biosensors

Article

Intelligent Evaluation and Dynamic Prediction of Oysters
Freshness with Electronic Nose Non-Destructive Monitoring
and Machine Learning

Baichuan Wang 12, Yueyue Li ?, Kang Liu !, Guangfen Wei 3, Aixiang He 3(", Weifu Kong *

and Xiaoshuan Zhang *

check for
updates

Citation: Wang, B.; Li, Y.; Liu, K.; Wei,
G.; He, A,; Kong, W,; Zhang, X.
Intelligent Evaluation and Dynamic
Prediction of Oysters Freshness with
Electronic Nose Non-Destructive
Monitoring and Machine Learning.
Biosensors 2024, 14, 502. https://
doi.org/10.3390/bios14100502

Received: 2 September 2024
Revised: 5 October 2024
Accepted: 11 October 2024
Published: 14 October 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Beijing Laboratory of Food Quality and Safety, College of Engineering, China Agricultural University,
Beijing 100083, China; b20193070600@cau.edu.cn (B.W.); 15856916264@163.com (K.L.)

2 Yantai Institute, China Agricultural University, Yantai 264670, China

School of Information and Electronic Engineering, Shandong Technology and Business University,
Yantai 264005, China; guangfen.wei@sdtbu.edu.cn (G.W.)

*  Correspondence: 86219@cau.edu.cn (W.K.); zhxshuan@cau.edu.cn (X.Z.); Tel.: +86-(0)-5356923122 (W.K.);
+86-(0)-1062737663 (X.Z.)

Abstract: Physiological and environmental fluctuations in the oyster cold chain can lead to quality
deterioration, highlighting the importance of monitoring and evaluating oyster freshness. In this
study, an electronic nose was developed using ten partially selective metal oxide-based gas sensors
for rapid freshness assessment. Simultaneous analyses, including GC-MS, TVBN, microorganism,
texture, and sensory evaluations, were conducted to assess the quality status of oysters. Real-
time electronic nose measurements were taken at various storage temperatures (4 °C, 12 °C, 20 °C,
28 °C) to thoroughly investigate quality changes under different storage conditions. Principal
component analysis was utilized to reduce the 10-dimensional vectors to 3-dimensional vectors,
enabling the clustering of samples into fresh, sub-fresh, and decayed categories. A GA-BP neural
network model based on these three classes achieved a test data accuracy rate exceeding 93%. Expert
input was solicited for performance analysis and optimization suggestions enhanced the efficiency
and applicability of the established prediction system. The results demonstrate that combining an
electronic nose with quality indices is an effective approach for diagnosing oyster spoilage and
mitigating quality and safety risks in the oyster industry.

Keywords: oyster freshness; intelligent evaluation; GA-BP; electronic nose; gas sensor;
non-destructive monitoring

1. Introduction

Oysters, a highly prized type of shellfish, are widely recognized for their medicinal
and culinary value [1-3]. However, the common practice of shelling oysters prior to market
sale exposes them to various issues, including belly breakage, microbial contamination,
discoloration, and spoilage [4]. Consequently, it is crucial to accurately monitor, assess,
and predict the freshness of oysters throughout their transportation, storage, processing,
and marketing.

Conventional evaluation methods, such as sensory assessment [5], physical and chem-
ical analysis [6], and microbial detection [7], have inherent limitations. Kuuliala et al. [8]
identified and qualified volatile organic compounds through microbiological, chemical,
and sensory analyses over storage periods at 4 °C and 8 °C to assess spoilage in Atlantic
cod. To measure the odors of raw shrimp, Luzuriaga et al. [9] developed an electronic nose
equipped with 12 conduction polymer sensors, achieving a classification accuracy of 99.2%
for sulfite-treated shrimp. These traditional methods often depend on subjective judgment,
involve complex procedures, and require lengthy detection cycles, which may negatively
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affect oysters. In contrast, non-destructive monitoring [10] presents clear advantages by
accurately identifying nutrients and harmful substances in food while efficiently classifying
food quality. Currently, the leading non-destructive monitoring methods include Fourier
transform infrared spectroscopy (FTIR) [11], computer vision analysis [12], ultrasonic
detection [13], and electronic nose technology [14].

As a monitoring method, the electronic nose can comprehensively capture and analyze
the overall characteristics and potential attributes of the tested sample by constructing a
sensor array with specific recognition capabilities and an advanced pattern recognition
system. It has been widely utilized in various fields, including medical diagnosis [15],
environmental monitoring [16], food quality analysis [17], and the tobacco industry [18].
However, the limited odor recognition ability of the electronic nose, combined with fluc-
tuating external environmental conditions and the complex and diverse characteristics
of oysters, presents challenges in achieving a comprehensive evaluation of oyster quality
and accurately predicting its freshness solely through monitoring changes in the odor and
environmental conditions.

Machine learning algorithms [19], such as artificial neural networks (ANNS), support
vector machines (SVMS), and random forests, have been integrated with electronic noses
to the enhance the accuracy and reliability of odor detection and classification. Harsono
et al. [20] presented an electronic nose to detect several types of coffee and compared
Logistic Regression (LR), Linear Discriminant Analysis (LDA) and K-nearest Neighbors
(KNN) classification methods. The KNN method showed better performance with an
accuracy value of 97.7%. Huang et al. [21] designed a portable, battery-powered electronic
nose system for odor characterization and used machine learning such as SVMS to classify
the VOCS based on the dataset result. The sensitivity and specificity were 98.5% and 98.6%
for the wine test. Therefore, we also employed the Internet of Things (IoT) combined with
machine learning modeling, which not only enabled the real-time dynamic monitoring of
the aquatic products but also enhanced the accuracy in quality assessment and freshness
prediction. This approach possesses strong multi-parameter sensing capabilities along
with self-learning and adaptive adjustment abilities. Commonly used machine learning
algorithms include decision trees, random forests, support vector machines, artificial neural
networks, etc. [22]. The detection of lung cancer using an electronic nose is achieved
through a novel ensemble learning framework. By inputting multidimensional information
into this algorithm, it has been successfully validated for comprehensive evaluation and
freshness prediction in foods such as meat [23], fish [24], fishmeal [25], shrimp [26], and
oysters [27].

Based on previous research, this paper proposes a machine learning-based model for
predicting oyster freshness. The model employs electronic nose technology to monitor the
volatile gasses emitted by oysters in real-time and intelligently integrates multiple quality
indicators to create a comprehensive system for assessing oyster quality. In this study, the
original gas data are normalized and subjected to dimensionality reduction using principal
component analysis. The neural network freshness prediction model is optimized through
a genetic algorithm (GA) [28] and considers the overall impact of environmental factors and
quality indicators on oyster shelf life [29]. This work offers valuable insights into shellfish
product quality assessment and freshness prediction.

2. Materials and Methods
2.1. Mechanism Analysis and Model Framework

The mechanism of oyster quality changes during storage and transportation is depicted
in Figure 1. Fluctuations in temperature and humidity throughout production, processing,
distribution, and sales accelerate the growth and activity of microorganisms and spoilage
bacteria, leading to nutrient decomposition and the production of toxic substances, ulti-
mately resulting in oyster deterioration. Additionally, changes in external environmental
factors, such as nutrient composition, pH value, moisture content, carbon dioxide content,
oxygen content, and osmotic pressure, also impact the physiological, biochemical, and
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enzymatic reactions of oysters [30]. On one hand, the presence of fatty acids in oysters and
the breakdown of proteins result in the production of spoilage compounds, such as amino
acids, peptides, and volatile gasses [31] (including trimethylamine [32], ammonia [33], and
dimethyl sulfide [34]), exacerbating the deterioration of oysters. On the other hand, the
spoilage compounds generated by oysters themselves respond to external factors, such as
increased microbial metabolism and decreased oxygen levels, which lead to heightened
anaerobic respiration. Consequently, adverse changes in external environmental conditions
further accelerate the degradation of oysters, presenting greater challenges for maintaining
their freshness and ensuring food safety.
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Figure 1. Fresh oyster quality change mechanism during the preservation process.

The assessment and prediction of oyster freshness result from the complex interaction
of numerous factors. This process is influenced not only by environmental conditions that
promote quality indicators, but also by the reciprocal effects of these quality indicators
on environmental factors. By comprehensively considering the real-time monitoring of
temperature, humidity, gas parameters, and physical indicators such as hardness, color, and
odor, as well as chemical indicators like pH and TVB-N, and biological changes including
microbial colonies, we can observe their correlations that demonstrate fluctuations in oyster
quality during storage and transportation. This holistic approach facilitates a more accurate
prediction and evaluation of the trends in oyster freshness.

2.2. System Architecture

In conjunction with the characteristics of the oyster transportation process, this study
established an experimental scheme for non-destructive monitoring and multi-parameter
detection (Figure 2). A real-time monitoring system was developed to facilitate the continu-
ous monitoring of the microenvironment signals of oysters during storage, utilizing the
assessment and prediction capabilities of an electronic nose. The system primarily consists
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of four modules: the process analysis layer, the data acquisition layer, the comprehensive
evaluation layer, and the data application layer.
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Figure 2. Comprehensive framework for monitoring, traceability, and freshness prediction in the
oyster cold chain system.

Process analysis layer: Throughout the transportation, storage, processing, and sale
of oysters, challenges such as belly rupture, microbial growth, and deterioration are likely
to arise. Therefore, it is essential to perform data collection, system assessment, freshness
prediction, and data display for oysters across these processes;

Data collection layer: In accordance with the evaluation index and the requirements
outlined by the process analysis module, the data collection module gathers various key
parameters, including odor information, the total number of colonies, TVBN, hardness, the
microbial index, and the sensory index. These data are acquired through sensors, as well as
physical, chemical, microbial, and sensory experiments. After undergoing analog-to-digital
conversion, the collected data are transmitted to the evaluation module via the transmission
module for further formalization and quantitative processing;

Comprehensive evaluation layer: Develop a predictive model for the analysis and
optimization of the gathered data. Identify quality indicators and environmental signals
that are highly relevant for subsequent evaluation and prediction modeling. Perform the
statistical analysis and assessment of the key collected data, and select significant indicators
to establish evaluation criteria, collectively forming the predictive model;

Data application layer: The data are stored in the sending database, while the model-
ing results are housed in the model library. The prediction results are transmitted to the
knowledge base for storage, and communication with the mobile terminal is facilitated
through the mobile communication switching center.

2.3. Sample Collection and Processing

Before commencing each experiment, large quantities of alive oysters of similar sizes
are to be procured from the breeding farm located in Yantai, Shandong. After live transport
to the laboratory, the shells will be removed using specialized tools. The initial step
involves selecting oyster meat of comparable shapes and sizes, with each piece weighing
approximately 20 g, to conduct a series of experiments. Subsequently, 11 pieces of oyster
meat, totaling about 220 g, will be collected for the electronic nose experiment at a specified
temperature. Furthermore, in order to enhance the effectiveness and accuracy of the
assessment results, six different sets of samples are taken for the same analysis experiments
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at each different temperature, respectively. The mean data from the six trials are considered
for decision making.

2.4. Oyster Nose Design and Measurements

The datasets utilized in this study were obtained from the independently developed
odor test system designed by the laboratory, as illustrated in Figure 3a. The hardware of the
system is centered around the STM32F103 single-chip microcontroller, (STMicroelectronics,
Geneva, Switzerland) which serves as its core controller [35]. Analog signal acquisition
is conducted using the multi-channel 12-bit analog-to-digital converter TLC1543 (Texas
Instruments, Dallas, TX, USA), which provides high resolution, fast speed, and seamless
integration with microcontrollers [36]. Furthermore, an LCD screen is incorporated into the
system to display real-time sensor voltage readings, as well as temperature and humidity
levels within the test chamber, along with the operational status of the solenoid valve and
air pump. This feature enhances the visual observation of experimental conditions for
test personnel.

Test cavity

Data display and storage

(@)

(b) (©)

Figure 3. Architecture of the electronic nose monitoring equipment. (a) Schematic representa-
tion of the testing system; (b) actual images of the odor monitoring system; (c) test chamber with
constant temperature.

The odor test system is illustrated in Figure 3b, which demonstrates the integration of
gas collection equipment, including air pumps and various hardware components, into the
system’s printed circuit board (PCB). The test system is connected to a constant temperature
test chamber (Figure 3c) via a food-grade rubber tube, which contains the test sample. Once
the sampled gas enters the test chamber, it elicits a response from the sensor array before
being returned to the chamber through a hose.

In accordance with the sensor characteristics and the variations in volatile gasses
during the refrigeration of oysters, a sensor array comprising ten distinct MOS sensors
with varying sensitivity profiles was selected. When the target gas interacts with the gas-
sensitive material of the MOS sensor, a physical and chemical reaction occurs, resulting in a
change in the resistance within the gas-sensitive material. The type or concentration of the
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detected gas can be determined by measuring the voltage signal change that corresponds
to this resistance alteration. The models of each sensor and their respective measurable
gasses are detailed in Table 1. Furthermore, digital humidity and temperature sensors were
incorporated into the prototype alongside the gas sensors to monitor fluctuations in relative
humidity and temperature.

Table 1. The sensor specifications utilized in the Oyster Nose model.

S. No Sensor Volatile Compounds Detection
Types Range (ppm)

S1. TGS2602 Ammonia, hydrogen sulfide, and toluene 1~30
S2. TGS2603 Amine series, hydrogen sulfide, etc. 1~10
S3. TGS2612 Methane, propane, isobutane, etc. 500~10,000
S4. TGS2630 Refrigerant gas 1000~10,000
S5. MQ137 Ammonia and amine compounds 5~500
Sé6. MQ135 Ammonia gas, sulfide, benzene series vapor 10~1000
S7. TGS2611 Ethanol, hydrogen, isobutane, methane 500~10,000
S8. TGS2610 Ethanol, hydrogen, methane, isobutane/propane 500~10,000
S9. TGS2620 Organic solvents, alcohol, etc. 50~5000
S10. TGS2600 Carbon monoxide, hydrogen 1~30

Oysters were continuously monitored in a controlled gas flow environment, with each
cycle comprising 20 min of thorough cleaning followed by five collection events. Each
collection event included a 5 min sampling period and a brief cleaning interval, with a
sampling frequency of 1 Hz. The individual sample path and cleaning circuit are regulated
by the gas path selection module on the testing equipment, as illustrated in Figure 4. The
experimental procedure for oyster samples is outlined as follows:

Step 1: Connect the sensor array to the test system and preheat the sensors for one week;
Step 2: Place 11 oysters in an enclosed detection gas chamber within a modified polypropy-
lene fresh-keeping box (30 cm x 20 cm x 12 cm), which is then placed in a constant tempera-
ture and humidity chamber set at temperatures of 4 °C, 12 °C, 20 °C, and 28 °C, respectively;
Step 3: Connect the constant temperature and humidity box to the test system, open the
airflow control switch, and initiate data collection using upper computer software until
complete decay of the sample;

Step 4: Conclude the experiment by organizing obtained datasets into classified labels.

Control and data preprocessing

Overall design of gas acquisition systems

AD conversion and signal
The sensor array is warmed up conditioning

l

(T et Gy Sampling co-controller

l Master controller
The oyster meat was removed and put into l
experimental boxes at different temperatures .
USB/RJ45/WiFi
The sensor array collects the gas concentration PC host computer terminal

|
*

Figure 4. Testing for the volatile gas components of oysters.

Gas acquisition process
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2.5. GC-MS Analysis of Volatile Compounds

To gain deeper insights into the chemical composition underlying sensory variation,
volatile compounds from oysters stored at 28 °C for 48 h were subjected to GC-MS analysis.
The GC-MS system utilized standard laboratory instrumentation and reagents commonly
employed in analytical laboratories, including a triple quadrupole tandem mass spectrome-
ter (GC-2030/GCMS-TQ8040NX, Shimadzu Technologies, Kyoto, Japan) equipped with a
CP-5il 8CB column (50 m length, 0.32 mm inner diameter, 5.0 pm film thickness, Agilent
Technologies, Utrecht, The Netherlands), methanol (chromatographic grade, Dikma Tech-
nologies, Shanghai, China), and a methyl sulfide standard (Macklin Technologies, Twain
Harte, CA, USA). A gas bag was used to collect the gas monitored by the electronic nose
for direct GC-MS detection.

The pretreatment process was conducted as follows: (a) 100 mL of volatile gas was
collected at 28 °C for 48 h directly using a gas collecting bag from the gas chamber of the
electronic nose, and (b) 1 mL of the collected gas was extracted with an injection needle for
GC-MS detection.

The GC parameters were as follows: helium served as the carrier gas at a flow rate
of 4 mL/min. The initial temperature of the chromatographic column was set at 50 °C
and maintained for 4 min, after which it was increased to 150 °C at a rate of 20 °C/min,
held for 5 min, and then further increased to 250 °C at a rate of 40 °C/min. The mass
spectrometry (MS) conditions were as follows: electron-impact mass spectra were generated
at 70 eV with a mass-to-charge (1m/z) scan range of 33-325 (0.3 s interval). The ion source
temperature was set to 200 °C, and the detector interface temperature was set to 300 °C.
Solvent elution was delayed by 2.2 min. All the measurements were performed in triplicate.
For positive identifications, the retention indices and mass spectra of the unknowns were
compared with those of an authentic methyl sulfide standard substance analyzed under
identical conditions.

2.6. Evaluation Index

The TVBN, microbial analysis, sensory evaluation, and texture analysis were chosen
for a comprehensive assessment of oyster freshness changes. Six oyster samples (approxi-
mately 160 g) were selected for the TVBN value, the total number of colonies, and sensory
evaluation. Three oyster samples (approximately 80 g) were chosen for texture analysis.
The specific time points of sampling during the experiment are presented in Table 2.

Table 2. Experimental grouping method.

4°C 12°C 20°C 28 °C

Test . Test . Test . Test
Duration Node Duration Node Duration Node

Monitoring

Items Duration

TVBN
Microbial
analysis
Sensory ]i)la};s [t
evaluation et
Texture

analysis

Day 10 Every day 7 days Every 12 h 72h Every 4h 48 h

2.6.1. TVBN

Volatile basic nitrogen, which includes alkaline nitrogenous compounds such as
ammonia and amines that result from the degradation of protein in meat [37], serves as a
crucial indicator for evaluating the freshness of aquatic products. This is due to their high
protein and amino acid content, which undergoes enzymatic and bacterial decomposition,
leading to the generation of alkaline nitrogenous substances during spoilage.

The TVB-N experiment procedure is as follows:

Step 1: Firstly, weigh 1 g of magnesium oxide for later use;
Step 2: Next, grind the oyster sample and weigh the resulting 10 g oyster sample into the
distillation tube;
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Step 3: Then, add 75 mL water to the distillation tube containing the oyster sample and
shake until evenly dispersed in the solution, allowing it to impregnate for 30 min;

Step 4: After standing, add 1 g of magnesium oxide to the distillation tube;

Step 5: The instrument setup involves using a volume of alkali and diluted water at 0 mL
and a receiving solution of boric acid at 30 mL;

Step 6: Finally, computer measurement begins after setting up the instrument; start distilla-
tion with a duration of three min.

The following classification grades for freshness were established: TVBN content of
less than 15 mg/100 g for fresh, 15-25 mg/100 g for moderately fresh, and greater than
25 mg/100 g for spoilage.

2.6.2. Microbiological Analysis

The freshness of oysters can be assessed through microbiological inspection, as they
are particularly vulnerable to contamination by microorganisms during production, trans-
portation, and storage.

Based on experimental data and in accordance with GB 4789.2-2016 “National Standard
for Food Safety: Determination of the Total Number of Colonies for Microbiology Inspection
of Food” [38], this study categorizes oyster freshness levels as follows: samples with a total
colony count of less than 6.70 log CFU/g are deemed fresh, samples ranging from 6.70
to 7.70 log CFU/g are classified as sub-fresh, and samples exceeding 7.70 log CFU/g are
considered rotten.

2.6.3. Sensory Analysis

Five carefully selected, professionally trained and experienced assessors were chosen
to conduct a comprehensive evaluation of the color, aroma, and texture of the oysters. Based
on the average final scores, the oysters were categorized as fresh, sub-fresh, or spoiled.
Specifically, an average score of 8 or above indicates freshness, a score between 5 and
8 indicates sub-freshness, and any other score indicates spoilage. The specific evaluation
criteria are detailed in Table 3.

Table 3. Sensory evaluation criteria of oyster meat.

S;:z::;y Color (10 Points) Odor (10 Points) Tissue Status (10 Points)
8-10 Milky or cream It smells normal ~ Good elasticity, quick rebound after
white and shiny and has no odor pressing, firm flesh
White with an eggy Elasticity is general, after pressing it
5-7 yellowish color, Slightly fishy cannot be fully restored to its
slightly dull in color original state, the meat is firmer

Yellowish and Poor elasticity, does not return to its
04 noticeably dull Distinctly fishy original state after pressing, and the
y flesh is soft or tends to be mushy

2.6.4. Texture Analysis

The texture analysis was performed using the Brookfield AMETEK Texture Analyzer
(Texture Pro 1.0.19 Advanced Edition). Measurements were taken from the adductor muscle
of the oyster, deliberately avoiding internal organs and marginal areas. The data analysis
software, Texture Pro 1.0.19, which is connected to the texture analyzer, was employed to
obtain hardness parameter values and facilitate data processing.

2.6.5. Statistics Analysis

After processing each independent sample, a parameter analysis was conducted
to further investigate the impact of processing and storage time on specific parameters.
A two-factor analysis of variance (ANOVA) was performed using SPSS software (Interna-
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tional Business Machines Corporation, version 20, New York, NY, USA) to examine these
effects. The Pearson correlation coefficient was utilized to explore potential associations
between the parameters. Additionally, Duncan’s multivariate range test was employed to
identify significant differences between means at the p < 0.05 level.

2.7. Evaluation and Prediction Models

The supply chain comprises numerous oysters, and monitoring volatile gas com-
ponents individually with a gas sensor array would necessitate considerable time and
resources. To elucidate the relationship between environmental factors and quality changes,
a comprehensive assessment method for volatile gas components associated with oyster
quality changes has been proposed. While traditional prediction models employ BP neural
networks to adapt to various input data patterns, enhance performance through the learn-
ing of historical data, and continually optimize their efficacy, the number of hidden neuron
nodes in the BP neural network algorithm can influence the learning fitting process and
potentially lead to overfitting. In this study, the selection of the BP neural network model is
optimized using a genetic algorithm (GA), resulting in enhanced processing capabilities for
nonlinear relationships. The construction process of the GA-BP neural network model is
illustrated in Figure 5.

Start Encode the initial Determine neural network
* data with genetic «—: : topology
algorithms
Load raw data
+ : Initialize weights and thresholds
BP neural network of BP neural network
Load raw data — training error as
fitness

Get optimal weights and

thresholds
——» Selection operation
¢ Calculate error
Cross operation *
¢ Update threshold
. X Ye *
Not Mutation operation Calculate fitness value Not
Calculate fitness : S
value H 7
al H condition
Y
Satisfy . s
constraint e Get prediction

condition

Figure 5. Gas quality model modeling flow chart.

Step 1: Input the stress factor parameters and the stress parameters collected, determine
the number of neuronal nodes in each layer of the neural network, and classify test dataset
from predictive training set;

Step 2: Establish relevant parameters for the genetic algorithm including the chromosome
coding method, the selection operation implementation algorithm, the fitness function, and
the probability of crossover and mutation operation;

Step 3: Generate the original population based on the neural network structure with
random individual real numbers encoding the network weight and threshold information;
Step 4: Evaluate the adaptability of each individual in the population, inherit excellent
individuals for crossover and variation into next generation, output optimal individual
after several iterations;
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3.0

Step 5: Decipher the optimal individual, allocate the optimal threshold and initial weight
to the neural network, and conduct training and prediction based on the optimal weight
and threshold.

3. Results and Discussion
3.1. Response of Electronic Nose to Oysters of Different Qualities

The sensor output voltages of oysters under various storage conditions are illus-
trated in Figure 6. Aquatic product volatiles include trimethylamine, methylmercaptan,
3-methyl-1-butanol, dimethyl disulfide, and dimethyl trisulfide [39]. When these gasses
interact with the hot surface of the sensor, electron transfer occurs, leading to an increase in
sensor conductance.

3.0
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Figure 6. Signal response from the ten sensors of the e-nose system: (a) sensor output voltages of
oyster samples stored at 4 °C from day 0 to day 9; (b) sensor output voltages of oysters samples
stored at 12 °C from day 0 to day 7; (c) sensor output voltages of oyster samples stored at 20 °C from
hour 0 to hour 72; (d) sensor output voltages of oyster samples stored at 28 °C from hour 0 to hour 48.

The conductance responses of sensor TGS2620, which is more sensitive to alcohol
series volatiles, rose rapidly during the initial stage of storage. This finding aligns with the
results reported by Olafsdottir et al. Additionally, sensors MQ137, TGS2600, TGS52602, and
TGS2603, according to the data sheet from Figaro Co., Ltd., Osaka, Japan, demonstrated
greater sensitivity to amine series volatiles [40]. An increased response was observed at
the end of the storage period for amine series sensors in samples subjected to abusive
temperature treatments.

The final phase of deterioration is associated with the appearance of sulfur, which
aligns with the results from the GC-MS experiments conducted in this research. From
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Figure 7, it can be inferred that peak 2 from the total ion chromatogram (TIC) of the oyster
sample shares the same retention indices and fragment ions (m/z 62, 61, 47, 46) as peak 1.
Consequently, peak 2, which has a retention time of 6.2 min and was stored at 28 °C for
48 h, is identified as dimethyl sulfide. Furthermore, the X, is measured at 0.3821 ppm, the
At s 18,796,229, and Ag is 1,900,211.5. Using the following formula, the concentration of
dimethyl sulfide in the oyster samples (Xp) can be calculated to be 0.0386 ppm. Additionally,
the aforementioned peak is the only one observed in the volatile gas TIC of oysters stored
at 28 °C for 48 h. Therefore, it can be concluded that the content of sulfur compounds is
likely much higher than that of other compounds, such as amines.

XO = XstAO/Ast (1)

where Xj is the dimethyl sulfide concentration of oyster samples stored at 28 °C for 48 h;
Xt is the dimethyl sulfide concentration of the standard substance; A is the peak area of
oyster samples stored at 28 °C; and Ay is the peak area of the standard substance.
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Figure 7. GC-MS spectra of dimethyl sulfide standard and oysters; (a) TIC of dimethyl sulfide
standard; (b) MS spectrum of peak 1; (c) TIC of oyster sample stored at 28 °C for 48 h; (d) MS
spectrum of peak 2.

3.2. Quality Index Evaluation

At 4 °C, the total volatile basic nitrogen (TVBN) content on day seven increased to
28.2 mg/100 g (as shown in Figure 8). At 12 °C, the TVBN content on day four rose to
29.3 mg/100 g (as illustrated in Figure 8b). In contrast, at 20 °C, the TVBN content rapidly
escalated to 41.3 mg/100 g at hour 60 (i.e., day 3) (as depicted in Figure 8). Notably, under
the condition of 28 °C, the TVBN content reached a level exceeding the spoilage standard
of 25 mg/100 g within 36 h (as shown in Figure 8d), indicating that low-temperature
storage conditions effectively delayed the spoilage process to a certain extent. Figure 8a—d
illustrates the temporal changes in the total plate count (TPC) of oyster samples at different
temperatures. Initially, the TPC at the four temperature conditions were 3.31 log CFU/g,
3.08 log CFU/g, 4.23 log CFU/g, and 4.11 log CFU/g, respectively, all of which were below
the standard for fresh oysters (6.70 log CFU/g), indicating the excellent freshness of the
samples used in the experiment. However, as the storage time increased, the microbial
growth and reproduction accelerated. At 12 °C, the TPC of the oyster sample reached
8.20 log CFU/g on day five (as shown in Figure 8b), significantly exceeding the spoilage
threshold for oysters (7.70 log CFU/g). This trend underscores the impact of temperature
on the freshness and microbial growth of oyster samples during storage.
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Figure 8. Changes in TVBN, hardness, sensory score and total number of colonies with storage
time (in days and hours): (a) preservation at 4 °C from day 0 to day 9; (b) preservation at 12 °C
from day 0 to day 7; (c) preservation at 20 °C from hour 0 to hour 72; (d) preservation at 28 °C from
hour 0 to hour 48.

The experimental data were utilized to monitor variations in oyster hardness at
different temperatures during storage, as depicted in panels a-d of Figure 8. It is evident
that the texture parameters of oysters at various temperatures exhibited a gradual decrease
with a prolonged storage time. Notably, at 28 °C, after 48 h of storage, the hardness of
the oysters significantly decreased to 0.17 N. The texture properties of oyster tissue are
primarily influenced by myofibrillar protein; thus, the rapid decline in texture parameters
can be attributed to changes in myofibrillar protein during storage. Furthermore, this trend
aligns with observations from electronic nose data, further validating our findings and
analysis results. Additionally, Figure 8 presents the sensory evaluation results of oyster
samples subjected to different temperature conditions across various time intervals. It was
observed that, over time, the scores of the oyster samples demonstrated a gradual decline.
Specifically, at 20 °C, from the 60th hour to the 72nd hour, the score of the sample decreased
to below five points, indicating spoilage and rendering the quality of the oyster sample
unacceptable at this stage. Similarly, at 28 °C, from hour 20 to hour 48, the sample’s rating
also dropped below five, again meeting the criteria for spoilage. These observations were
consistent with the results of previous textural analyses, further confirming the variation in
the quality of oyster samples under specific time and temperature conditions.

3.3. Freshness Prediction
3.3.1. Correlational Analysis

Based on the correlation results of each indicator presented in Figure 9, the relationship
between the quality indicators and the oyster’s shelf life can be established. The total plate
count (TPC) and total volatile basic nitrogen (TVBN) exhibited a negative correlation with
shelf life, whereas the other quality indicators demonstrated a positive correlation.

The correlation coefficient between the color and the decay deadline ranged from
0.74 to 0.91, indicating a relatively weak relationship across different temperatures. Con-
sequently, color was excluded from the oyster quality prediction model. In contrast, the
correlation coefficients for hardness, odor, and tissue status with the decay deadline under
varying temperatures were all above 0.85, indicating a strong linear correlation. The cor-
relation coefficients between TPC and the decay deadline ranged from 0.95 to 0.99, while
those for TVBN and the decay deadline ranged from 0.92 to 0.98, both exceeding 0.95 and
indicating a strong degree of correlation.
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Figure 9. Correlation coefficients between oyster quality indicators and the deadline of decay:
(a) preservation at 4 °C from day 0 to day 9; (b) preservation at 12 °C from day 0 to day 7;
(c) preservation at 20 °C from hour 0 to hour 72; (d) preservation at 28 °C from hour 0 to hour 48.

Figure 10 illustrates the cluster analysis of the hardness, TVBN value, sensory rating
score, and total number of colonies of oysters at different temperatures. These data points
are categorized into distinct clusters, where objects within the same cluster exhibit high simi-
larity, while objects in different clusters show significant differences. For two n-dimensional
data points, A = (aq,a,...,a,) and B = (by, by, ..., by), the Euclidean distance between A
and B can be calculated:

)

The orange ellipse indicates the 95% confidence interval, demonstrating the feasibility
of the clustering analysis method. Utilizing a principal component analysis (PCA), the
quality indices of the oysters were reduced to two, resulting in two cluster centers and
ultimately leading to two comprehensive indices: PC1 and PC2. Both PC1 and PC2
accounted for over 95% of the total contribution variance, representing the majority of
the information from the raw data. In Figure 10a, the projections of TVB-N and TPC on
the PC1 axis were larger, indicating a greater contribution to PC1 and a more significant
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effect on this component. Conversely, the projections of tissue status, hardness, odor, and
color on the PC2 axis were larger, suggesting a more substantial contribution to PC2 and a
more significant effect on this component. In the PCA loading figure, if the angle between
two variables is acute, approaching 0°, it indicates a positive relationship between them.
Conversely, if the angle is obtuse, approaching 180°, it indicates a negative relationship. In
Figure 10a, the angle between TVB-N and TPC was very acute, indicating a strong positive
relationship between these two variables; a similar relationship was observed among tissue
status, hardness, odor, and color. However, the angles between TVB-N and the other
indices, such as tissue status, hardness, odor, and color, were sufficiently large, indicating a
strong negative relationship between TVB-N and each of the remaining four indices, as was
the case with TPC. This analysis aligns precisely with the findings presented in Figure 9a.
Similar analyses can be performed for Figure 10b-d. Consequently, we categorized the six
quality indices into physical and chemical categories to represent the shelf life of oysters.
Among these, the physical indices, such as color and tissue status, accounted for the most
significant proportion (~85%), in contrast to the lesser impact of chemical indices, such as
TVB-N and odor (~10%).

Days
95% Confidence Ellipse

PC1 (93.4%) | —s Loadings

PCI (87.5%)

Days
95% Confidence Ellipse

— Loadings

-04 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4
T T T T T 1.0 6 T T T T T 1.0
20
15}F Tissue status 4+ Colour
10k 105 105
Hardness 2L
;\3 05} e '(% g Tissue status g
o T N 3 . g
< 0.0f VBN 100 o S o TG Hardness{ 0.0 2
) N ~ )
£ -05F S g S
10 Odor 2r
) Colour 1705 105
-15F -4 Odor
20F
P S S S T S S T SR RN SR SR 7 S S S S S S S SN S S I
-12-10 -8 6 4 -2 0 2 4 6 8 10 12 -12-10 -8 6 4 -2 0 2 4 6 8 10 12
PC1 (93.4%) PC1 (87.5%)
(a) (b)
Hours Hours
o 95% Confidence Ellipse 95% Confidence Ellipse
PCI (86.3%) —s Loadines PCI1 (90.3%) | —s Loadings
-0.4 -0.2 0.0 0.2 0.4 -04 -0.2 0.0 0.2 0.4
T T T T T 1.0 20 T T T T T 1.0
35
30F
250 Colour 15F Tissue status
2'0 TVBN
G 105 10F 105
15+ TVBN, Hardness
= 10} Tissue status 5] ~ 05} _
S Q < S
z 05} I S
= 00 100 = 2 00 400 2
N -05F n o 2 Odor 3
Colour
-15F 32
20F Odor | -0.5 10 1-0.5
25
30k 15+
-35
! L L ! 1 L L ) 1 L L 1.0 20 1 L L L 1 L L ) L 1.0
-12-10 8 6 4 -2 0 2 4 6 8 10 12 -10 8 6 -4 -2 0 2 4 6 8 10

PC1 (90.3%)
(d)

PCI (86.3%)
(©
Figure 10. Cluster analysis: (a) preservation at 4 °C from day 0 to day 9; (b) preservation at 12 °C

from day 0 to day 7; (c) preservation at 20 °C from hour 0 to hour 72; (d) preservation at 28 °C from
hour 0 to hour 48.
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3.3.2. The PCA and GA-BP Array Data of the Gas Sensor

Data were collected at temperatures of 4 °C, 12 °C, 20 °C, and 28 °C, yielding 4200,
4800, 4200, and 7800 sets, respectively. The initial data were normalized to mitigate the
impact of varying dimensions on the model, and dimensionality reduction was performed
using principal component analysis (PCA).

PCA is a multivariate statistical method that transforms and reorients the coordinate
system of the original data, aligning the origin of the processed coordinate system with
that of the initial one. The new coordinates are oriented such that one axis corresponds
to the direction of maximum variance in the original data, while each subsequent axis is
orthogonal to those preceding it.

As depicted in Figure 11, the cumulative contributions of the first, second, and third
principal components accounted for 96.4%, 98.5%, 97.6%, and 97.8% of the original infor-
mation in the dataset at temperatures of 4 degrees, 12 degrees, 20 degrees, and 28 degrees,
respectively. Consequently, the original datasets corresponding to the first three principal
components were utilized as input labels for GA-BP analysis, while the outcomes catego-
rized based on the TVB-N results (with values of 1 indicating fresh, 2 representing sub-fresh,
and 3 denoting decayed) served as output labels for GA-BP analysis. The experimental
data pertaining to gas storage in oysters under varying temperatures were partitioned into
two sets at an allocation ratio of 8:2 for training and testing purposes.
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Figure 11. Principal component analysis (PCA) of a gas sensor array. (a) Preservation at 4 °C from
day 0 to day 9; (b) preservation at 12 °C from day 0 to day 7; (c) preservation at 20 °C from hour 0 to
hour 72; (d) preservation at 28 °C from hour 0 to hour 48.
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The predicted results of the gas quality grade model at 4 degrees Celsius are presented
in Figure 12. Figure 12a illustrates the comparison between the actual and predicted values,
with red representing the actual values and blue denoting the predictions. The test model
achieved an accuracy of 99.5244%, with all the prediction errors occurring at the sub-fresh
and spoiled levels, while successfully predicting all samples at the fresh level. In Figure 12b,
among the 352 fresh level samples, no samples were predicted as other levels, with an
accuracy of 100.0%. Out of 111 sub fresh samples, three were incorrectly predicted as
fresh with an accuracy rate of 97.3%. Out of the 378 samples with decay levels, one was
incorrectly predicted as sub fresh level with an accuracy rate of 99.7%.
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Figure 12. GA-BP neural network model prediction results and confusion matrix analysis stored at
4 °C. (a) GA-BP neural network model prediction results; (b) confusion matrix analysis.

Figure 13 shows the predicted results at a temperature of 12 degrees Celsius. In
Figure 13a, the comparison between actual values and predicted values is shown, with red
representing actual values and blue representing predicted values. The accuracy of the test
model is 99.4797%, and all the prediction errors occur at the decay level. In Figure 13b, all
247 of the fresh samples and 231 of the sub-fresh samples were predicted correctly. Out
of the 483 spoiled samples, only five were predicted as sub fresh with an accuracy rate of
99.0%.
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Figure 13. GA-BP neural network model prediction results and confusion matrix analysis stored at
12 °C. (a) GA-BP neural network model prediction results; (b) confusion matrix analysis.
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The predicted results at 20 degrees Celsius are shown in Figure 14. In Figure 14a, the
actual values of the model are compared with the predicted values, where red represents
the actual values and blue represents the predicted values. The accuracy of the test model is
100.0%. 257 fresh level samples, 349 sub-fresh level samples, and 235 spoiled level samples
were all predicted correctly. This proves the excellent performance of the model.
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Figure 14. GA-BP neural network model prediction results and confusion matrix analysis stored at
20 °C. (a) GA-BP neural network model prediction results; (b) confusion matrix analysis.

Figure 15 shows the predicted results at a temperature of 28 degrees Celsius. In
Figure 15a, the comparison between the actual and predicted values of the model is shown,
with red representing the actual values and blue representing the predicted values. The
accuracy of the test model is 98.5906%, and the prediction error mainly comes from the
confusion between sub fresh and fresh, as well as between rot and the other two grades.
In Figure 15b, out of the 729 samples classified as fresh, six were incorrectly predicted
as sub-fresh with an accuracy of 99.2%. Out of the 471 sub fresh samples, eight were
incorrectly predicted as fresh with an accuracy rate of 98.3%. Among the 361 samples at
the spoiled level, five were incorrectly predicted as sub-fresh, and three were incorrectly
predicted as fresh, with an accuracy rate of 97.8%.
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Figure 15. GA-BP neural network model prediction results and confusion matrix analysis stored at
28 °C. (a) GA-BP neural network model prediction results; (b) confusion matrix analysis.
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In conclusion, the accuracy of oyster gas quality grading at various temperatures
exceeds 95%, demonstrating that the classification and prediction of oyster quality grade
can be accomplished through the integrated model of oyster gas quality grading.

3.4. System Evaluation

Table 4 presents a comprehensive comparison between the traditional system and
optimized system in detail. In contrast to the traditional system, the proposed predic-
tion system integrates an array of gas sensors into intelligent IoT monitoring, achieving
higher accuracy while enabling multi-parameter monitoring. Additionally, the traditional
evaluation method fails to consider various quality indicators and sensory evaluation on
quality under any circumstances. The improved system conducts data statistical analysis
on collected different signals (volatile basic nitrogen content, total number of colonies,
texture parameters and sensory evaluation indexes, etc.) as quality indices for fresh oys-
ters. Through analyzing the collected data, the sensor array real-time dynamic monitoring
system has demonstrated outstanding performance in evaluating oyster freshness.

Table 4. Comprehensive comparison of the traditional model and the proposed model.

Sensors Performance and Environmental Parameters Evaluation Quality Analysis and Evaluation
Model Prediction Model
Performance Monitoring Temperature Humidity Amine Series Sulfide Alkane 4°C 12°C 20°C 28°C Evaluation
Parameters Series Series
Previous Range: Range:
o Temperature and —40-120 °C 0-100%RH
monitoring Humidi A ) A . None None None None None
method umidity ccuracy: ccuracy:
+04°C +3% RH
TVBN < TVBN < TVBN < TVBN <
. : Te;lrl\lp;;r;;gfe Range: Range: 5}5{35‘ }g’;m Range: Range: 25 25 25 25 The accuracy at
mprove —40-70 © ) o] = diff t
U Amine series 40-70°C 0-100%RH 0-100 ppm 1=30ppm  500-10000ppm  pc <770  TPC<770  TPC<770  TPC <770 iherent.
model Sulfide series Accuracy: Accuracy: 1-30 ppm 0-0.5 ppm 0.1-0.25 ppm temperatures is all
o, o
Alkane series +02°C +1%RH 0-0.5 ppm Sensory Sensory Sensory Sensory greater than 95%
score > 5 score > 5 score > 5 score > 5
. . Predict accurately
Multiple critical Trace monitor of multiple gas components d effectivel
witiple critica Better traceability and accuracy of temperature and humidity Different quality evaluation standard under different and etiectively
Advantages parameters ) . O X . X " . without
- Real-time, online monitoring and non-destructive temperature detailed and comprehensive quality evaluation -
monitoring - 7 contamination and
Validation by GC-MS
contact
More critical Only hardness was measured; textural analysis (springiness, gcci‘l:::it:rihcwgi;\
Suggestions N Develop smaller size gas sensor array with fewer numbers of single sensors for oysters’ storage cohesiveness, gumminess, and chewiness) still needs to be e ay

parameters

GC-MS to improve

augmented and improved
accuracy

In this study, relevant personnel are invited to participate in the system performance
analysis of the sensor array, and an optimization strategy is proposed to enhance the
practicality and applicability of the established monitoring system. The system evaluation
team consists of staff, managers, research group members, and experts from cold chain
logistics-related enterprises. Despite optimization efforts, the device still exhibits high
battery power consumption and extensive calculation requirements, leading to poor sus-
tainability and low equipment efficiency. It is recommended that future devices reduce the
number of single gas sensors and minimize equipment volume. Additionally, other textural
analysis parameters (such as springiness, cohesiveness, gumminess, and chewiness) can be
considered to bolster quality evaluation credibility. Furthermore, calibrating the gas sensor
array with GC-MS can improve the accuracy of the quality prediction models.

3.5. Discussion

As shown in Table 5, Kuuliala et al. employed a MOS sensor array and Luzuriaga
used conductive polymer sensors to detect the oyster freshness. Although these models
demonstrated reasonable accuracy in detecting volatile organic compounds associated
with seafood spoilage, their prediction accuracy remained limited by the sensitivity and
specificity of the sensors to the volatile compounds in different storage conditions. For
example, the MOS sensor array in Kuuliala’s study reached an accuracy of 85%, but it was
susceptible to interference from environmental factors such as temperature fluctuations.
However, the proposed method improved upon these limitations by integrating a more
advanced MOS sensor array with a GA-BP (genetic algorithm-back propagation) neural



Biosensors 2024, 14, 502

19 of 22

network model. This allowed for better adaptation to the complex and variable conditions
associated with oyster freshness, particularly through enhanced gas recognition and multi-
parameter sensing capabilities. The application of machine learning in this study led to
significantly higher prediction accuracy (97.9%) across a broader range of temperatures
(4-28 °C), demonstrating the robustness and adaptability of the system in real-world condi-
tions. In addition, compared to the previous study, the proposed one significantly expands
the detection ranges, including trimethylamine, ammonia, and disulfides, which are critical
markers of spoilage in oysters. This broad detection range enables a more comprehen-
sive assessment of oyster freshness, contributing to the improved accuracy of freshness
prediction models. Furthermore, the current study includes a more comprehensive set of
freshness indicators, including TVBN, total plate count (TPC), texture, sensory analysis,
and hardness. This multi-parameter approach provides a more holistic understanding of
oyster freshness, ensuring that subtle changes in both physical and microbial parameters
are captured. The integration of these indicators with the GA-BP neural network further
enhances the prediction model’s ability to accurately classify the freshness of oysters. De-
spite the advancements demonstrated in this study, some challenges remain. For instance,
while the GA-BP neural network model significantly improved prediction accuracy, the
model requires further optimization to ensure it performs consistently across different
environmental conditions and oyster varieties. Moreover, the current study focuses on labo-
ratory settings, and further validation is necessary in real-world commercial environments
to ensure the system’s scalability and robustness. Future research should also explore
the integration of other machine learning algorithms and advanced sensor technologies,
such as deep learning and hyperspectral imaging, to further enhance the accuracy and
applicability of freshness prediction models.

Table 5. Comprehensive comparison of the traditional electronic nose technology in oyster freshness
detection and the proposed method.

Kuuliala et al.
(2018) [8]

Luzuriaga et al.

Parameter (2008) [9]

Proposed Study

Electronic Nose MOS sensor array

MOS sensor array

Conductive polymer

with GA-BP neural

Model sensor array network
. Trimethylamine, .. . .
Detected Volatile . Carbon dioxide, Trimethylamine,
ammonia, hydrogen N,
Compounds . ethanol ammonia, disulfides
sulfide
Storage Tem}zerature 4.8°C 4°C 4.08°C
Range (°C)
Pred‘dlo(f,} fccuracy 85% 99.2% 97.9%
. TVBN, Microbial : TVBN, TPC, Texture,
Freshness Indicators Analysis, Sensory Sensory Analysis
. Sensory, Hardness
Analysis
Machine Learning None None GA-BP Neural
Applied Network Model
Sampling Frequency Once per day Once every 2 days Hourly
Experiment Duration 7 days 48 h 9 days
Integrated real-time
. . . multi-parameter
. High repeatability High accuracy L
Key Findings and reliability sensory evaluation monitoring and

machine learning
predictions
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4. Conclusions

In this study, we proposed a machine learning-based model for predicting the freshness
of oysters, which enables the assessment of oyster quality at various storage temperatures.
This model incorporates electronic nose technology that facilitates the real-time and intelli-
gent sensing of volatile gasses released by oysters, along with multiple quality indicators,
thus constituting a comprehensive system for evaluating oyster quality.

1.  We designed and established a real-time dynamic monitoring system for the cold
chain transportation of freshly captured oysters;

2. We deduced the factors influencing the quality of fresh oysters based on their logistics
process and quality change mechanisms, while also discussing the feasibility and
correlation between different signals as indicators of oyster quality;

3. We developed a neural network-based coupling model that integrates gas sensor in-
formation with oyster quality and verified its effectiveness. The results demonstrated
that the prediction accuracy for classifying the gas-quality grade of oysters at different
temperatures exceeded 95%, indicating that the classification and prediction of oyster
quality grades can be effectively achieved through this coupling model.
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