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Abstract: Cancer is the second leading cause of death globally, with 9.7 million fatalities in 2022.
While routine screenings are vital for early detection, healthcare disparities persist, highlighting the
need for equitable solutions. Recent advancements in cancer biomarker identification, particularly
microRNAs (miRs), have improved early detection. MiR-21 is notably overexpressed in various
cancers and can be a valuable diagnostic tool. Traditional detection methods, though accurate, are
costly and complex, limiting their use in resource-limited settings. Paper-based electrochemical
biosensors offer a promising alternative, providing cost-effective, sensitive, and rapid diagnostics
suitable for point-of-care use. This study introduces an innovative electrochemical paper-based
biosensor that leverages gold inkjet printing for the quantitative detection of miR-21. The biosensor,
aimed at developing cost-effective point-of-care devices for low-resource settings, uses thiolated
self-assembled monolayers to immobilize single-stranded DNA-21 (ssDNA-21) on electrodeposited
gold nanoparticles (AuNPs) on the printed gold surface, facilitating specific miR-21 capture. The
hybridization of ssDNA-21 with miR-21 increases the anionic barrier density, impeding electron
transfer from the redox probe and resulting in a current suppression that correlates with miR-21
concentration. The biosensor exhibited a linear detection range from 1 fM to 1 nM miR-21 with a
sensitivity of 7.69 fM µA−1 cm2 and a rapid response time (15 min). With a low detection limit of
0.35 fM miR-21 in serum, the biosensor also demonstrates excellent selectivity against interferent
species. This study introduces an electrochemical paper-based biosensor that uses gold inkjet printing
to precisely detect miR-21, a key biomarker overexpressed in various cancers. This innovative device
highlights the potential for cost-effective, accessible cancer diagnostics in underserved areas.
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1. Introduction

Cancer remains the second leading cause of death globally, with approximately 9.7 mil-
lion fatalities in 2022 [1]. Public health initiatives promoting routine screenings have been
crucial in early detection efforts. Despite these initiatives, disparities in healthcare access
and screening technologies persist, necessitating equitable healthcare access to address
this global challenge [2]. The recent advancements in cancer biomarker identification have
significantly improved early detection and treatment outcomes [3]. Among the various
cancer biomarkers, microRNAs (miRs) have shown great potential due to their presence in
easily accessible body fluids (blood, urine, saliva, etc.) [4–6]. MiRs are small, non-coding
RNAs that regulate gene expression, influencing key cellular processes like proliferation
and apoptosis [7]. Their dysregulation in cancer cells classifies them as either oncogenic
miRs (onco-miRs) or tumor-suppressive miRs (TS-miRs), making them vital for cancer
diagnostics [8]. Therefore, identifying and quantifying miRs offer invaluable insights into
cancer diagnostics, enabling the early detection of malignancies and providing prognostic
indicators for disease progression [9,10].

MiR-21, an onco-miR, is highly expressed in various cancers, including breast, lung,
and prostate. It inhibits apoptosis and thereby promotes cancer cell survival [11,12]. This
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makes miR-21 a valuable pan-cancer diagnostic tool, offering clinicians a versatile means
of identifying and stratifying patients based on their cancer status [13,14]. Traditional
miR detection methods, such as northern blotting, microarrays, and quantitative real-
time polymerase chain reaction (qRT-PCR), are accurate but have limitations like time-
consuming protocols, high sample requirements, and the need for expensive equipment
and skilled technicians [15–19], consequently limiting their utility, particularly in resource-
limited settings [19]. Electrochemical biosensors have emerged as a promising alternative,
offering high sensitivity, selectivity, simplicity, and rapid analysis capabilities, suitable
for point-of-care (POC) applications [20–23]. However, the economic limitations of large-
scale fabrication of traditional biosensing platforms highlight the need for cost-effective
manufacturing methods [24,25].

Paper-based biosensors offer economic and environmental advantages, including low
cost and ease of fabrication, making them suitable for POC diagnostic platforms [26–28].
Using paper substrates reduces the reliance on expensive materials and sophisticated fab-
rication instrumentation, making them highly suitable for decentralized and affordable
POC diagnostic platforms [29]. Unlike paper-based colorimetric biosensors (i.e., dipsticks,
lateral flow assays, etc.), paper-based electrochemical biosensors do not require costly
labeling techniques for quantifying analytes. Moreover, inkjet printing and screen print-
ing have been shown to enhance scalability and utility [30–32] while incorporating gold
nanoparticles (AuNPs) into electrode designs. These approaches significantly enhance the
electrochemical biosensor performance by providing a high surface area-to-volume ratio,
excellent biocompatibility, and superior catalytic activity [33,34].

Herein, we introduce a novel, paper-based electrochemical biosensor for quantitatively
detecting miR-21, utilizing gold inkjet printing on photopaper (PhP). AuNPs electrodeposi-
tion process was utilized to effectively address any insulating gaps from the sintering of the
gold ink, thereby enhancing current output and surface area for bioreceptor immobilization.
By immobilizing complementary ssDNA-21 onto electrodeposited AuNPs on gold-printed
photopaper electrodes (PhP-Au/AuNPs), the fabricated biosensor achieved selective detec-
tion of miR-21 with a linear range from 1 fM to 1 nM with a sensitivity of 7.69 fM µA−1 cm2

and an impressively low detection limit of 0.35 fM in serum. These findings underscore the
potential for mass production of POC devices for cancer diagnostics using PhP-Au/AuNPs
as the electrode material. This method is not only cost-effective and straightforward but
also ideal for large-scale production, making it highly suitable for POC cancer diagnostics in
resource-limited settings. This biosensor represents a significant advancement in accessible
and reliable diagnostics, capable of transforming healthcare delivery by facilitating early
disease detection and monitoring.

2. Materials and Methods
2.1. Chemicals and Solutions

Sulfuric acid (H2SO4), sodium chloride (NaCl), and fetal bovine serum were purchased
from Thermo Fisher Scientific, Waltham, MA, USA. Potassium ferricyanide (K3[Fe(CN)6]),
Gold (III) chloride trihydrate (HAuCl4·3H2O), potassium chloride (KCl), potassium phos-
phate monobasic (KH2PO4), sodium phosphate dibasic (Na2HPO4), tris(2-carboxyethyl)
phosphine (TCEP), and the gold foil were purchased from Sigma-Aldrich, USA. All oligonu-
cleotide sequences (Table 1) were purchased from Integrated DNA Technologies (IDT),
Coralville, IA, USA. The JG-106 gold ink was purchased from Novacentrix, Austin, TX,
USA. The polyimide (PI) tape was purchased from MYJOR, Shanghai, China. All solutions
were prepared using deionized water (18.2 MΩ-cm). 0.01 M phosphate buffered saline
solution pH 7.4 (1× PBS) was prepared with 137 mM NaCl, 2.7 mM KCl, 1.8 mM KH2PO4,
and 10 mM Na2HPO4. All oligonucleotide and TCEP solutions were prepared in 1× PBS.
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Table 1. Oligonucleotide sequences.

Name Nucleotide Sequence

ssDNA-21 probe 5′-TCA ACA TCA GTC TGA TAA GCT A/3ThiolMC3
miR-21 5′-UAG CUU AUC AGA CUG AUG

miR-let7a 5′-UGA GGU AGU AGG UUG UAU
miR-141 5′-CAU CUU CCA GUA CAG UGU

2.2. Apparatus and Instrumentation

The Dimatix Materials Printer DMP-2850 (Fujifilm, Inc., Tokyo, Japan) was employed
to print gold electrodes on photopaper. A conventional three-electrode setup was used,
with the gold photopaper electrode serving as the working electrode, Ag/AgCl as the
reference electrode, and a platinum wire as the counter electrode. Electrodeposition of
AuNPs was carried out using direct current potential amperometry (DCPA) with the EC
Epsilon EClipse™ Potentiostat (Bioanalytical Systems, Inc., Louisville, KY, USA). Cyclic
voltammetry (CV) was performed with square wave voltammetry (SWV) at a scan rate of
100 mV s−1 and a potential range from −0.1 to 0.4 V (potential step of 4 mV, amplitude
of 15 mV, and frequency of 1 Hz) to quantitatively assess the miR-21 hybridization event
within the same potential range. All electrochemical tests were performed in triplicate.
Scanning electron microscopy (SEM) was conducted using the JSM-IT700HR (JEOL Ltd.,
Peabody, MA, USA).

2.3. Fabrication of PhP-Au/AuNPs Electrode

Four layers of gold ink were printed onto the photopaper to fabricate the 60-electrode
array (Figure 1A). Following printing, the array was air-dried overnight at room temper-
ature in a fume hood. Subsequently, it underwent sintering at 140 ◦C for 30 min in a
conventional oven. Inkjet printing parameters for electrode fabrication are provided in
the Supplementary Information. Individual gold inkjet-printed photopaper electrodes
(PhP-Au) were then prepared by cutting them out. Each PhP-Au electrode had a 3 × 3 mm
piece of gold foil affixed as a contact pad, with the working area defined using PI tape, as
illustrated in Figure S1 of the Supplementary Materials. The PhP-Au electrode underwent
electrochemical cleaning with 0.05 M sulfuric acid via cyclic voltammetry for 10 cycles,
employing a potential range from −0.1 to 1.5 V and a scan rate of 50 mV s−1. After clean-
ing, the electrode was thoroughly rinsed with DI water to remove any residual acid and
impurities from the electrode’s surface and was subsequently stored in a desiccator to
dry. AuNPs were then electrodeposited onto the working surface of the PhP-Au electrode
(Figure 1A). This involved submerging the PhP-Au working electrode, along with external
Ag/AgCl reference and platinum wire counter electrodes, in a 2 mM HAuCl4 solution.
Electrodeposition of AuNPs onto the PhP-Au working area was achieved via DCPA at
an applied voltage of −0.5 V for one hour, resulting in the PhP-Au/AuNPs electrode.
Following deposition, the PhP-Au/AuNPs electrode was thoroughly rinsed with deionized
water and stored in a desiccator for future use.

2.4. ssDNA-21 Immobilization and miR-21 Hybridization

To selectively detect miR-21, the complementary aptamer ssDNA-21 probe was immo-
bilized onto the PhP-Au/AuNPs electrode surface using a thiol linker (Figure 1B). Initially,
a solution of TCEP and ssDNA-21 was prepared at a concentration ratio of 100X TCEP to
ssDNA-21 concentration. The solution was vigorously vortexed for one minute at 15-min
intervals, totaling four times, at room temperature, and subsequently stored at 4 ◦C for
future use. TCEP, an effective reducing agent, cleaves disulfide bonds to generate free thiol
groups. These thiol groups form robust bonds with gold surfaces via gold-thiol chemistry,
ensuring the secure attachment of the ssDNA-21 to the PhP-Au/AuNPs electrode. A 5 µL
aliquot of ssDNA-21/TCEP solution was drop-cast onto the working area of the PhP-
Au/AuNPs electrode and placed in a sealed humidity chamber. The reaction proceeded
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for 3 h at room temperature [35]. Post-incubation, the surface of the ssDNA-21-modified
PhP-Au/AuNPs electrode (PhP-Au/AuNPs/ssDNA) was thoroughly rinsed with 1× PBS.
To prevent drying and denaturation of the ssDNA-21 bioreceptor, a droplet of 1× PBS was
added to the working area, and the electrode was stored in the humidity chamber at 4 ◦C.
The PhP-Au/AuNPs/ssDNA electrode was gently rinsed with 1× PBS, and the excess PBS
on the working area surface was carefully aspirated, ensuring no contact with the working
surface. Subsequently, 5 µL of miR-21 solution at varying concentrations (ranging linearly
from 1 fM to 1 nM) was drop-casted onto the center of the PhP-Au/AuNPs/ssDNA work-
ing area and incubated for 15 min at room temperature in a humidity chamber. Following
incubation, the electrode’s working surface was thoroughly rinsed with 1× PBS, and SWV
was performed is the presence of varing miR-21 concentrations. Figure 1B provides a
schematic overview of the ssDNA immobilization and the miR-21 sensing process.
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Figure 1. Schematic illustration of (A) electrochemical PhP-Au/AuNPs biosensor fabrication process
and (B) ssDNA-21 immobilization and hybridization with target miR-21 sensing process. Electrode
fabrication is further detailed in the Supplemental Information.

3. Results and Discussion
3.1. Characterization of PhP-Au/AuNPs Electrode Surface Morphology

SEM imaging was conducted to analyze the morphological characteristics of the PhP-
Au electrode at various stages: pre-sintering (Figure 2A), post-sintering (Figure 2B), and
after AuNP electrodeposition (Figure 2C). Gold inks typically comprise AuNPs stabilized
with surface ligands or capping agents that maintain particle separation and prevent aggre-
gation during printing [36]. Initially, when the gold ink was printed onto photopaper, these
particles remained discrete due to ink formulation and printing conditions [37]. Therefore,
the printed gold ink particles remained separated as there was insufficient energy to bring
them into close contact, creating insulating gaps that prevent a continuous conductive
path [38]. Sintering applies thermal energy to desorb or decompose the surface ligands,
enabling particle fusion and a continuous conductive network formation (Figure 2B). This
transformation enhances electrical conductivity noticeably. Post-sintering, the PhP-Au
electrode demonstrated improved electrical continuity compared to its pre-sintered state.
Before sintering, the gold ink electrode exhibited high resistance (1.5 MΩ), which impeded
the electrical current flow. Upon sintering, the electrode resistance was reduced to 3 Ω,
allowing for enhanced current conduction that improves the biosensor’s signal quality,
sensitivity, and response time. While sintering effectively converted discrete gold ink
particles into a conductive network, it further introduces insulating gaps or pores [39] that
can compromise electrode surface uniformity and create competitive functionalization sites,
potentially interfering with ssDNA-21 immobilization. Pretreatment with sulfuric acid
aided in removing residual contaminants, oxidation layers, and other impurities from these
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gaps post-sintering. Additionally, electrodeposition of AuNPs served to fill these insulating
gaps, resulting in a more homogeneous and conductive surface as depicted in Figure 2C.
This AuNPs-layer also enhanced the electrode’s effective surface area, providing more
active sites for electron transfer reactions, improving biosensor sensitivity and efficiency.
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Moreover, the increased surface area facilitated the immobilization of a larger quantity
of ssDNA-21, which is crucial for enhancing miR-21 detection. Thus, AuNPs electrodeposi-
tion established a robust platform for specific capture and detection of miR-21, ensuring
high performance of the paper-based electrochemical biosensor.

3.2. Electrochemical Characterization

Figure 3 illustrates that the PhP-Au electrode exhibited a peak oxidation current
density of 1004.5 µA cm−2 (Curve i). Following the electrodeposition of AuNPs onto
the PhP-Au, there was a notable enhancement in electrode performance, with the peak
oxidation current density increasing to 1202.5 µA cm−2 (Curve ii). This enhancement
was attributed to the increased surface area provided by the small-sized AuNPs, which
improved electrode conductivity and promoted more efficient electron transfer kinetics
between the electrode surface and the redox reporter.
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Figure 3. Cyclic voltammogram (CV) of PhP-Au (i), PhP-Au/AuNPs (ii), PhP-Au/AuNPs/ss-
DNA (iii), PhP-Au/AuNPs/ss-DNA/miR-21 (iv) electrode. Voltammograms were obtained in 5 mM
(K3Fe(CN)6

4−/3−) + 0.1 M KCl with a scan rate of 100 mV s−1.

The immobilization of 7.5 µM ssDNA-21 played a crucial role in establishing a robust
and sensitive biosensing interface to ensure the proper orientation and availability of the
DNA for target miR-21 binding, thereby enhancing detection selectivity and sensitivity.
Upon immobilization on the AuNPs-modified electrode, the phosphate backbone of nucleic
acids introduced negative charges to the electrode’s surface. These negative charges created
an electrostatic anionic barrier that hinders electron flow from the potassium ferricyanide
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redox probe [40], which is evident as a decrease in peak oxidation current density from
1202.5 to 1004.5 µA cm−2 (Curve iii). This confirmed successful probe immobilization
and served as a metric for monitoring hybridization events. Upon hybridization of 10 pM
miR-21 with the complementary ssDNA-21, the resulting formation of double-stranded
complexes increased the density of negative charges within the anionic barrier, further
impeding electron flow (Curve iv), thus confirming successful miR-21 hybridization to the
ssDNA-21.

To assess whether the reaction follows a diffusion-controlled or surface (adsorption)
controlled process, a variation in CV scan rates from 10 to 150 mV s−1 was conducted on
both PhP-Au/AuNPs and PhP-Au/AuNPs/ssDNA electrodes (Figure 4). The relationship
between peak current density (Ip) and scan rate is pivotal in electrochemical analysis. In
both cases, PhP-Au/AuNPs (Figure 4A) and PhP-Au/AuNPs/ssDNA (Figure 4C), the Ip
showed a linear dependence on the square root of the scan rate (ν) (Figure 4B,D), which
is indicative of a diffusion-controlled process [41]. To further confirm diffusion control,
log(peak oxidation current density (Ia)) was plotted against log(scan rate) for both the PhP-
Au/AuNPs (Figure S2A) and the PhP-Au/AuNPs/ssDNA electrodes (Figure S2B), yielding
slopes of 0.6953 and 0.5972, respectively. This further reinforced the diffusion-controlled
nature of the electrochemical processes [20].
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from varying scan rates (a–h: 10–150 mV s−1) with (B,D) corresponding linearity plot of peak anodic
and cathodic current densities vs. square root of scan rates (ν). Voltammograms were obtained in
5 mM (K3Fe(CN)6

4−/3−) + 0.1 M KCl. A dashed line indicates the baseline current.

Interestingly, the reduction current density curve exhibited a narrower shape with
slightly greater peak current density than the broader oxidation curve observed for PhP-
Au/AuNPs and PhP-Au/AuNPs/ssDNA electrodes, suggesting an underlying electro-
chemical process. The distinct peak shapes and current density differences implied varying
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kinetics between the reduction and oxidation processes. The narrower, higher current
peak during reduction suggested a faster and more efficient electron transfer, possibly
indicating a more kinetically favorable process for the reduction reaction than oxidation.
Conversely, the broader oxidation peak with lower current density may indicate greater
influence from diffusion limitations. This disparity could stem from differences in diffusion
coefficients of oxidized and reduced species or concentration gradients near the electrode
surface during the redox cycle. Additionally, the asymmetry in peak shapes and currents
might be influenced by surface adsorption phenomena or residual impurities from the gold
ink. It is expected that strong adsorption of reduced species onto the electrode surface
could enhance current density and sharpen peaks due to rapid electron transfer, while
easier desorption of oxidized species could lead to broader, lower current oxidation peaks
due to slower electron transfer and mass transport effects.

3.3. Optimization of ssDNA-21 Concentration and miR-21 Hybridization Time

The concentration of ssDNA-21 immobilized on the PhP-Au/AuNPs electrode surface
was optimized to maximize sensitivity while minimizing non-specific binding events of the
paper-based electrochemical biosensor. Four independent PhP-Au/AuNPs electrodes were
each drop-casted with 5 µL of ssDNA-21 solutions at concentrations of 1 µM, 5 µM, 7.5 µM,
and 10 µM onto the center of the working area, followed by a 3-h incubation at room
temperature. Post-incubation, each electrode underwent thorough washing with 1× PBS
and was used as the working electrode for subsequent SWV measurements. Figure 5A
illustrates the difference in SWV peak current density before and after immobilization of
varying ssDNA-21 concentrations. The immobilization of ssDNA-21 at a low concentration
of 1 µM did not induce a significant change in current density output, indicating inadequate
attachment of the bioreceptor to the working surface. However, at 5 µM ssDNA-21,
there was an observable increase of 8 µA cm−2 in current density, suggesting successful
bioreceptor attachment. To ascertain the saturation point of ssDNA on the electrode surface,
concentrations of 7.5 µM and 10.0 µM were evaluated. A maximum current density of
39 µA cm−2 was achieved at 7.5 µM, with no further increase observed upon increasing to
10.0 µM, indicating saturation of the electrode surface with ssDNA at 7.5 µM. Therefore,
subsequent variations in miR-21 concentration were assessed using electrodes immobilized
with 7.5 µM ssDNA-21 to ensure the reliability and accuracy of our biosensor.
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Following the optimization of ssDNA-21 concentration, the hybridization time for
miR-21 was optimized to achieve rapid yet precise detection. Three independent PhP-
Au/AuNPs electrodes were functionalized with 5 µL of 7.5 µM ssDNA-21 drop-casted
onto the center of the working area and incubated for 3 h at room temperature in a hu-
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midity chamber. Subsequently, 5 µL of 1 fM miR-21 was applied to the working electrode
surface and incubated in the humidity chamber for 120, 60, or 15 min. Each hybridization
trial was conducted in duplicate. Following hybridization, the PhP-Au/AuNPs/ssDNA
electrode was washed with 1× PBS and used as the working electrode for SWV measure-
ments. Figure 5B illustrates the difference in SWV peak current density before and after
varying miR-21 hybridization times. Allowing a two-hour hybridization time resulted in
a significant change in ∆j (current density) of 15 µA cm−2, highlighting the biosensor’s
capability to detect miR-21 by transducing the hybridization event into an electrochemical
signal. However, such a prolonged experimental duration of 120 min is impractical for POC
diagnostics where rapid response times are crucial. Consequently, the 60 min hybridization
time resulted in a ∆j of 12.5 µA cm−2. Further reducing the hybridization time to 15 min, a
more feasible option for POC devices, yielded a substantial change in ∆j of 13.5 µA cm−2.
The consistency of ∆j across the 120, 60, and 15-min hybridization times confirms that a
15 min hybridization period is sufficient for detecting miR-21 hybridization events using
the ssDNA-21 bioreceptor.

3.4. miR-21 Detection with PhP-Au/AuNPs/ssDNA Biosensor

To assess the analytical performance and determine the limit of detection (LOD) of
the PhP-Au/AuNPs/ssDNA biosensor, SWV was conducted with miR-21 concentrations
ranging from 1 fM to 1 nM utilizing the optimized conditions to validate the CV results.
Figure 6A shows the SWV voltammogram depicting current density outputs for the biosen-
sor across the various miR-21 concentrations. The corresponding linearity plot is presented
in Figure 6B. Notably, a linear relationship is observed where higher miR-21 concentrations
correlate with greater decreases in Ip, underscoring the biosensor’s effective detection
capabilities with a sensitivity of 7.69 fM µA−1 cm−2. The LOD was calculated to be 0.53 fM,
significantly lower than many recent gold-based electrochemical biosensors for miR-21
detection (Table 2). The LOD is calculated using 3.3xσ/S, where σ is the standard deviation
from the two blank sample measurements, and Sx is the slope of the calibration curve. As
shown in Table 2, the fabricated paper-based DNA electrochemical biosensor’s straightfor-
ward design, combined with its wide linear range and low LOD, offers a practical solution
for scalable production of efficient electrodes for miR-21 biosensing compared to more
complex and costly alternatives [42–48].
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Table 2. Recent gold-based electrochemical biosensors for detection of miR-21.

No. Sensor Platform Technique Range LOD Ref

1 NIPAm-co-AAc
microgel/AuNPs DPV 10 aM–1 pM 1.35 aM [42]

2 FTO/SWCNTs/den-Au DPV 0.01 fM–1 µM 0.01 fM [43]
3 Au ACV 10 fM–100 nM 3.2 fM [44]
4 Au/RGO EIS 1pM–10 nM 300 fM [45]
5 FTO/APTS/AuPtBNPs DPV 1 fM–100 nM 0.63 fM [46]
6 PE/MoS2/AuNPs DPV 135.6–406.8 nM 59.7 nM [47]
7 3SPCE/GO/GQDs/AuNPs SWV 1 fM–1 nM 0.04 fM [48]
8 PhP-Au/AuNPs SWV 1 fM–1 nM 0.35 fM This work

NIPAm: N-isopropylacrylamide; AAc: acrylic acid; den-Au: dendritic gold nanocomposite; AuPtBNPs: gold
platinum bimetallic nanoparticles APTS: 3-aminopropyltriethoxy silane; MoS2: molybdenum disulfide; PE: paper
electrode; GQDs: graphene quantum dots.

3.5. Selectivity, Stability, Repeatability, and Reproducibility Testing

The selectivity of the fabricated DNA biosensor was conducted in the presence of
miR-141 and miR-let7a, common interfering miRs dysregulated in prostate cancer [49]. The
three independent PhP-Au/AuNPs/ssDNA electrodes were hybridized with 5 µL of 1 nM
miR-let7a, miR-141, or miR-21 for 30 min in a humidity chamber. Figure 7A shows each
electrode’s percent activity normalized with miR-21. The decrease in activity observed for
miR-141 and miR-let7a was 35.6% and 17.1%, respectively. This significant reduction in
activity highlights the biosensor’s strong selectivity toward miR-21.
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against non-complementary miRs. (B) % Stability of PhP-Au/AuNPs/ssDNA vs. days of storage.
Experiments were conducted in duplicates.

The stability of the PhP-Au/AuNPs/ssDNA biosensor is examined to showcase the
shelf life of the ssDNA-21 capture probe attached to the electrode’s working surface by
performing SWV over a period of one month. As shown in Figure 7B, the peak current
density decreased by approximately 2% per day over the first 11 days and then plateaued
for the remaining 6 days, indicating the ssDNA-21 bioreceptor remained stable by retaining
70% of its original activity for 31 days when stored at 4 ◦C. The repeatability of the PhP-
Au/AuNPs/ssDNA biosensor is examined by performing 15 cycles of CV. The current
response change between the first and fifteenth cycles is almost negligible, as shown in
Figure S3A. We have tested the reproducibility of three PhP-Au/AuNPs/ssDNA electrodes
to compare their current response. As depicted in Figure S3B, the peak current density
does not show much variation in the peak current density, with a standard deviation of
13.20 µA cm−2.
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3.6. miR-21 Detection in Serum Samples

The performance of the DNA biosensor is investigated in serum samples via 1000-fold
dilution of miR-21 in 1× PBS over a concentration range from 1 fM to 1 nM. As shown in
Figure 8, the biosensor’s response in serum showed similar behavior to miR-21 testing in
1× PBS, wherein the biosensor exhibited a linear electrochemical response over 1 fM to
1 nM miR-21 concentration with a lower LOD of 0.35 fM. The %Recovery and %RSD for
the target miR-21 concentrations are shown in Table 3. Therefore, these results showcase
the possibility of using our biosensor to analyze a wide range of miR in serum samples.
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tions in serum diluted 1000-fold. Voltammograms were obtained in 5 mM (K3Fe(CN)6

4−/3−) + 0.1 M
KCl. Experiments were conducted in duplicates.

Table 3. %Recovery and %RSD of miR-21in FBS.

MiR-21 Concentration %Recovery %RSD

1 fM 67 21
10 fM 103 21

100 fM 113 25
1 pM 117 20

10 pM 115 20
100 pM 121 19

1 nM 125 17

4. Conclusions

We have developed a PhP-Au/AuNPs-based electrochemical biosensor designed for
the sensitive detection of miR-21 biomarkers. Our approach involves gold inkjet printing
onto photopaper followed by AuNPs electrodeposition, which ensures a high surface area
suitable for bioreceptor immobilization and excellent electrical conductivity. The biosensor
successfully detects the miR-21 hybridization event with the immobilized complementary
ssDNA-21, resulting in a measurable decrease in current density that correlates directly with
target miR-21 concentrations. Moreover, the biosensor exhibits good selectivity when tested
against other miRs. With a low LOD of 0.35 fM miR-21 in diluted serum, the fabricated
biosensor can reliably detect ultralow concentrations of miR-21, which is crucial for early
disease diagnosis and monitoring and improving patient health outcomes.

Beyond miR-21, the fabricated gold paper-based DNA biosensor can be adapted for
detecting various nucleic acids and proteins, making it a versatile tool in cancer diagnostics.
Its simplicity, affordability, rapid response time, and high sensitivity render it particularly
suitable for use in resource-limited settings where healthcare infrastructure may be scarce,
enabling timely and precise diagnostics to enhance health outcomes and improve global
healthcare accessibility.
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Supplementary Materials: The following supporting information can be downloaded at: https://www.
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Figure S2: Corresponding linearity plots; Figure S3: Sensor reproducibility.
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