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Figure S1. Front view of OCT image of x-z along y (a) and the stack images of x-y cross-sectional

images along z of our BBB model (b).
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Figure S2. Flowchart of morphological imaging processing including the ROI mask generation (a), and
the image processing to identify the pore-like morphology (b). Gaussian blur and adaptive threshold
were performed on the contrast-enhanced images, the processed images were inverted for morphological
erosion and opening to remove large or small dots from the images. The resultant images were combined

and followed by filtering with ROI mask to remove untargeted area.
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Figure S3. Workflow of image processing using RF-TWS. The original images were input into classifier

followed by manual annotation of the pore-like and non-pore-like pixels to train the classifier. The output

bi-classification images were post-processed with a morphological operator for final output images.
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Figure S4. Deep learning using pix2pix cGAN architecture for image processing. Patch images were fed
to the generator and translated to the target (output) images, while the discriminator distinguishes the

generated image or the ground-truth image by assessing the discriminator errors.



Figure S5. Comparison of the cross-sectional view images (sum slices and binarized) obtained by OCT

and confocal microscopy (immunostaining with CD31). Red rectangles indicate representative, matched

pore-like morphology in both. Scale bar = 1 mm.
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Figure S6. Front view of the open vascular (red arrow) and closed vascular structures (green arrow)

shown in OCT images (middle) and illustrations (right).



