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Abstract: Cardiovascular diseases are a leading cause of death worldwide. They mainly include
coronary artery disease, rheumatic heart disease, andcerebrovascular disease, and. Cardiovascular
diseases can be better managed and diagnosed using wearable devices. Wearable devices, in com-
parison to traditional cardiovascular diagnostic tools, are not only inexpensive but also have the
potential to provide continuous real-time monitoring. This paper reviews some of the recent advances
in cardiovascular wearable devices. It discusses traditional implantable devices for cardiovascular
diseases as well as wearable devices. The different types of wearable devices are categorized based
on different technologies, namely using galvanic contact, photoplethysmography (PPG), and radio
frequency (RF) waves. It also highlights the use of artificial intelligence (AI) in cardiovascular disease
diagnostics as well as future perspectives on cardiovascular devices.
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1. Introduction

Cardiovascular diseases, commonly known as heart diseases, are a group of diseases
related to the heart and blood vessels [1]. Cardiovascular diseases include coronary artery
disease, rheumatic heart disease, and cerebrovascular disease, and [1]. They are the leading
cause of death in the world. Each year, around 17.9 million people die from cardiovascular
disease in the world. Approximately 695,000 deaths were due to heart disease in the
US in 2021, which is about one in every five deaths [1,2]. One reason for the increase in
cardiovascular disease mortality is the limited availability and accessibility of adequate
diagnostic and monitoring tools. Traditional diagnostic tools are not only expensive but
are also not sufficient to address the rapid progression of cardiovascular disease. A major
risk factor for cardiovascular disease is an unhealthy lifestyle, which includes a lack of
physical activity, an unhealthy diet, and the use of alcohol and tobacco [1]. According to
the Centers for Disease Control and Prevention (CDC), from 2018 to 2019, USD 239.9 billion
has been spent on the treatment of cardiovascular disease [2]. Cardiovascular disease can
be better managed with the continuous and real-time monitoring of the vital parameters
related to cardiovascular disease. These parameters include but are not limited to heart
rate, electrocardiogram (ECG), oxygen saturation in the blood (SPO2), activity status, and
blood pressure (BP). Wearable devices are now widely being used for this purpose [3–7].

Wearable devices can be worn on the skin or on clothing and they offer the low-cost,
real-time, and continuous monitoring of the target biomarkers [3]. Most of the wearable
devices consist of a receptor and a transducer. A receptor detects the target, and the
transducer converts the detection into a usable signal [3]. Moreover, wearable devices are in
accordance with the World Health Organization (WHO) ASSURED (Affordable, Sensitive,
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Specific, User-friendly, Rapid, robust, Equipment-free, and Deliverable to end-users) criteria
to offer monitoring and diagnostic tools at the point of care (POC) settings [8]. According to
one estimate, there were around 1.1 billion connected wearable devices around the world
in the year 2022 [9]. Most of the wearable devices are for fitness and wellness purposes
that include monitoring parameters related to cardiovascular disease [10]. These wearable
devices use different technologies for monitoring different diseases. These technologies
include photoplethysmography (PPG), radio frequency (RF) waves, and galvanic contact
with the skin-based sensors.

In this article, we review wearable devices for cardiovascular disease. For this purpose,
we will review some existing traditional devices and discuss some of the wearable devices
and their integrated technologies for cardiovascular disease. The article will also highlight
future directions for wearable devices, specifically in cardiovascular disease.

2. Implantable Cardiovascular Devices

Traditionally, implantable devices have widely been used for monitoring patients with
cardiovascular disease. Some of the most frequently used implants are pacemakers and
implantable cardioverter defibrillators (ICDs). Recently, implants like CardioMEMS™ and
insertable cardiac monitors have also been introduced for diagnostic purposes. Pacemakers,
as shown in Figure 1a, are used for restoring the heartbeat in the case of arrhythmias [11].
Arrhythmia is a condition in which the heart beats with an irregular rhythm, either faster
(tachycardia) or slower (bradycardia) than normal [11,12]. A pacemaker continuously
monitors the heart’s rate and rhythm and when needed, sends an electrical signal to
normalize the heartbeat. It is implanted on the left side of the chest near the collarbone.
Similarly, an ICD is an implant slightly larger in size than a pacemaker (due to a larger
battery) but has more features. An ICD also continuously monitors the heart’s rate and
rhythm but differs in that it can deliver an internal shock to stop a lethal arrhythmia [13].
Over the years, implantable devices have seen advancements in their size and technology.
One such technology is insertable cardiac monitors (ICMs), also known as implantable loop
recorders (ILRs) that insert cardiovascular devices with minimal incision. An implantable
loop recorder is a small device to record the electrocardiogram (ECG) and it is used to
detect and diagnose arrhythmias that are not apparent on examination [14–18]. A cardiac
loop recorder, is one such ILR [19]. Unlike pacemakers or ICDs, it does not restore the
heart rhythm; it is only used to record the ECG for an extended period for diagnostic
purposes. It can record the ECG for as long as three years [14]. It helps providers to
diagnose tachycardia or bradycardia so the correct device or treatment can be determined.
Medtronic Reveal LINQ (USA), as shown in Figure 1b, is another ILR. It is one of the world’s
smallest ILRs at 44.8 mm × 7.2 mm × 4.0 mm size and has a battery life of 3 years [20].
One of the arrhythmias it can detect is atrial fibrillation (AFib). AFib can lead to blood
clots and increase the risk of stroke, heart failure, and other cardiovascular conditions [21].
CardioMEMS™ (Abbott, USA), as shown in Figure 1c, is another implantable solution
for monitoring heart failure (HF) using pulmonary artery pressure. In HF, the heart is
unable to pump sufficient blood to fulfill the needs of the body [4]. Pulmonary artery
pressure increases as HF worsens and CardioMEMS™ monitors these changes in the
pulmonary artery pressure so that providers can intervene before patients need to go to the
hospital [22,23]. CardioMEMS is implanted permanently in the distal pulmonary artery
with a safe right heart catheterization procedure. A pressure sensor inside CardioMEMS
then measures changes in the pulmonary artery pressure, a reflection of the retention of
fluid in the lungs due to worsening heart failure [24].

Implantable cardiovascular devices are very useful in monitoring cardiovascular
disease; however, they have limitations. The devices mentioned above are costly and are not
accessible to everyone. A pacemaker costs between USD 20,000 to USD 100,000 depending
on the type of the pacemaker [25]. Similarly, a simple ICD costs USD 18,000 in the US [26]. A
cardiac loop recorder costs around USD 11,329 and a Medtronic Reveal LINQ costs around
USD 2542 [27,28]. A CardioMEMS™ average cost is around USD 17,750 [29]. Moreover,
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not everyone is eligible for these implants; for example, an ICD is only recommended for
HF patients with reduced ejection fraction, meaning their heart pump is weak and they
are at risk for lethal arrhythmias. Similarly, CardioMEMS is indicated for NYHA Class
II or III heart failure patients who either have been hospitalized for heart failure in the
previous year and/or have elevated natriuretic peptides [24]. Patients with preserved
ejection fraction are not eligible for an ICD [4]. Not only are these implants costly but they
also involve the risk of surgery. All these implants are inserted with a major or minor
incision. Most of them have a limited lifespan; for example, Reveal LINQ is only suitable
for three years [30]. Similarly, pacemakers and ICDs have lithium batteries and require an
implantable device replacement procedure around every five to ten years for replacing the
battery [31].

Due to power limitations and the burden of additional surgery for battery replacement,
most of these implants do not always report parameters continuously. They rather report
the daily averages of the parameters. Wearable devices, on the other hand, being non-
invasive in nature, can be used to monitor vital parameters related to cardiovascular
diseases in real-time and continuously; however, most wearables are not for diagnostic
purposes like ICDs or lCMs. The subsequent paragraphs discuss some of the existing and
emerging wearable devices for different cardiovascular conditions. The next section also
highlights different technologies that are most used in cardiovascular wearable devices for
measuring cardiovascular parameters.
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(c) CardioMEMS for monitoring pulmonary artery pressure [23].

3. Cardiovascular Wearable Technologies

Cardiovascular wearable devices have seen advancements over the years. Different
technologies have been used in these wearables. The most frequently used technologies are
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photoplethysmography (PPG), radio frequency (RF), and wearables using galvanic contact.
This section discusses these technologies and discusses some of the most commonly used
as well as emerging cardiovascular wearable devices.

3.1. Galvanic Contact

Galvanic contact is one of the oldest methods for measuring cardiovascular parameters.
In this method, galvanic contact is made with the skin. Galvanic contact can be used to
measure cardiovascular parameters such as ECG and HR by detecting potential differences
generated by the heart. Cardiopulmonary parameters such as thoracic impedance, respira-
tion rate, and lung fluid can be measured using galvanic contact by measuring the change
in the applied signal due to the changes in these parameters in the thoracic region. The
electrical signal can either be a voltage or current signal.

3.2. Photoplethysmography (PPG)

Photoplethysmography is widely used for detecting cardiovascular parameters. It
is based on the absorption and scattering of optical light by the blood in peripheral cir-
culation [33]. It consists of a light-emitting diode (LED) and an optical detector. The
optical detector detects changes in the intensity of the light emitted by the LED. Changes in
light intensity are affected by the volumetric changes in the blood flow. These volumetric
changes can then be used to detect different cardiovascular parameters including heart
rate (HR), heart rate variability (HRV), blood pressure (BP), stroke volume, and oxygen
saturation in the blood (SPO2).

3.3. Radio Frequency (RF) Waves

Radio frequency (RF) waves are electromagnetic waves in the frequency spectrum
of 3 Khz to 300 MHz. RF waves get distorted when they are obstructed by human or-
gans. Their obstruction can be used to detect different cardiovascular parameters in-
cluding HR, respiration rate, blood pressure (BP), and lung fluid. The next section will
describe the use of these technologies in different wearable devices for measuring different
cardiovascular parameters.

4. Cardiovascular Wearable Devices

Cardiovascular wearable devices have been used to detect different bio-signals related
to cardiovascular disease. These wearable devices can be categorized into two major
categories: body-mounted wearables and smart flexible wearables. Body-mounted sensors
are mounted on different parts of the body to measure the target bio-signal. They have the
sensor packaged inside the mounted casing which is then attached to the body. On the
other hand, smart flexible wearables have sensors on the flexible substrate, with conductive
traces, which are directly attached to the body. The next section discusses the applications
of both types of CWDs for measuring significant cardiovascular parameters including ECG,
BP, thoracic impedance, and HR.

4.1. Electrocardiogram

Electrocardiogram (ECG) is a vital and one of the most common cardiovascular param-
eters for monitoring and diagnosing different cardiovascular diseases. ECG is the electrical
representation of the heart with a PQRS complex, reflecting the flow of electrical signals
through the heart. The ECG is usually measured using galvanic contact with the skin
using electrode leads. Traditionally, a 12-electrode system is used for measuring ECG. A
traditional ECG monitor is not wearable and hence is not portable. Both body-mounted
CWDs and flexible CWDs are used for measuring ECG.

A Holter monitor is a common example of a body-mounted wearable for measuring
ECG. A Holter monitor, as shown in Figure 2a, is a portable, external, multi-electrode
CWD for measuring ECG over 24 h or longer [34]. SAVVY (Ljubljana, Slovenia) is another
body-mounted ECG monitor, as shown in Figure 2b, that measures ECG in real-time and



Biosensors 2024, 14, 525 5 of 17

continuously [35]. It has a battery life of measuring ECG for 500 weeks and can be charged
in 2 h [36]. It is connected to a mobile application called MobECG that allows the real-
time visualization of the ECG waveform and can be sent to the medical practitioner [36].
The monitor is suitable for the detection of AFib, and can help in preventing cryptogenic
stroke [36]. In patients with atrial flutter and atrial fibrillation, blood can stagnate and clot
in the left atrium; if the clot dislodges, it can travel to the brain and cause a stroke.

A personal ECG monitor by Wellue, as shown in Figure 2c, is a two-electrode system for
measuring ECG. It is a palm-sized monitor that can measure ECG for 24 h continuously [37].
The smart watch made by Apple also allows the measurements of the ECG. It is a three-
electrode system that allows the measurement of the ECG from the wrist where the user
is required to press the button on the dial using the other hand. The watch is capable of
measuring ECG comparable to a single-lead ECG [38]. In a study conducted, ECG from the
Apple Watch was found to be 98.3% sensitive towards the classification of AFib and 99.6%
specific with respect to the normal sinus rhythm classification [39].
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Figure 2. (a) A Holter monitor with multiple electrodes [34]. (b) An ECG monitor by SAVVY [35].
(c) A palm-sized ECG monitor by Wellue [37]. (d) A 12-lead ECG wearable on e-skin along with its
comparison [38]. (e) A multifunctional, self-healable e-skin wearable for measuring ECG signal [39]
(f) Flexible ECG monitor with non-stretchable components [40].

Cui et al. have developed an intelligent 12-lead electrocardiogram monitor with
8 channels that can monitor ECG for 12 h daily [41]. The ECG monitor, as shown in
Figure 2d, is an electronic skin (e-skin) made with MXene/Polyurethane mesh (MPM). E-
skins are epidermal-based wearable devices that involve the direct attachment of electronics
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to the skin like a tattoo. The wearable is trained using long short-term memory and
convolutional neural network to diagnose four arrhythmias with over 99% diagnostic
accuracy [41]. Similarly, Wang et al. have developed a multifunctional, self-healable e-skin
wearable for measuring different vital signs including ECG. This wearable, as shown in
Figure 2e, is made up of a combination of graphene/silk fibroin/Ca2+ (Gr/SF/Ca2+) [42].
The wearable is robust to deformations and adheres to the skin tightly. It was able to detect
the PQRST complex of the ECG, as shown in Figure 2e [42]. Kim et al. have also reported
a stretchable and breathable e-skin wearable for monitoring the ECG [40]. The wearable,
as shown in Figure 2f, is based on stretchable and breathable medical adhesives with
non-stretchable components integrated into it. The sensor has been reported to comfortably
monitor ECG for five days and the signal was also transmitted wirelessly to a smartphone
using a low-energy Bluetooth connection [40]. The wearable was also programmed with an
R-peak detection algorithm where the R-peaks correlate with the R-peaks of the measured
ECG signal. The R-peaks were then used to measure respiration rate and heart rate [40].

4.2. Heart Rate

Heart rate is an important cardiovascular indicator and can be indicative of different
cardiovascular conditions. It is dependent on the contraction of the heart and hence reflects
the rate at which the heart is pumping blood. A healthy individual should have a heart
rate in the range of 60–100 beats per minute (BPMs); however, in different cardiovascular
conditions, it can be lower or higher than the normal range. For example, in heart failure
and hypertension, the heart rate may be higher than usual. There are two ways to measure
heart rate: electrical and PPG. In electrical measurements, usually, heart rate is measured
using an electrocardiogram or ECG. R-R peak detection and Pan/Tompkins algorithms are
suitable algorithms to measure heart rate using ECG [43].

Modern electrical-based HR wearables use piezoelectric sensors to convert the heart-
beat into electrical signals for measuring HR. One such wearable has been developed by
Ji et al. [44]. They have developed a heart rate monitor using a piezoelectric film with
a serpentine layout [44]. The wearable, as shown in Figure 3a, is highly stretchable and
sensitive e-skin. It is only 168 µm in thickness with a voltage sensitivity of 0.97 mV/µε [44].
It is attached to the chest where the strain sensor captures the chest vibrations and converts
them into electrical signals for measuring heart rate and respiration rate [44]. Similarly,
Mokhtari et al. have also developed a heart rate wearable based on piezoelectric theory [45].
The wearable is a portable cardiac monitor that monitors heart rate and pulse pressure.
The wearable is based on a piezoelectric sensor that converts the sounds of the heartbeat
into HR. It is a lightweight system of 50 g with a thickness of 2 cm, length of 5 cm, and
width of 3 cm [45]. The wearable was correlated with the standard heart rate monitor and
both values matched within an error of 3% [45]. Most of the commercially available HR
wearable devices, for example, Oura Ring, Apple smartwatch, and Fitbit, are based on
PPG technology.

Monitoring the heart rate with PPG uses lights with longer wavelengths for deeper
penetration [46]. For this reason, red and green lights are most frequently used. Red
light has deeper penetration into the tissues; however, it is more prone to motion artifacts;
therefore, green light is also preferred in the PPG-based HR wearables [46]. Miller et al.
have developed a non-invasive heart rate monitor for horses [47]. Heart rate measurements
at rest from the wearable, as shown in Figure 3b, were compared with those measured by
a stethoscope and were found to be 94% correlated [47]. A peak detection algorithm was
used to measure heart rate from the PPG signal for this purpose [47]. PPG signals are prone
to motion artifacts; therefore, they are usually cleaned using accelerometers [48]. Gao et al.
have proposed one such technique where HR measurements are cleaned using the signal
from an accelerometer [49]. Gao et al. have developed a wearable device that combines
the signal from an accelerometer with the PPG signal to remove noise from it using a
least-squares algorithm. The overall framework of the device is shown in Figure 3c [49].
PPG signals are also distorted with muscle artifacts and are, therefore, cleaned using an
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electromyogram (EMG) signal. Friman et al. have developed one such wearable. The
wearable uses both an accelerometer signal along with an EMG signal to increase the
accuracy of HR. The study has found that the EMG signal inclusion for the removal
of muscle artifacts reduces HR estimation error by 49% in comparison to the use of an
accelerometer alone [50]. New techniques include the use of remote PPG (rPPG) for the
measurement of HR. Hosni et al. have used a camera to measure PPG remotely [51]. The
PPG signal is processed using different signal processing techniques including high and
low pass filters followed by Mexican heat wavelet transformation [51]. In this study, the
PPG was calculated using the change in the green color of the pixel in two consecutive
video frames. The videos of the face were recorded at 0.4 m and for 30 s [51]. The flowchart
of the experiment is shown in Figure 3d. The study shows that HR can be measured using
rPPG with a mean absolute error of 3.58 and a standard deviation of 2.4 [51].
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Figure 3. (a) A piezoelectric-based e-skin heart monitor [44]. (b) A PPG-based heart rate monitor
for equine [47]. (c) The framework of an accelerometer-based removal of motion artifact from the
PPG signal for heart rate measurement [48]. (d) The flowchart diagram of remote PPG (rPPG) using
camera [51].

4.3. Blood Pressure

Blood pressure is an important parameter in cardiovascular disease, as it indicates the
force with which blood is flowing through blood vessels [52]. A blood pressure reading
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usually measures both systolic pressure, the pressure in the arteries during the contraction
of the heart, and diastolic pressure, the pressure when the heart is at rest or in the relaxation
phase [52]. A healthy blood pressure is less than 120 mmHg systolic and 80 mmHg
diastolic [52]. On the other hand, hypertension measures higher than this range (systolic
pressure 140 mmHg or higher and diastolic pressure 90 mmHg or higher). Hypertension
is a leading cardiovascular disease with approximately 1.28 billion adults 30–79 years old
affected with hypertension worldwide [53].

The first non-invasive BP apparatus, a sphygmomanometer, was developed by von
Basch in 1881, and in 1896 Scipione Riva-Rocci developed a sphygmomanometer based
on an inflatable arm band connected to a mercury column, similar to what is being used
today with the cuff-based BP measurement [54,55]. Initially, the sphygmomanometer was
only able to measure the systolic blood pressure but since then BP technology has seen
many advancements. Traditional BP apparatuses are cuff-based and therefore are not very
comfortable because the cuff is inflated until the artery is obstructed. Moreover, they are
not portable enough to be carried or used regularly. For this reason, cuffless wearable BP
apparatuses have been developed to conveniently measure BP continuously [56]. Most
of these wearable BP monitors use different techniques such as PPG, bioimpedance, and
capacitive pressure values to measure BP readings.

Aktiia (UK) is one such cuffless non-invasive BP monitor that measures BP using the
PPG technique [57]. Aktiia, as shown in Figure 4a, is a bracelet that houses optical sensors
to measure the BP from the wrist. It is 20 g in weight and can measure BP for over a week
on a single charge [57]. The bracelet uses an algorithm subject-specific value of a subject to
calibrate the device [56]. This calibration is only valid for 30 days and requires recalibration
every month [56]. Almeida et al. have conducted a study to compare the accuracy of
the Aktiia with the traditional ambulatory BP apparatus [56]. The study has found no
significant differences between the two monitors, as daytime BP measurements from Aktiia
were found to be comparable to those of a standard ambulatory BP monitor [56]. Similarly,
Sel et al. have also developed a cuffless BP ring [58]. The ring, as shown in Figure 4b,
consists of electrodes and measures BP using the bioimpedance technique. The ring is
not sensitive to skin tones, unlike most of the optical sensors. BP was estimated from
the changes in bioimpedance signal based on the volumetric changes due to pulsatile
blood flow [58]. The ring estimates BP with a low error (mean ± standard deviation) of
0.11 ± 3.87 mmHg for diastolic and 0.11 ± 5.27 mmHg for systolic [58]. The BP values
obtained from the ring were found to correlate with the BP values from a medical-grade
finger cuff BP monitor with high Pearson’s correlation coefficients of 0.76 for SBP and 0.81
for DBP, as shown in Figure 4b [58]. These figures are in accordance with the standards
set by International Standard Organization 81060-2 that require that the mean value of the
differences in the determinations shall be within or equal to ±5 mmHg (±0.67 kPa), with a
standard deviation not greater than 8 mmHg (1.07 kPa) [59].

Similarly, Kireev et al. have used bioimpedance to measure BP values. For this
purpose, they have developed a graphene-based flexible BP monitor [60]. Flexible BP
monitors are an advancement in cuffless BP monitors [60]. They are printed on flexible
substrates to form e-skin. The GET, as shown in Figure 4c, is a lightweight self-adhesive
and measures BP continuously using electrical bioimpedance [60]. Three sets of GET pairs
were placed on the wrist over the radial and ulnar arteries to measure bioimpedance (Z).
While measuring Z, the control BP values of the participant were also measured using a
medical-grade BP monitoring device Finapres NOVA. The ∆Z values reflect the volumetric
changes in the artery due to pulse pressure waves. The ∆Z is then correlated to the BP
values as arterial volume is inversely proportional to ∆Z and a generally higher BP results
in higher arterial volume [60]. The GET was able to measure BP for more than 300 min and
measured systolic pressure with an error of 0.2 ± 5.8 mmHg and diastolic pressure with
an error of 0.2 ± 4.5 mmHg. These results are comparable to the grade A classification for
BP monitoring [61]. Similarly, Bijender et al. have also proposed a potential flexible BP
monitor made up of polydimethylsiloxane (PDMS) [61]. The sensor, as shown in Figure 4d,
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is a capacitive pressure sensor that uses a capacitive transduction mechanism with flexible
polyethylene terephthalate (PET) electrodes with PDMS encapsulated between them. The
PET electrodes are coated with indium-tin-oxide (ITO) and have an operating pressure
range of 0 mmHg (1 Pa) to 750 mmHg (100 kPa). It has been found suitable for measuring
BP by detecting the oscillometric wave generated by the capacitive pressure sensor when
pressure is applied in the BP range of 55–220 mmHg [61]. This experiment was measured
by applying pressure in the BP range of 55–220 mmHg using a BP machine and not by
actual volumetric changes due to blood flow.
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As discussed, wearable BP monitors use different parameters such as bioimpedance or
capacitive pressure readings to measure the pressure changes in the artery. Such wearable
BP monitors often require calibration with a standard BP monitor to map these readings
from the sensors with the BP readings. Moreover, BP readings are also subject-specific
and therefore require calibration with the BP readings of a subject to calculate BP from the
parameters measured by the wearable BP monitor.

4.4. Thoracic Fluid Index

Thoracic fluid index is a measurement of the intrathoracic fluid [62]. It is an important
estimation in monitoring heart failure. Heart failure is one of the leading cardiovascular
diseases affecting approximately 64 million patients worldwide [2]. It is difficult to treat
HF; however, it can be better managed by guideline-directed medical therapy and the
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vigilant monitoring of the patient’s condition [63]. Traditionally, thoracic fluid index can be
measured using implantable devices like an ICD or CardioMEMS™; however, different
body-mounted wearable sensors have been developed in the recent past to measure thoracic
fluid index. PhysioFlow(France) is one such body-mounted non-invasive device [64].
PhysioFlow, as shown in Figure 5a, consists of six thoracic surface electrodes and measures
different hemodynamic parameters such as stroke volume, cardiac output, and impedance
cardiography [64]. These are the parameters that help in thoracic fluid management.
Similarly, Remote Dielectric Sensing (ReDS) by Sensible Medical(NC, USA), as shown in
Figure 5b, is another wearable that measures lung fluid content using electromagnetic
beams [65,66]. ReDS has been found to reduce re-hospitalization rates by 48% in a group of
268 patients [66]. Both PhysioFlow and ReDS are not very convenient to be worn; therefore,
much more compact and compatible wearable devices have been developed for thoracic
fluid index monitoring.
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thoracic fluid index and other hemodynamic parameters [67]. (d) Microcore for measuring thoracic
fluid index and other cardiovascular parameters including ECG, HR, activity, and posture [68].

CoVa 2 (MI, USA) is one such device that measures thoracic fluid index, cardiac
output, stroke volume, and ECG [66]. CoVa 2, as shown in Figure 5c, is a necklace-shaped
wearable that measures hemodynamic parameters using chest bioimpedance using two
electrodes [66]. The values from CoVa 2 are communicated through using the Patient
Gateway device. It has been found to predict heart failure events based on the thoracic
fluid index and cardiac stroke volume. According to the study, the thoracic fluid index
increases by more than 40% before all the HF events and stroke volume decreases by 8% in
60% of acute decompensated heart failure cases [66,67]. Similarly, Microcore (µCor) by Zoll
(Chelmsford, MA, USA) is another body-mounted wearable that measures thoracic fluid
index [68]. The µCor, as shown in Figure 5d, uses radiofrequency to measure the thoracic
fluid index. The measurement of the thoracic fluid index is based on the changes in the
interstitial edema where changes in interstitial edema are based on the strength and changes
in signal path delay [69]. It also measures other important cardiovascular parameters
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including respiration rate, activity, HR, ECG, and posture [68]. These parameters are sent to
a medical care team using WiFi using a Patient Gateway device that receives data from the
sensor using Bluetooth [68,70]. According to the study conducted on 522 patients, patients
with thoracic fluid index being monitored by their clinicians using µCor were found to
be 38% less likely to be hospitalized than the patients whose thoracic fluid index was not
monitored by their clinicians [68].

5. Artificial Intelligence for Cardiovascular Diseases

Most of the cardiovascular devices are for monitoring purposes and find their applica-
tions in the wellness and fitness sector. Cardiovascular devices have the potential to aid
healthcare practitioners in diagnosing and even predicting cardiovascular disease. This can
be accomplished using artificial intelligence (AI) and machine learning (ML) algorithms.
The use of AI&ML can also help in improving existing CWDs. This section highlights some
of the recent efforts made in the use of AI&ML for cardiovascular disease.

It has been discussed how accelerometers are commonly used to remove motion
artifacts from the cardiovascular parameters. However, AI&ML can be used to remove
motion artifacts without accelerometers. For example, Zargari et al. have used machine
learning to remove motion artifacts from the PPG signal for measuring BP, RR, and HRV [71].
They have reconstructed the clean PPG signal from the noisy PPG signal using Cycle
Generative Adversarial Network (CycleGAN) [71]. CycleGAN is an unsupervised learning
technique for translating the learning from one dataset (input dataset) into the target
dataset (desired dataset). The flowchart of the overall algorithm is shown in Figure 6a.
The technique was able to remove motion artifacts 9.5 times better than the commonly
used accelerometer and was able to achieve a 45% efficiency in energy consumption [71].
Moreover, Lima et al. have used ML to predict a patient’s age using their ECG. For this
purpose, they have used a deep neural network model that has been modeled using 12-lead
ECG from 1,558,415 patients [72]. Figure 6b shows the results of the predicted age vs.
the chronological age. The AI analysis leads to prognostic information highlighting the
prediction of the mortality rate of patients [72]. According to the analysis, patients with the
predicted age from the ECG more than 8 years greater than their chronological age have a
higher mortality rate whereas patients with their predicted age more than 8 years smaller
than their chronological age have a lower mortality rate [72].

Similarly, Zhu et al. have used ECG to train an ML model for the automatic labeling
of ECG [73]. In this study, more than 180,000 12-lead ECGs of more than 70,000 patients
were used to train a convolutional neural network (CNN). The model was trained to
detect 21 unique heart rhythms. The automatically labeled ECGs were compared with
the standard ECG labeled by cardiologists and the model was found to perfectly label
80% of test ECGs with 99.5% specificity, 86.7% sensitivity, and 98.3% mean area under
the curve (AUC) of the receiver operating characteristic (ROC) score [74]. Furthermore,
unlike a traditional 12-lead ECG, Hannun et al. have used a single-lead ECG to train a
deep neural network in order to classify 12 heart rhythms [73]. The ECGs were obtained
from a wearable device, the Zio® monitor, by iRhythm (San Francisco, CA, USA) [75]. The
model achieved a 0.97 ROC score. In another study by Stehlik et al., a predictive algorithm
was developed by using a wearable sensor from VitalConnect (CA, USA), as shown in
Figure 6c [76]. The algorithm is based on multiple parameters including HRV, HR, walking,
gross activity, activity, body posture, and tilt [76]. The algorithm generated alerts to predict
HF events around 6.5 days before the hospital readmission along with 85% specificity and
76–88% sensitivity for HF exacerbation precursors [76].

Using echocardiography, Asch et al. implemented an artificial intelligence model
to predict mortality using left ventricular ejection fraction (LVEF) and left ventricular
longitudinal strain (LVLS) [77]. For this purpose, LVEF and LVLS were obtained from
the transthoracic echocardiography of patients with COVID-19 and an automated soft-
ware based on AI named EchoGo (https://www.ultromics.com/press-releases/ultromics-
launches-echogo-core-2.0, accessed on 21 July 2024) [77]. EchoGo is a cloud-based software
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that uses AI to contour the left ventricular (LV) echocardiogram and automatically performs
Simpson’s calculation [77]. EchoGo is based on two AI models, an auto-contouring model
and a view classifier. Both these models are based on two-dimensional convolutional neural
networks [77]. The study found EchoGo to be an effective tool in performing AI-based
analysis for predicting in-hospital and follow-up mortality. Similarly, Hemotag (FL, USA)
is another echocardiogram-based sensor that has been found to be useful for measuring car-
diac vitals [78]. Hemotag, as shown in Figure 6d, measures aortic, pulmonic, and sternum
waveforms using a quad-sensor. This quad-sensor measures time-synchronized vibrations
in order to measure cardiac time intervals (CTIs) [78]. In one study, Hemotag has been
found to relate elevated CTIs with the identification of acutely decompensated heart failure
(ADHF) [79].

Moreover, Biobeat (USA) is a PPG-based multi-parametric sensor that measures 13 dif-
ferent vitals [80]. These vitals include heart rate variability, pulse pressure, blood pressure,
respiration rate, pulse rate, blood saturation, systemic vascular resistance, mean arterial
pressure, stroke volume, cardiac output, cardiac index, and skin temperature [80]. It is
available in two different designs in the form of a wristwatch and in the form of a skin
patch where the skin patch also allows one-lead ECG. A Biobeat skin patch is shown in
Figure 6e. Biobeat measures these vitals continuously and in real-time and produces an
early warning score with a customized threshold to generate an alert whenever one of the
parameters is below their set thresholds [80].
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6. Future Perspectives

Cardiovascular devices have been instrumental in treating and monitoring the progres-
sion of cardiovascular disease. Their efficacy has increased manifold with the advancements
in wearable devices. However, most of the current CWDs are used for monitoring purposes
and their utility will increase if they can be used for diagnostic and prognostic purposes.
As previously discussed, some efforts have been made recently to use AI&ML algorithms
for this purpose but currently, most are used as post-processing techniques. It would
be beneficial if CWDs could be programmed with AI&ML. This will not only speed up
diagnostic results but will also conserve power consumption and other post-processing
resources. An alert generation algorithm for heart failure is one good step in this direction.
Moreover, there is a need to expand the applicability of the CWDs and one potential avenue
would be to use CWDs to evaluate the change in the emotional state of the wearer using
changes in the cardiovascular parameters. For example, heart rate, blood pressure, and
respiratory rate often increase in the state of anxiety and hence can be used as diagnostic
parameters for anxiety [81].

Furthermore, there is a need for energy-efficient CWDs to increase their duration of
use. Longer device use duration means CWDs can be implemented on a larger scale by
more patients. One possible solution is the development of self-powered CWDs. Self-
powered CWDs can harvest power from the environment or from the body itself [82].
Self-powered CWDs will not only increase the duration of the data acquisition from the
CWDs but will also help in miniaturizing them, which will increase the wearers’ compliance
and comfortability. Some of the existing self-powered technologies include pyroelectric
nanogenerators, biofuel cells, and piezoelectric nanogenerators [83].

Pyroelectric nanogenerators are nanomaterials that use the pyroelectric effect to con-
vert thermal energy into electric energy where the pyroelectric effect is due to continuous
changes in the polarization of crystals due to changes in their temperature [83]. On the other
hand, the piezoelectric effect is the conversion of mechanical energy into electrical energy.
Biofuel cells refer to cells that generate biochemical energy using oxidation and reduction
reactions [83]. These techniques can be used to develop self-powered CWDs. For example,
the piezoelectric effect can be used to convert heart contractions into electrical energy [83].
Similarly, photovoltaic effects can be used to harvest solar energy. For this purpose, efforts
were made in the past to power pacemakers with solar cells [82]. However, the efficiency
of implantable solar cells decreases with the increase in the depth of the implant; therefore,
further research is required for this technique to be clinically practical [83].

Many advances have been made in telehealth monitoring in which Internet of Things
(IoT) designs have been used to share biometric and physiological data over cloud databases.
This type of monitoring or post-processing purpose is seen in the case of AI&ML algo-
rithms [84]. One concern is that the sharing of private data increases the risk of data
breaches and data spills. This can lead to potential damage to the wearers’ privacy and
needs further attention and more secure communication protocols.

7. Conclusions

Cardiovascular devices for monitoring and treatment have evolved over the years.
This paper reviews advances in cardiovascular devices starting from the development
of implantable cardiovascular devices to the technological growth resulting in wearable
devices. The paper also discusses the application of artificial intelligence algorithms for
cardiovascular devices along with some future considerations. These considerations include
the use of artificial intelligence for diagnosis and prognosis purposes in real-time instead of
mere post-processing techniques and the use of self-powered cardiovascular devices along
with more secure data-sharing protocols.
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