From Enzymatic Dopamine Biosensors to OECT Biosensors of Dopamine
Abstract
:1. Introduction
2. Evolution of the Dopamine Biosensors after Receptor Element
2.1. Enzyme-Based Biosensors
2.2. Antibody-Based Biosensors
2.3. Aptamer-Based Biosensors
2.4. Nano-Particles Nanomaterial Enhanced Electrodes
Active Layer | Year | Receptor Type | Transducer Method | Range of DA Concentrations | Limit of Detection | Reference |
---|---|---|---|---|---|---|
Pd nano-particles | 2008 | Metal nanomaterials | Electrochemical | 0.5–160 µM | 200 nM | [77] |
Graphene–polyaniline composite film | 2012 | Aptamer | Colorimetry | 10–600 nM | 2 nM | [78] |
MWCNT | 2012 | Carbon nano-tubes | Electrochemical | 1.2–800 µM | 0.16 µM | [79] |
Ru complex and quantum dots | 2013 | Aptamer | Fluorescence | 0.5–40 μM | 200 nM | [80] |
Au-Ag-Au nano-rods | 2014 | Anti-DA Antibody | Surface plasmon resonance | 1 nM–1 μM | 1 nM | [63] |
MoS2 | 2017 | Metal oxide nanomaterials | Electrochemical | 0.006–181 µM | 2 nM | [81] |
Au nanopillars | 2018 | Metal nanomaterials | Electrochemical | 6–100 µM | 5.83 µM | [82] |
Conducting polymer/nano-tubes | 2020 | DA-aptamers | Interdigitated microelectrodes on liquid-ion gated-FET | 1–100 nM | 0.1 nM | [76] |
Polypyrrole/ MoO3 NP | 2023 | Nano-particles | Electrochemical | 5–100 nM | 2 nM | [83] |
2.5. DRD1 Natural Receptors
2.6. Enzyme-Free Organic Sensors
3. Dopamine Biosensors with Organic Transistors
3.1. Dopamine Biosensors with OFET
3.2. Dopamine Biosensors with EGOFET
3.3. Dopamine Biosensors with OECT
3.4. Some Future Directions
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Teo, W.P.; Rodrigues, J.P.; Mastaglia, F.L.; Thickbroom, G.W. Breakdown in central motor control can be attenuated by motor practice and neuro-modulation of the primary motor cortex. Neuroscience 2012, 220, 11–18. [Google Scholar] [CrossRef]
- Popescu, M.; Ravariu, C. Systemic Models at the Spinal Level for the Locomotion Control. In Proceedings of the 10th IEEE E-Health and Bioengineering EHB-2022 Conference, Iași, Romania, 17 November 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Lin, R.; Liang, J.; Luo, M. The Raphe Dopamine System: Roles in Salience Encoding, Memory Expression and Addiction. Trends Neurosci. 2021, 44, 366–377. [Google Scholar] [CrossRef]
- Bucolo, C.; Leggio, G.M.; Drago, F.; Salomone, S. Dopamine outside the brain: The eye, cardiovascular system and endocrine pancreas. Pharmacol. Ther. 2019, 203, 107392. [Google Scholar] [CrossRef]
- Klein, M.O.; Battagello, D.S.; Cardoso, A.R.; Hauser, D.N.; Bittencourt, J.C.; Correa, R.G. Dopamine: Functions, Signaling, and Association with Neurological Diseases. Cell. Mol. Neurobiol. 2019, 39, 31–59. [Google Scholar]
- Babarada, F.; Ravariu, C.; Prelipceanu, D.; Patrichi, B.; Manuc, D.; Salageanu, A.; Caras, I. Electronic Tool Interferences with Electrophysiology for the Psychiatric Disorders Monitoring. Am. J. Biosci. Bioeng. 2015, 3, 14–21. [Google Scholar] [CrossRef]
- Wang, K.H.; Penmatsa, A.; Gouaux, E. Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature 2015, 521, 322–327. [Google Scholar] [CrossRef] [Green Version]
- Grinevich, V.P.; Zakirov, A.N.; Berseneva, U.V.; Gerasimova, E.V.; Gainetdinov, R.R.; Budygin, E.A. Applying a Fast-Scan Cyclic Voltammetry to Explore Dopamine Dynamics in Animal Models of Neuropsychiatric Disorders. Cells 2022, 11, 1533. [Google Scholar] [CrossRef]
- Tian, Q.; She, Y.; Zhu, Y.; Dai, D.; Shi, M.; Chu, W.; Cai, T.; Tsai, H.-S.; Li, H.; Jiang, N.; et al. Highly Sensitive and Selective Dopamine Determination in Real Samples Using Au Nanoparticles Decorated Marimo-like Graphene Microbead-Based Electrochemical Sensors. Sensors 2023, 23, 2870. [Google Scholar] [CrossRef]
- Revanappa, S.K.; Soni, I.; Siddalinganahalli, M.; Jayaprakash, G.K.; Flores-Moreno, R.; Bananakere Nanjegowda, C. A Fukui Analysis of an Arginine-Modified Carbon Surface for the Electrochemical Sensing of Dopamine. Materials 2022, 15, 6337. [Google Scholar] [CrossRef]
- Nuh, S.; Numnuam, A.; Thavarungkul, P.; Phairatana, T. A Novel Microfluidic-Based OMC-PEDOT-PSS Composite Electrochemical Sensor for Continuous Dopamine Monitoring. Biosensors 2023, 13, 68. [Google Scholar] [CrossRef]
- Pimpilova, M.; Kamarska, K.; Dimcheva, N. Biosensing Dopamine and L-Epinephrine with Laccase (Trametes pubescens) Immobilized on a Gold Modified Electrode. Biosensors 2022, 12, 719. [Google Scholar] [CrossRef]
- Labouesse, M.A.; Cola, R.B.; Patriarchi, T. GPCR-Based Dopamine Sensors—A Detailed Guide to Inform Sensor Choice for In Vivo Imaging. Int. J. Mol. Sci. 2020, 21, 8048. [Google Scholar] [CrossRef]
- Piovarci, I.; Melikishvili, S.; Tatarko, M.; Hianik, T.; Thompson, M. Detection of Sub-Nanomolar Concentration of Trypsin by Thickness-Shear Mode Acoustic Biosensor and Spectrophotometry. Biosensors 2021, 11, 117. [Google Scholar] [CrossRef]
- Kamal Eddin, F.B.; Fen, Y.W. The Principle of Nanomaterials Based Surface Plasmon Resonance Biosensors and Its Potential for Dopamine Detection. Molecules 2020, 25, 2769. [Google Scholar] [CrossRef]
- Nawrot, W.; Drzozga, K.; Baluta, S.; Cabaj, J.; Malecha, K. A Fluorescent Biosensors for Detection Vital Body Fluids’ Agents. Sensors 2018, 18, 2357. [Google Scholar] [CrossRef] [Green Version]
- Ravariu, C.; Bondarciuc, A. The sensitivity in the IR spectrum of the intact and pathological tissues by laser bio-photometry. Laser Med. Sci. 2014, 29, 581–588. [Google Scholar] [CrossRef]
- Ravariu, C.; Botan, R. The Electrical Transport Mechanisms Investigation in Adrenergic Synapses Using a Parallel BioOI Biodevice. In Proceedings of the 19th IEEE International Conference of Biosignal, Brno, Czech Republic, 29–30 June 2008; Volume 63, pp. 115–118. [Google Scholar]
- Guo, Q.; Zhou, J.; Feng, Q.; Lin, R.; Gong, H.; Luo, Q.; Zeng, S.; Luo, M.; Fu, L. Multichannel fiber photometry for population neuronal activity recording. Biomed. Opt. Express 2015, 6, 3919–3931. [Google Scholar] [CrossRef] [Green Version]
- Kofuji, P.; Araque, A. G-Protein-Coupled Receptors in Astrocyte–Neuron Communication. Neuroscience 2021, 456, 71–84. [Google Scholar] [CrossRef]
- Avery, M.C.; Krichmar, J.L. Neuromodulatory systems and their interactions: A review of models, theories, and experiments. Front. Neural Circuits 2017, 11, 108. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, C.; Lischinsky, J.E.; Jing, M.; Zhou, J.; Wang, H.; Zhang, Y.; Dong, A.; Wu, Z.; Wu, H.; et al. A genetically encoded fluorescent sensor for rapid and specific in vivo detection of norepinephrine. Neuron 2019, 102, 745.e8–761.e8. [Google Scholar] [CrossRef]
- Olivares-Hernández, A.; Figuero-Pérez, L.; Cruz-Hernandez, J.J.; González Sarmiento, R.; Usategui-Martin, R.; Miramontes-González, J.P. Dopamine Receptors and the Kidney: An Overview of Health- and Pharmacological-Targeted Implications. Biomolecules 2021, 11, 254. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, M.; Sawan, M. Microelectronics-Based Biosensors Dedicated to the Detection of Neurotransmitters: A Review. Sensors 2014, 14, 17981–18008. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Khan, A.A.P.; Asiri, A.M.; Rub, M.A.; Azum, N.; Rahman, M.M.; Khan, S.B.; Ghani, S.A. A New Trend on Biosensor for Neurotransmitter Choline/Acetylcholine—An Overview. Appl. Biochem. Biotechnol. 2013, 169, 1927–1939. [Google Scholar] [CrossRef]
- Ashmawy, N.H.; Almehizia, A.A.; Youssef, T.A.; Amr, A.E.-G.E.; Al-Omar, M.A.; Kamel, A.H. Novel Carbon/PEDOT/PSS-Based Screen-Printed Biosensors for Acetylcholine Neurotransmitter and Acetylcholinesterase Detection in Human Serum. Molecules 2019, 24, 1539. [Google Scholar] [CrossRef] [Green Version]
- Si, B.; Song, E. Recent Advances in the Detection of Neurotransmitters. Chemosensors 2018, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Franco, F.F.; Hogg, R.A.; Manjakkal, L. Cu2O-Based Electrochemical Biosensor for Non-Invasive and Portable Glucose Detection. Biosensors 2022, 12, 174. [Google Scholar] [CrossRef]
- Ravariu, C.; Manea, E.; Babarada, F. Masks and metallic electrodes compounds for silicon biosensor integration. J. Alloys Compd. 2017, 697, 72–79. [Google Scholar] [CrossRef]
- Park, D.; Lee, D.; Kim, H.J.; Yoon, D.S.; Hwang, K.S. Scalable Functionalization of Polyaniline-Grafted rGO Field-Effect Transistors for a Highly Sensitive Enzymatic Acetylcholine Biosensor. Biosensors 2022, 12, 279. [Google Scholar] [CrossRef]
- Thriveni, G.; Ghosh, K. Advancement and Challenges of Biosensing Using Field Effect Transistors. Biosensors 2022, 12, 647. [Google Scholar] [CrossRef]
- Lakard, S.; Pavel, I.-A.; Lakard, B. Electrochemical Biosensing of Dopamine Neurotransmitter: A Review. Biosensors 2021, 11, 179. [Google Scholar] [CrossRef]
- Kašpar, M.; Česla, P. Characterization of Balsamic Vinegars Using High-Performance Liquid Chromatography and Gas Chromatography. Appl. Sci. 2022, 12, 8946. [Google Scholar] [CrossRef]
- Zhang, Y.; Jia, X.; Chen, X.; Liu, Y.; Zhao, Z.; Hao, J.; Wu, R.; Feng, H.; Ren, X. L-theanine and Neumentix mixture improves sleep quality and modulates brain neurotransmitter levels in mice. Ann. Palliat. Med. 2021, 10, 4572–4581. [Google Scholar] [CrossRef]
- Hyun, T.-H.; Cho, W.-J. High-Performance FET-Based Dopamine-Sensitive Biosensor Platform Based on SOI Substrate. Biosensors 2023, 13, 516. [Google Scholar] [CrossRef] [PubMed]
- Pan, T.-M.; Lin, C.-W.; Lin, W.-Y.; Wu, M.-H. High-κ Tm2Ti2O7 Electrolyte-Insulator-Semiconductor Creatinine Biosensor. IEEE Sens. J. 2011, 11, 2388–2394. [Google Scholar] [CrossRef]
- Strakosas, X.; Bongo, M.; Owens, R.M. The organic electrochemical transistor for biological applications. J. Appl. Polym. Sci. 2015, 132, 41735. [Google Scholar] [CrossRef]
- Panapimonlawat, T.; Phanichphant, S.; Sriwichai, S. Electrochemical Dopamine Biosensor Based on Poly(3-aminobenzylamine) Layer-by-Layer Self-Assembled Multilayer Thin Film. Polymers 2021, 13, 1488. [Google Scholar] [CrossRef]
- Koike, K.; Sasaki, T.; Hiraki, K.; Ike, K.; Hirofuji, Y.; Yano, M. Characteristics of an Extended Gate Field-Effect Transistor for Glucose Sensing Using an Enzyme-Containing Silk Fibroin Membrane as the Bio-Chemical Component. Biosensors 2020, 10, 57. [Google Scholar] [CrossRef] [PubMed]
- Tran, D.P.; Pham, T.T.T.; Wolfrum, B.; Offenhäusser, A.; Thierry, B. CMOS-Compatible Silicon Nanowire Field-Effect Transistor Biosensor: Technology Development toward Commercialization. Materials 2018, 11, 785. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Kim, K.H.; Seo, S.E.; Kim, M.i.; Park, S.J.; Kwon, O.S. Cytochrome C-decorated graphene field-effect transistor for highly sensitive hydrogen peroxide detection. J. Ind. Eng. Chem. 2020, 83, 29–34. [Google Scholar] [CrossRef]
- Bhatt, V.D.; Joshi, S.; Melzer, K.; Lugli, P. Flexible dopamine sensor based on electrolyte gated carbon nanotube field effect transistor. In Proceedings of the IEEE Biomedical Circuits and Systems Conference (BioCAS), Shanghai, China, 17–19 October 2016; pp. 38–41. [Google Scholar] [CrossRef]
- Lee, J.S.; Oh, J.; Kim, S.G.; Jang, J. Highly Sensitive and Selective Field-Effect-Transistor Non Enzyme Dopamine Sensors Based on Pt/Conducting Polymer Hybrid Nanoparticles. Small 2015, 11, 2399–2406. [Google Scholar] [CrossRef]
- Sajid, M.; Nazal, M.K.; Mansha, M.; Alsharaa, A.; Jillani, S.M.S.; Basheer, C. Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: A review. Trends Anal. Chem. 2016, 76, 15–29. [Google Scholar] [CrossRef]
- Hsine, Z.; Mlika, R.; Jaffrezic-Renault, N.; Korri-Youssoufi, H. Review—Recent Progress in Graphene Based Modified Electrodes for Electrochemical Detection of Dopamine. Chemosensors 2022, 10, 249. [Google Scholar] [CrossRef]
- Zhang, M.; Liao, C.; Yao, Y.; Liu, Z.; Gong, F.; Yan, F. High-Performance Dopamine Sensors Based on Whole-Graphene Solution-Gated Transistors. Adv. Funct. Mater. 2014, 24, 978–985. [Google Scholar] [CrossRef]
- Das, S.; Pal, S.; Mandal, D.; Banerji, P.; Chandra, A.; Basori, R. Enhanced Optoelectronic Performance of Silicon Nanowire/SnS2 Core-Shell Heterostructure With Defect Passivation in SnS2 by UV Treatment. IEEE Trans. Electron Devices 2023, 70, 4008–4013. [Google Scholar] [CrossRef]
- Piro, B.; Mattana, G.; Zrig, S.; Anquetin, G.; Battaglini, N.; Capitao, D.; Maurin, A.; Reisberg, S. Fabrication and Use of Organic Electrochemical Transistors for Sensing of Metabolites in Aqueous Media. Appl. Sci. 2018, 8, 928. [Google Scholar] [CrossRef] [Green Version]
- Santonocito, R.; Tuccitto, N.; Pappalardo, A.; Trusso Sfrazzetto, G. Smartphone-Based Dopamine Detection by Fluorescent Supramolecular Sensor. Molecules 2022, 27, 7503. [Google Scholar] [CrossRef]
- Ravariu, C.; Ravariu, F.; Babarada, F. Electrical characterization of the epinephrine solution on natural diamond with possible biomedical applications. Dig. J. Nanomater. Biostruct. 2007, 2, 155–162. [Google Scholar]
- Liu, X.; Liu, J. Biosensors and sensors for dopamine detection. View 2021, 2, 20200102. [Google Scholar] [CrossRef]
- Deshpande, M.V.; Hall, E.A.H. An electrochemically grown polymer as an immobilisation matrix for whole cells: Application in an amperometric dopamine Sensor. Biosens. Bioelectron. 1990, 5, 431–448. [Google Scholar] [CrossRef]
- Ramu, P.; Vimal, S.P.; Suresh, P.; Sanmugam, A.; Saravanakumar, U.; Kumar, R.S.; Almansour, A.I.; Arumugam, N.; Vikraman, D. Investigation of the one-step electrochemical deposition of graphene oxide-doped poly(3,4-ethylenedioxythiophene)–polyphenol oxidase as a dopamine sensor. RSC Adv. 2022, 12, 15575–15583. [Google Scholar] [CrossRef]
- Shinohara, H.; Wang, F. Real-Time Detection of Dopamine Released from a Nerve Model Cell by an Enzyme-Catalyzed Luminescence Method and Its Application to Drug Assessment. Anal. Sci. 2007, 23, 81–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palomar, Q.; Gondran, C.; Lellouche, J.P.; Cosnier, S.; Holzinger, M. Functionalized tungsten disulfide nanotubes for dopamine and catechol detection in a tyrosinase-based amperometric biosensor design. J. Mater. Chem. B 2020, 8, 3566–3573. [Google Scholar] [CrossRef]
- Rahman, S.F.; Min, K.; Park, S.H.; Park, J.H.; Yoo, J.C.; Park, D.H. Highly sensitive and selective dopamine detection by an amperometric biosensor based on tyrosinase/MWNT/GCE. Korean J. Chem. Eng. 2016, 33, 3442–3447. [Google Scholar] [CrossRef]
- Santos, A.M.; Wong, A.; Fatibello-Filho, O.; Moraes, F.C. Amperometric Biosensor Based on Laccase Enzyme, Gold Nanoparticles, and Glutaraldehyde for the Determination of Dopamine in Biological and Environmental Samples. Carbon 2022, 8, 40. [Google Scholar] [CrossRef]
- Liu, N.; Xiang, X.; Fu, L.; Cao, Q.; Huang, R.; Liu, H.; Han, G.; Wu, L. Regenerative field effect transistor biosensor for in vivo monitoring of dopamine in fish brains. Biosens. Bioelectron. 2021, 188, 113340. [Google Scholar] [CrossRef] [PubMed]
- Lai, X.; Han, Y.; Zhang, J.; Zhang, J.; Lin, W.; Liu, Z.; Wang, L. Peroxidase-Like Platinum Clusters Synthesized by Ganoderma lucidum Polysaccharide for Sensitively Colorimetric Detection of Dopamine. Molecules 2021, 26, 2738. [Google Scholar] [CrossRef]
- Shervedani, R.K.; Amini, A. Direct electrochemistry of dopamine on gold—Agaricus bisporus laccase enzyme electrode: Characterization and quantitative detection. Bioelectrochemistry 2012, 84, 25–31. [Google Scholar] [CrossRef]
- Li, H.; Yang, M.; Liu, J.; Zhang, Y.; Yang, Y.; Huang, H.; Liu, Y.; Kang, Z. A practical and highly sensitive C3N4-TYR fluorescent probe for convenient detection of dopamine. Nanoscale 2015, 7, 12068–12075. [Google Scholar] [CrossRef]
- Choi, Y.; Choi, J.H.; Liu, L.; Oh, B.K.; Park, S. Optical Sensitivity Comparison of Multiblock Gold–Silver Nanorods Toward Biomolecule Detection: Quadrupole Surface Plasmonic Detection of Dopamine. Chem. Mater. 2013, 25, 919–926. [Google Scholar] [CrossRef]
- Choi, J.H.; Lee, J.H.; Oh, B.K.; Choi, J.W. Localized Surface Plasmon Resonance-Based Label-Free Biosensor for Highly Sensitive Detection of Dopamine. J. Nanosci. Nanotechnol. 2014, 14, 5658–5661. [Google Scholar] [CrossRef]
- Namkung, S.M.; Choi, J.S.; Park, J.H.; Yang, M.G.; Lee, M.W.; Kim, S.W. Detection of Dopamine and Serotonin by Competitive Enzyme-Linked Immunosorbent Assay. Korean J. Clin. Lab. Sci. 2017, 49, 220. [Google Scholar] [CrossRef]
- Xu, R.; Ouyang, L.; Chen, H.; Zhang, G.; Zhe, J. Recent Advances in Biomolecular Detection Based on Aptamers and Nanoparticles. Biosensors 2023, 13, 474. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Rhee Paeng, I. Advantageous sensitivity in the DNA homolog of the RNA dopamine aptamer. J. Immunoass. Immunochem. 2014, 35, 83–100. [Google Scholar] [CrossRef]
- Huang, H.; Shi, S.; Gao, X.; Gao, R.; Zhu, Y.; Wu, X.; Zang, R.; Yao, T. A universal label-free fluorescent aptasensor based on Ru complex and quantum dots for adenosine dopamine and 17β-estradiol detection. Biosens. Bioelectron. 2016, 79, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.Y.; Wei, K.C.; Ju, S.P.; Huang, C.Y.; Yang, H.W. Diagnosis by simplicity: An aptachip for dopamine capture and accurate detection with a dual colorimetric and fluorometric system. J. Mater. Chem. B 2018, 6, 3387–3394. [Google Scholar] [CrossRef] [PubMed]
- Dalirirad, S.; Steckl, A.J. Lateral flow assay using aptamer-based sensing for on-site detection of dopamine in urine. Anal. Biochem. 2020, 596, 113637. [Google Scholar] [CrossRef]
- Hun, X.; Xu, Y.; Xie, G.; Luo, X. Aptamer biosensor for highly sensitive and selective detection of dopamine using ubiquitous personal glucose meters. Sens. Actuators B Chem. 2015, 209, 596–601. [Google Scholar] [CrossRef]
- Li, M.; Liu, C.; Zhao, H.; An, H.; Cao, H.; Zhang, Y.; Fan, Z. Tuning sulfur doping in graphene for highly sensitive dopamine biosensors. Carbon 2015, 86, 197–206. [Google Scholar] [CrossRef]
- Keteklahijani, Y.Z.; Sharif, F.; Roberts, E.P.L.; Sundararaj, U. Enhanced Sensitivity of Dopamine Biosensors: An Electrochemical Approach Based on Nanocomposite Electrodes Comprising Polyaniline. Nitrogen-Doped Graphene and DNA-Functionalized Carbon Nanotubes. J. Electrochem. Soc. 2019, 166, B1415. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J.; Liu, M.; Yu, F.; Zhang, L.; Tang, H.; Ye, B.C.; Lai, L. Fabrication of ultra-sensitive and selective dopamine electrochemical sensor based on molecularly imprinted polymer modifed graphene@ carbon nanotube foam. Electrochem. Commun. 2016, 4, 42–45. [Google Scholar] [CrossRef]
- Mahmoudian, M.R.; Basirun, W.J.; Binti Alias, Y. Sensitive dopamine biosensor based on polypyrrole-coated palladium silver nanospherical composites. Ind. Eng. Chem. Res. 2016, 55, 6943–6951. [Google Scholar] [CrossRef]
- Moradpour, H.; Beitollahi, H. Simultaneous Electrochemical Sensing of Dopamine, Ascorbic Acid, and Uric Acid Using Nitrogen-Doped Graphene Sheet-Modified Glassy Carbon Electrode. C 2022, 8, 50. [Google Scholar] [CrossRef]
- Park, S.J.; Lee, J.; Seo, S.E.; Kim, K.H.; Park, C.S.; Lee, S.H.; Ban, H.S.; Lee, B.D.; Song, H.S.; Kim, J.; et al. High-Performance Conducting Polymer Nanotube-based Liquid-Ion Gated Field-Effect Transistor Aptasensor for Dopamine Exocytosis. Sci. Rep. 2020, 10, 3772. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Liu, Y.; Hou, H.; You, T. Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode. Biosens. Bioelectron. 2008, 24, 632–637. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Xing, X.; Yu, J.; Lian, W.; Li, J.; Cui, M.; Huang, J. A novel label-free electrochemical aptasensor based on graphene–polyaniline composite film for dopamine determination. Biosens. Bioelectron. 2012, 36, 186–191. [Google Scholar] [CrossRef]
- Beitollahi, H.; Mohadesi, A.; Khalilizadeh Mahani, S.; Karimi-Maleh, H.; Akbari, A. Simultaneous determination of dopamine, uric acid, and tryptophan using an MWCNT modified carbon paste electrode by square wave voltammetry. Turk. J. Chem. 2012, 36, 526–536. [Google Scholar] [CrossRef]
- Liu, S.; Shi, F.; Zhao, X.; Chen, L.; Su, X. 3-Aminophenyl boronic acid-functionalized CuInS2 quantum dots as a near-infrared fluorescence probe for the determination of dopamine. Biosens. Bioelectron. 2013, 47, 379–384. [Google Scholar] [CrossRef]
- Sakthivel, R.; Dhanalakshmi, S.; Chen, S.M.; Chen, T.W.; Selvam, V.; Ramaraj, S.K.; Weng, W.H.; Leung, W.H. A novel flakes-like structure of molybdenum disulphide modified glassy carbon electrode for the efficient electrochemical detection of dopamine. Int. J. Electrochem. Sci. 2017, 12, 9288–9300. [Google Scholar] [CrossRef]
- Kim, D.S.; Kang, E.S.; Baek, S.; Choo, S.S.; Chung, Y.H.; Lee, D.; Min, J.; Kim, T.H. Electrochemical detection of dopamine using periodic cylindrical gold nanoelectrode arrays. Sci. Rep. 2018, 8, 140490. [Google Scholar] [CrossRef] [Green Version]
- Alahmadi, N.; El-Said, W.A. Electrochemical Sensing of Dopamine Using Polypyrrole/Molybdenum Oxide Bilayer-Modified ITO Electrode. Biosensors 2023, 13, 578. [Google Scholar] [CrossRef]
- Leopold, A.V.; Shcherbakova, D.M.; Verkhusha, V.V. Fluorescent Biosensors for Neurotransmission and Neuromodulation: Engineering and Applications. Front. Cell. Neurosci. 2019, 13, 474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nadim, F.; Bucher, D. Neuromodulation of neurons and synapses. Curr. Opin. Neurobiol. 2014, 29, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Sames, D.; Dunn, M.; Karpowicz, R.J., Jr.; Sulzer, D. Visualizing neurotransmitter secretion at individual synapses. ACS Chem. Neurosci. 2013, 4, 648–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodeberg, N.T.; Sandberg, S.G.; Johnson, J.A.; Phillips, P.E.; Wightman, R.M. Hitchhiker’s guide to voltammetry: Acute and chronic electrodes for in vivo fast-scan cyclic voltammetry. ACS Chem. Neurosci. 2017, 8, 221–234. [Google Scholar] [CrossRef] [Green Version]
- Park, S.J.; Yang, H.; Lee, S.H.; Song, H.S.; Park, C.S.; Bae, J.; Kwon, O.S.; Park, T.H.; Jang, J. Dopamine Receptor D1 Agonism and Antagonism Using a Field-Effect Transistor Assay. ACS Nano 2017, 11, 5950–5959. [Google Scholar] [CrossRef] [PubMed]
- Choo, S.-S.; Kang, E.-S.; Song, I.; Lee, D.; Choi, J.-W.; Kim, T.-H. Electrochemical Detection of Dopamine Using 3D Porous Graphene Oxide/Gold Nanoparticle Composites. Sensors 2017, 17, 861. [Google Scholar] [CrossRef] [Green Version]
- Patella, B.; Sortino, A.; Mazzara, F.; Aiello, G.; Drago, G.; Torino, C.; Vilasi, A.; O’Riordan, A.; Inguanta, R. Electrochemical detection of dopamine with negligible interference from ascorbic and uric acid by means of reduced graphene oxide and metals-NPs based electrodes. Anal. Chim. Acta 2021, 1187, 339124. [Google Scholar] [CrossRef]
- Moallem, Q.A.; Beitollahi, H. Electrochemical sensor for simultaneous detection of dopamine and uric acid based on a carbon paste electrode modified with nanostructured Cu-based metal-organic frameworks. Microchem. J. 2022, 177, 107261. [Google Scholar] [CrossRef]
- Rajaitha, P.M.; Hajra, S.; Padhan, A.M.; Dubal, D.; Kim, H.J. Electrochemical detection of dopamine through hydrothermally prepared lanthanum metal–organic framework (La-BTC)/carbon nanotube nanohybrid. Mater. Sci. Eng. B 2023, 296, 116638. [Google Scholar] [CrossRef]
- Qu, F.; Guo, Z.; Jiang, D.; Zhao, X.E. In situ growth of polydopamine on surface of covalent organic frameworks under the catalysis of acid phosphatase for dopamine detection. Chin. Chem. Lett. 2021, 32, 3368–3371. [Google Scholar] [CrossRef]
- Wang, C.; Li, J.; Shi, K.; Wang, Q.; Zhao, X.; Xiong, Z.; Zou, X.; Wang, Y. Graphene coated by polydopamine/multi-walled carbon nanotubes modified electrode for highly selective detection of dopamine and uric acid in the presence of ascorbic acid. J. Electroanal. Chem. 2016, 770, 56–61. [Google Scholar] [CrossRef]
- Yang, Z.; Hsiang, E.-L.; Qian, Y.; Wu, S.-T. Performance Comparison between Mini-LED Backlit LCD and OLED Display for 15.6-Inch Notebook Computers. Appl. Sci. 2022, 12, 1239. [Google Scholar] [CrossRef]
- Jeon, Y.; Lee, D.; Yoo, H. Recent Advances in Metal-Oxide Thin-Film Transistors: Flexible/Stretchable Devices, Integrated Circuits, Biosensors, and Neuromorphic Applications. Coatings 2022, 12, 204. [Google Scholar] [CrossRef]
- Li, Y.; Huang, W.; Zhao, D.; Wang, L.; Jiao, Z.; Huang, Q.; Wang, P.; Sun, M.; Yuan, G. Recent Progress in Organic Solar Cells: A Review on Materials from Acceptor to Donor. Molecules 2022, 27, 1800. [Google Scholar] [CrossRef] [PubMed]
- Ravariu, C.; Ravariu, F. A test two-terminals biodevice with lipophylic and hidrophylic hormone solutions. J. Optoelectron. Adv. Mater. 2007, 9, 2589–2592. [Google Scholar]
- Ravariu, C.; Srinivasulu, A.; Bhargav, A. A biomimetic device for the action potential simulation at neuronal level. Adv. Nano-Bio-Mater. Devices 2020, 4, 623–629. [Google Scholar]
- Gualandi, I.; Tessarolo, M.; Mariani, F.; Arcangeli, D.; Possanzini, L.; Tonelli, D.; Fraboni, B.; Scavetta, E. Layered Double Hydroxide-Modified Organic Electrochemical Transistor for Glucose and Lactate Biosensing. Sensors 2020, 20, 3453. [Google Scholar] [CrossRef]
- Sun, C.; Wang, X.; Auwalu, M.A.; Cheng, S.; Hu, W. Organic thin film transistors-based biosensors. EcoMaterials 2021, 3, e12094. [Google Scholar] [CrossRef]
- Ravariu, C.; Istrati, D.; Mihaiescu, D.; Morosan, A.; Purcareanu, B.; Cristescu, R.; Trusca, R.; Vasile, B. Solution for green organic thin film transistors: Fe3O4 nano-core with PABA external shell as p-type film. J. Mater. Sci. Mater. Electron. 2020, 31, 3063–3073. [Google Scholar] [CrossRef]
- Ravariu, C.; Mihaiescu, D.; Morosan, A.; Srinivasulu, A. Electrical characterization of a pseudo-MOS transistor with organic thin film produced by nanotechnologies. Rom. J. Inf. Sci. Technol. 2021, 24, 28–36. [Google Scholar]
- Savva, A.; Ohayon, D.; Surgailis, J.; Paterson, A.F.; Hidalgo, T.C.; Chen, X.; Maria, I.P.; Paulsen, B.D.; Petty, A.J., II; Rivnay, J.; et al. Solvent engineering for high-performance n-type organic electrochemical transistors. Adv. Electron. Mater. 2019, 5, 1900249. [Google Scholar] [CrossRef]
- Ji, X.; Zhou, P.; Zhong, L.; Xu, A.; Tsang, A.C.O.; Chan, P.K.L. Smart surgical catheter for C-reactive protein sensing based on an imperceptible organic transistor. Adv. Sci. 2018, 5, 1701053. [Google Scholar] [CrossRef] [PubMed]
- Palit, S.; Singh, K.; Lou, B.S.; Her, J.L.; Pang, S.T.; Pan, T.M. Ultrasensitive dopamine detection of indium-zinc oxide on PET flexible based extended-gate field-effect transistor. Sens. Actuators B Chem. 2020, 310, 127850. [Google Scholar] [CrossRef]
- Qing, X.; Wang, Y.; Zhang, Y.; Ding, X.; Zhong, W.; Wang, D.; Wang, W.; Liu, Q.; Liu, K.; Li, M.; et al. Wearable Fiber-Based Organic Electrochemical Transistors as a Platform for Highly Sensitive Dopamine Monitoring. ACS Appl. Mater. Interfaces 2019, 11, 13105–13113. [Google Scholar] [CrossRef] [PubMed]
- Herrero, R.L.; Rodríguez Jiménez, R.P.; Sánchez Quirós, B. Manejo anestésico de feocromocitoma productor de dopamina. Rev. Española Anestesiol. Reanim. 2022, 69, 249–252. [Google Scholar] [CrossRef]
- Manzano-Nicolas, J.; Taboada-Rodriguez, A.; Teruel-Puche, J.A.; Marin-Iniesta, F.; Garcia-Molina, F.; Garcia-Canovas, F.; Tudela-Serrano, J.; Munoz-Munoz, J.L. Kinetic characterization of the oxidation of catecolamines and related compounds by laccase. Int. J. Biol. Macromol. 2020, 164, 1256–1266. [Google Scholar] [CrossRef]
- Ohshiro, K.; Sasaki, Y.; Minami, T. An extended-gate-type organic transistor-based enzymatic sensor for dopamine detection in human urine. Talanta 2023, 7, 100190. [Google Scholar] [CrossRef]
- Casalini, S.; Leonardi, F.; Cramer, T.; Biscarini, F. Organic field-effect transistor for label-free dopamine sensing. Org. Electron. 2013, 14, 156–163. [Google Scholar] [CrossRef]
- White, H.S.; Kittlesen, G.P.; Wrighton, M.S. Chemical derivatization of an array of three gold microelectrodes with polypyrrole: Fabrication of a molecule-based transistor. J. Am. Chem. Soc. 1984, 106, 5375–5377. [Google Scholar] [CrossRef]
- Khodagholy, D.; Rivnay, J.; Sessolo, M.; Gurfinkel, M.; Leleux, P.; Jimison, L.H.; Stavrinidou, E.; Herve, T.; Sanaur, S.; Owens, R.M. High transconductance organic electrochemical transistors. Nat. Commun. 2013, 4, 2133. [Google Scholar] [CrossRef] [Green Version]
- Yousefi, M.; Dehghani, S.; Nosrati, R.; Zare, H.; Evazalipour, M.; Mosafer, J.; Tehrani, B.S.; Pasdar, A.; Mokhtarzadeh, A.; Ramezani, M. Aptasensors as a new sensing technology developed for the detection of MUC1 mucin: A review. Biosens. Bioelectron. 2019, 130, 1–19. [Google Scholar] [CrossRef]
- Farjami, E.; Campos, R.; Nielsen, J.S.; Gothelf, K.V.; Kjems, J.; Ferapontova, E. RNA aptamer-based electrochemical biosensor for selective and label-free analysis of dopamine. Anal. Chem. 2012, 85, 121–128. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, W.; Yu, P.; Xiong, E.; Zhang, X.; Chen, J. A simple label-free electrochemical aptasensor for dopamine detection. RSC Adv. 2014, 4, 52250–52255. [Google Scholar] [CrossRef]
- Liang, Y.; Guo, T.; Zhou, L.; Offenhäusser, A.; Mayer, D. Label-Free Split Aptamer Sensor for Femtomolar Detection of Dopamine by Means of Flexible Organic Electrochemical Transistors. Materials 2020, 13, 2577. [Google Scholar] [CrossRef]
- Liao, C.; Zhang, M.; Niu, L.; Zheng, Z.; Yan, F. Organic electrochemical transistors with graphene-modified gate electrodes for highly sensitive and selective dopamine sensors. J. Mater. Chem. B 2014, 2, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Gualandi, I.; Marzocchi, M.; Achilli, A.; Cavedale, D.; Bonfiglio, A.; Fraboni, B. Textile Organic Electrochemical Transistors as a Platform for Wearable Biosensors. Sci. Rep. 2016, 6, 33637. [Google Scholar] [CrossRef] [Green Version]
- Ravariu, C. Gate Swing Improving for the Nothing On Insulator Transistor in Weak Tunneling. IEEE Trans. Nanotechnol. 2017, 16, 1115–1121. [Google Scholar] [CrossRef]
- Ravariu, C. Vacuum nano-triode in Nothing-On-Insulator configuration working in Terahertz domain. IEEE J. Electron Devices Soc. 2018, 6, 1115–1123. [Google Scholar] [CrossRef]
- Lee, S.H.; Yang, H.; Park, C.S.; Lee, C.S.; Kwon, O.S.; Park, T.H.; Jang, J. Human Dopamine Receptor-Conjugated Multidimensional Conducting Polymer Nanofiber Membrane for Dopamine Detection Seon Joo Park. ACS Appl. Mater. Interfaces 2016, 8, 28897–28903. [Google Scholar] [CrossRef]
- Topor, A.; Voicu, R.C.; Ulieru, D.; Ravariu, C.; Babarada, F. Image processing algorithms for characterization of MEMS type micro-tweezers aperture. Optoelectron. Adv. Mater. Rapid Commun. 2022, 16, 505–508. [Google Scholar]
- Xue, L.; Cadinu, P.; Nadappuram, B.P.; Kang, M.; Ma, Y.; Korchev, Y.; Ivanov, A.P.; Edel, J.B. Gated single-molecule transport in double-barreled nanopores. ACS Appl. Mater. Interfaces 2018, 10, 38621–38629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariani, F.; Quast, T.; Andronescu, C.; Gualandi, I.; Fraboni, B.; Tonelli, D.; Scavetta, E.; Schuhmann, W. Needle-type organic electrochemical transistor for spatially resolved detection of dopamine. Microchim. Acta 2020, 187, 378. [Google Scholar] [CrossRef] [PubMed]
- Tybrandt, K.; Kollipara, S.B.; Berggren, M. Chemical Organic electrochemical transistors for signal amplification in fast scan cyclic voltammetry. Sens. Actuators B Chem. 2014, 195, 651–656. [Google Scholar] [CrossRef] [Green Version]
- Giordani, M.; Berto, M.; Di Lauro, M.; Bortolotti, C.A.; Zoli, M.; Biscarini, F. Specific Dopamine Sensing Based on Short-Term Plasticity Behavior of a Whole Organic Artificial Synapse. ACS Sens. 2017, 2, 1756–1760. [Google Scholar] [CrossRef] [PubMed]
Type | Year | Enzyme | Transducer Method | Range of DA Concentrations | Details | Reference |
---|---|---|---|---|---|---|
Banana tissue biosensor | 1990 | Polyphenol oxidase | Electrochemical: amperometry | 0.4–1.6 mM | 3-electrodes in PBS | [52] |
DA detector from PC12 cell | 2007 | Tyramine oxidase | Luminescence | 1 nM–1 mM | In sample PC12 cells | [59] |
Direct DA Biosensor | 2012 | Laccase | Voltammetry and electrochemical impedance spectroscopy | 0.5–13 mM | Gold–Agaricus bisporus laccase electrode | [60] |
Fluorescent biosensor | 2015 | Tyrosinase | Fluorescence of C3N4-TYR | 0.01–1000 mM | In human urine sample | [61] |
MW-CNT- Biosensor | 2016 | Tyrosinase | Amperometric biosensor | 50–1000 µM | MWCNT on Glassy carbon electrodes | [56] |
Tungsten disulfide nano-tubes Biosensor | 2019 | Tyrosinase | Chronoamperometric response | 0.5–20 µM | WS2-COOH nano-tubes on glassy carbon electrodes | [55] |
Colorimetric sensor | 2020 | Tyramine oxidase | chemiluminescence | 80 nM–500 nM | Hydrogen peroxide reacts with luminol | [54] |
FET-Biosensor | 2021 | Tyrosinase | In vivo monitoring | sub-1 μM–120 μM | Regenerated field effect transistor | [58] |
Amperometric biosensor | 2022 | Laccase | Cyclic voltammetry | 0.8 mM–62 mM | Au-nano-particles carbon paste electrode | [57] |
Graphene biosensor | 2022 | Polyphenol oxidase | Electrochemical: cyclic voltammetry | 50 nM–85 μM | PEDOT–GO | [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravariu, C. From Enzymatic Dopamine Biosensors to OECT Biosensors of Dopamine. Biosensors 2023, 13, 806. https://doi.org/10.3390/bios13080806
Ravariu C. From Enzymatic Dopamine Biosensors to OECT Biosensors of Dopamine. Biosensors. 2023; 13(8):806. https://doi.org/10.3390/bios13080806
Chicago/Turabian StyleRavariu, Cristian. 2023. "From Enzymatic Dopamine Biosensors to OECT Biosensors of Dopamine" Biosensors 13, no. 8: 806. https://doi.org/10.3390/bios13080806
APA StyleRavariu, C. (2023). From Enzymatic Dopamine Biosensors to OECT Biosensors of Dopamine. Biosensors, 13(8), 806. https://doi.org/10.3390/bios13080806