] [CrossRef]
- Constantinescu, G.; Jeong, J.W.; Li, X.; Scott, D.K.; Jang, K.I.; Chung, H.J.; Rogers, J.A.; Rieger, J. Epidermal Electronics for Electromyography: An Application to Swallowing Therapy. Med. Eng. Phys. 2016, 38, 807–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.; Yang, G.; Zhu, K.; Liu, S.; Guo, W.; Jiang, Z.; Li, Z. Materials, Devices, and Systems of On-Skin Electrodes for Electrophysiological Monitoring and Human-Machine Interfaces. Adv. Sci. 2021, 8, 2001938. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, R.; Mizuguchi, S.; Nakamura, F.; Endo, T.; Isoda, Y.; Inamori, G.; Ota, H. Highly Stretchable Sensing Array for Independent Detection of Pressure and Strain Exploiting Structural and Resistive Control. Sci. Rep. 2020, 10, 12666. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Wang, L.; Zhu, P.; Huang, J.; Wang, Y.; Bai, N.; Wang, Y.; Li, G.; Yang, J.; Xie, K.; et al. Iontronic Pressure Sensor with High Sensitivity and Linear Response over a Wide Pressure Range Based on Soft Micropillared Electrodes. Sci. Bull. 2021, 66, 1091–1100. [Google Scholar] [CrossRef] [PubMed]
- Su, Q.; Zou, Q.; Li, Y.; Chen, Y.; Teng, S.Y.; Kelleher, J.T.; Nith, R.; Cheng, P.; Li, N.; Liu, W.; et al. A Stretchable and Strain-Unperturbed Pressure Sensor for Motion Interference-Free Tactile Monitoring on Skins. Sci. Adv. 2021, 7, eabi4563. [Google Scholar] [CrossRef] [PubMed]
- Meng, K.; Xiao, X.; Wei, W.; Chen, G.; Nashalian, A.; Shen, S.; Xiao, X.; Chen, J. Wearable Pressure Sensors for Pulse Wave Monitoring. Adv. Mater. 2022, 34, 2109357. [Google Scholar] [CrossRef]
- Liu, X.; Wei, Y.; Qiu, Y. Advanced Flexible Skin-Like Pressure and Strain Sensors for Human Health Monitoring. Micromachines. 2021, 12, 695. [Google Scholar] [CrossRef]
- Lin, Q.; Huang, J.; Yang, J.; Huang, Y.; Zhang, Y.; Wang, Y.; Zhang, J.; Wang, Y.; Yuan, L.; Cai, M.; et al. Highly Sensitive Flexible Iontronic Pressure Sensor for Fingertip Pulse Monitoring. Adv. Healthc. Mater. 2020, 9, 2001023. [Google Scholar] [CrossRef]
- Li, R.; Si, Y.; Zhu, Z.; Guo, Y.; Zhang, Y.; Pan, N.; Sun, G.; Pan, T. Supercapacitive Iontronic Nanofabric Sensing. Adv. Mater. 2017, 29, 1700253. [Google Scholar] [CrossRef]
- Xue, H.; Li, F.; Zhao, H.; Lin, X.; Zhang, T. A Paper-Based Iontronic Capacitive Pressure Sensor for Human Muscle Motion Monitoring. IEEE Electron Device Lett. 2022, 43, 2165–2168. [Google Scholar] [CrossRef]
- Graf, M.; Lihter, M.; Unuchek, D.; Sarathy, A.; Leburton, J.P.; Kis, A.; Radenovic, A. Light-Enhanced Blue Energy Generation Using MoS2 Nanopores. Joule 2019, 3, 1549–1564. [Google Scholar] [CrossRef] [Green Version]
- Pulikkathodi, A.K.; Sarangadharan, I.; Chen, Y.H.; Lee, G.B.; Wang, Y.L. EDL Gated FET Biosensor Array for the Investigation of Ion Channels and Bioelectric Signals of Circulating Tumor Cells. ECS Trans. 2018, 85, 15. [Google Scholar] [CrossRef]
- Pulikkathodi, A.K.; Sarangadharan, I.; Chen, Y.H.; Lee, G.Y.; Chyi, J.I.; Lee, G.-B.; Wang, Y.L. Dynamic Monitoring of Transmembrane Potential Changes: A Study of Ion Channels Using an Electrical Double Layer-Gated FET Biosensor. Lab A Chip 2018, 18, 1047–1056. [Google Scholar] [CrossRef] [PubMed]
- Moreddu, R.; Boschi, A.; d’Amora, M.; Hubarevich, A.; Dipalo, M.; De Angelis, F. Passive Recording of Bioelectrical Signals from Non-Excitable Cells by Fluorescent Mirroring. Nano Lett. 2023, 23, 3217–3223. [Google Scholar] [CrossRef]
- Luo, J.; Xing, Y.; Sun, C.; Fan, L.; Shi, H.; Zhang, Q.; Li, Y.; Hou, C.; Wang, H. A Bio-Adhesive Ion-Conducting Organohydrogel as a High-Performance Non-Invasive Interface for Bioelectronics. Chem. Eng. J. 2022, 427, 130886. [Google Scholar] [CrossRef]
- Chen, S.; Hwang, M.T.; Wang, J.; Ganguli, A.; Park, I.; Kim, Y.; Valera, E.; Nam, S.; Aluru, N.R.; Van Der Zande, A.M.; et al. Advances in Electronic Nano-Biosensors and New Frontiers in Bioengineering. In Proceedings of the 2022 International Electron Devices Meeting (IEDM), San Francisco, GA, USA, 3–7 December 2022. [Google Scholar]
- Pulikkathodi, A.K.; Sarangadharan, I.; Chen, Y.H.; Lee, G.Y.; Chyi, J.I.; Lee, G.B.; Wang, Y.L. A Comprehensive Model for Whole Cell Sensing and Transmembrane Potential Measurement Using FET Biosensors. ECS J. Solid State Sci. Technol. 2018, 7, Q3001. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Gao, L.; Zhao, H.; Huang, H.; Wang, Y.; Chen, G.; Qin, Y.; Zhao, N.; Xu, D.; Duan, L.; et al. Stretchable and Anti-Impact Iontronic Pressure Sensor with an Ultrabroad Linear Range for Biophysical Monitoring and Deep Learning-Aided Knee Rehabilitation. Microsyst. Nanoeng. 2021, 7, 92. [Google Scholar] [CrossRef]
- Nie, B.; Li, R.; Cao, J.; Brandt, J.D.; Pan, T. Flexible Transparent Iontronic Film for Interfacial Capacitive Pressure Sensing. Adv. Mater. 2015, 27, 6055–6062. [Google Scholar] [CrossRef]
- Huang, K.-H.; Tan, F.; Wang, T.D.; Yang, Y.J. A Highly Sensitive Pressure-Sensing Array for Blood Pressure Estimation Assisted by Machine-Learning Techniques. Sensors 2019, 19, 848. [Google Scholar] [CrossRef] [Green Version]
Purpose | Materials | Outcomes | Reference |
---|---|---|---|
Diagnostic | ZnO | Detecting Cortisol in Sweat | [83] |
silicon nanowires, carbon nanotubes and graphene | Mechanisms for detecting biomolecules using transistors are described | [84] | |
field-effect transistor (FET),monoclonal antibody, saliva collection device | detect SARS-CoV-2 nucleocapsid protein | [50] | |
Gold leaf, silver ink pens, double-sided tape, plastic transparencies and fabric adhesives | Enables detection of hydrogen peroxide and glucose | [85] | |
Drug delivery | Anodized aluminum oxide film, Cr-Au-Cr layer | Realization of intelligent molecular flow control using field effect gating to achieve regulation of drug delivery rates | [86] |
Methods | Materials | Resolution | Speed | References |
---|---|---|---|---|
Lithography | Silicon, glass, polymers, metals | Sub-micron to nanometer scale | High for large batches, low for small batches. | [87] |
Laser cutting | Metals, wood, acrylic, leather, paper | around 0.1 mm. | High for thin materials, low for thick materials. | [63,89,90] |
Inkjet printing | polymers, metals, ceramics, biomolecules | around 10 to 50 microns | Moderate to high depending on the printer speed and substrate size. | [91] |
Screen printing | graphene, metal, carbon-based inks | around 25 to 100 microns | Low to moderate depending on the number of colors and layers. | [92] |
3D printing | Plastics, metals, ceramics, composites | around 50 to 300 microns | Low to moderate depending on the technology and part size. | [94,95,96] |
Aerosol jet printing | conductors, semiconductors, insulators | around 10 microns | Low to moderate depending on the nozzle speed and substrate size. | [97,98,99] |
Transfer printing | inorganic semiconductor metal materials | around 50 to 100 microns | Moderate to high depending on the heat and pressure settings and substrate size. | [100,101,102,103] |
Device | Diagnostic | Therapeutic | References |
---|---|---|---|
Pressure Sensors | Human muscle movement, body movement, posture, muscle activation patterns, pulse waves, and blood pressure, prosthetic and robotic limbs for tactile feedback and control |
| [127,128,129,130,133,134,138,139,141,144] |
Bioelectricity | Ion channels and bioelectric signals |
| [86,142,143] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Zhang, H.; Song, B.; Zhao, C.; Lu, Q. Electric Double Layer Based Epidermal Electronics for Healthcare and Human-Machine Interface. Biosensors 2023, 13, 787. https://doi.org/10.3390/bios13080787
Gao Y, Zhang H, Song B, Zhao C, Lu Q. Electric Double Layer Based Epidermal Electronics for Healthcare and Human-Machine Interface. Biosensors. 2023; 13(8):787. https://doi.org/10.3390/bios13080787
Chicago/Turabian StyleGao, Yuan, Hanchu Zhang, Bowen Song, Chun Zhao, and Qifeng Lu. 2023. "Electric Double Layer Based Epidermal Electronics for Healthcare and Human-Machine Interface" Biosensors 13, no. 8: 787. https://doi.org/10.3390/bios13080787
APA StyleGao, Y., Zhang, H., Song, B., Zhao, C., & Lu, Q. (2023). Electric Double Layer Based Epidermal Electronics for Healthcare and Human-Machine Interface. Biosensors, 13(8), 787. https://doi.org/10.3390/bios13080787