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Abstract: Glioblastoma multiforme (GBM) is among the most aggressive brain cancers, and it contains
glioma stem cells (GSCs) that drive tumor initiation, progression, and recurrence. These cells resist
conventional therapies, contributing to high recurrence rates in GBM patients. Developing in vitro
models that mimic the tumor microenvironment (TME), particularly the GSC niche, is crucial for
understanding GBM growth and therapeutic resistance. Three-dimensional (3D) spheroid models
provide a more physiologically relevant approach than traditional two-dimensional (2D) cultures,
recapitulating key tumor features like hypoxia, cell heterogeneity, and drug resistance. This review
examines scaffold-free and scaffold-based methods for generating 3D GBM spheroids, focusing on
their applications in studying the cancer stem cell niche. The discussion encompasses methods
such as the hanging drop, low-adhesion plates, and magnetic levitation, alongside advancements in
embedding spheroids within extracellular matrix-based hydrogels and employing 3D bioprinting
to fabricate more intricate tumor models. These 3D culture systems offer substantial potential for
enhancing our understanding of GBM biology and devising more effective targeted therapies.

Keywords: glioblastoma; glioma stem cells; 3D spheroid; heterogeneity; drug resistance

1. Introduction

Glioma stem cells (GSCs), a subpopulation with stem cell-like properties, are be-
lieved to drive glioblastoma multiforme (GBM) initiation, progression, and recurrence [1,2].
Despite the standard treatment—surgical resection followed by radiotherapy and temozolo-
mide chemotherapy—GBM patients have a median survival of 6 months post-surgery and
only 14–16 months with these therapies [3–5]. The high recurrence rate is mainly due to the
persistence of GSCs, which resist conventional treatments. These cells exhibit self-renewal,
differentiation, and tumor-regenerative abilities, contributing to tumor development, pro-
gression, and treatment resistance [6,7].

GSCs share key properties with normal stem cells, such as self-renewal and differ-
entiation [8,9]. In vitro, GSCs form multicellular three-dimensional (3D) spheroids under
non-adherent conditions [10,11]. These 3D spheroids closely mimic solid tumors in vivo,
making them valuable for studying GBM biology [12]. Spheroid cultures enriched with
cancer stem cells (CSCs) have also been observed in other cancers, such as murine lung
cancer [13].
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This review, therefore, focuses on 3D spheroid models in GBM research, providing
insights into tumor biology and drug resistance mechanisms (Figure 1). Such models are
critical for developing more effective targeted therapies.
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Figure 1. A schematic illustrating the glioblastoma tumor microenvironment (TME) in vitro, consist-
ing of glioma cells, glioma stem cells, stromal cells, and extracellular matrix constructed by several
methods: scaffold-free, bioprinting, organoid, and microfluidics. The schematic was created with
Biorender.com.

2. GSC Niche in GBM

CSCs are highly tumorigenic and responsible for driving tumor progression, recur-
rence following conventional chemo- or radiotherapy, and metastasis [14]. This is at-
tributable to their unique capabilities, including self-renewal, differentiation into diverse
cell types within the tumor, and survival of treatments typically targeting rapidly dividing
cells. CSCs often exhibit increased resistance to therapies due to their ability to remain in
a quiescent state and possess efficient DNA repair mechanisms, allowing them to evade
treatment-induced cell death. Furthermore, the enhanced plasticity of CSCs enables them
to adapt to various microenvironmental cues, promoting metastatic spread. Given the
critical role of CSCs in these processes, they have become a promising target for cancer
eradication. To overcome the therapeutic challenges posed by CSCs, increasing attention
has focused on their specialized microenvironment, termed niche, which helps maintain
their stemness and resistance. Disrupting the CSC niche is, therefore, a theoretically sound
strategy to weaken the stem-like properties of CSCs, potentially reducing their ability to
drive recurrence and metastasis. GBM CSCs (known as glioma stem cells, GSCs) are located
in niches within tumors, and the concept of GSCs has provided new insight into GBM
resistance and recurrence (Figure 2).
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Figure 2. A schematic illustrating the key roles of glioma stem cells (GSCs) within glioblastoma
multiforme (GBM) for promoting tumor development, progression, and treatment resistance. GSCs
drive these processes by facilitating self-renewal, differentiation, and proliferation. This figure was
drawn based on the literature [14].

GSCs are localized in the TME, which is often hypoxic (low oxygen conditions). Un-
like normal tissues, tumors continually expand in size, eventually outstripping the host’s
vascular supply [15]. Oxygen delivery to the inner regions of the solid tumor mass is
reduced due to increased diffusion distances between the vasculature and inner tumor
regions. Consequently, solid tumors form new blood vessels through angiogenesis [15]. Ad-
ditionally, vascular structures within GBM are typically abnormal, forming a disorganized
network of leaky and inefficient blood vessels. This abnormal vasculature further limits
oxygen supply to cells within the tumor mass, promoting an aggressive phenotype and
enhancing resistance to therapies [16]. Similarly, limited nutrient and oxygen availability
in vitro constrains the growth of tumor spheroids, capping their size at a few hundred
microns in diameter.

Hypoxia significantly influences the maintenance and expansion of GSCs [17]. Hy-
poxia increases the expression of stem-cell markers, CD133, OCT4, and SOX2 [18,19].
CD133, essential for GSC maintenance, is upregulated by hypoxia in glioblastoma neuro-
spheres [18,20]. Other GSC markers that increase under low oxygen levels in GBM include
podoplanin, B lymphoma Mo-MLV insertion region 1 homolog (Bmi-1), and nestin [21].
However, Sox2 expression increases only in multicellular tumor spheroids derived from
GBM short-term culture with tumor stem cell properties, suggesting that tumor cell phe-
notypes associated with stemness and chemoresistance depend on the oxygen tension
surrounding the tumor cell and cellular interactions [22–24].

3. GBM Spheroid Formation Methods to Study GSC Niche

Two-dimensional (2D) culture systems grow cells in a flat monolayer. While sim-
ple to use and cost-effective, they do not accurately mimic the complex 3D structure of
the GSC [25–28]. Therefore, constructing tumor spheroids in vitro is essential for creat-
ing models that closely resemble the TME, providing insights into cancer biology and
therapeutic targets. These methods are categorized into scaffold-free and scaffold-based
approaches, each with unique benefits and limitations. Many methods have not been
applied to recapitulate the GSC niche in GBM, but they hold future potential.
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3.1. Scaffold-Free Methods

The scaffold-free approach relies on cancer cells’ ability to self-assemble into 3D
structures. These methods offer a simpler, more physiologically relevant way to model
the TME by depending on cell–cell and cell–matrix interactions to form spheroids. Several
techniques are commonly used in scaffold-free methods, each with specific advantages for
studying tumor biology and drug resistance. The hanging drop technique, where cells are
suspended in culture medium droplets to aggregate and form spheroids, is widely used [29].
This method produces spheroids with uniform sizes and shapes, making it ideal for drug
screening and quantitative analyses. Similarly, the liquid overlay technique [30] uses non-
adherent surfaces, like hydrophobic polymer- or agarose-coated plates, to prevent cell
attachment and encourage spheroid formation. Microfluidic devices and bioreactors, such
as rotary cell culture systems, have also been explored to generate more physiologically
relevant spheroids [31,32]. These scaffold-free methods provide valuable insights into the
GSC niche by replicating the 3D structure and cellular interactions within the TME.

3.1.1. Hanging Drop Method

The hanging drop method is a simple, cost-effective technique that produces highly
uniform spheroids. It involves suspending a small volume of cell suspension as a drop
on the lid of a culture dish, allowing cells to aggregate at the liquid–air interface due
to gravity [33]. Generally, GBM spheroids, regardless of their formation method, dis-
play heightened drug resistance and unique gene expression profiles compared to 2D
cultures, rendering them a valuable model for investigating tumor biology and therapeutic
responses [34].

In early applications of the hanging drop method to construct GBM spheroids, readily
available hydrophobic surfaces like culture dish lids or parafilm were commonly used. For
example, Del Duca et al. employed the hanging drop technique to develop a reproducible
method for generating implantable spheroids from murine and human brain tumor cell
lines [35]. In their approach, 20 µL drops containing predetermined cell concentrations
were suspended from culture dish lids, allowing cells to aggregate. These aggregates were
transferred to agar-coated dishes to form three-dimensional spheroids, which were then im-
planted into collagen I gels to assess invasive activity. This hanging drop method effectively
produced implantable spheroids with sustained invasion across all tested cell lines.

Recently, the GSC niche in GBM spheroids formed by the hanging drop method has
been further explored. It was reported by Nusblat et al. that HIF-2α silencing in GSCs
led to significant phenotypic changes, as assessed through cell migration assays, viability
measurements, and immunofluorescence staining [36]. Specifically, HIF-2α suppression
decreased GSC chemoresistance and migration activity. This study observed changes in
stem and differentiation markers, with reduced expression of stem cell markers nestin and
CD133 and increased expression of differentiation markers GFAP, β-tubulin, and MBP in
GSC neurospheres. These findings indicated that HIF-2α inhibition reduced GSC stemness,
promoted differentiation, and enhanced the efficacy of temozolomide.

Despite the simplicity and low cost of the hanging drop method, it has limitations, par-
ticularly its susceptibility to droplet detachment. This issue becomes more significant when
adding liquids like drugs or stromal/immune cells directly to the spheroid-containing drop,
complicating high-throughput screening and the inclusion of stromal cells to mimic the
TME. To address these challenges, advanced hanging drop methods have been developed.
We, for instance, introduced a multi-inlet spheroid generator (MSG), improving upon the
traditional single-inlet design [37] (Figure 3). The MSG features two inlets—a center and a
side inlet—allowing for additional solutions without increasing the force on the hanging
drop. This design enables larger liquid volumes, reducing the risk of spheroid detachment
during pipetting. Additionally, the diameter of the side inlet can be adjusted, and increasing
the diameter enhances the liquid-holding capacity of the MSG during secondary additions,
allowing for higher stromal cell ratios or drug concentrations to be introduced, enabling
more precise control of the tumor–stroma ratio and drug concentration within the spheroid.
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This makes it possible to more efficiently construct complex GSC niches. As a result, it pro-
vides greater flexibility for high-throughput drug screening and the production of varied
spheroids, making it ideal for studying intricate tumor microenvironments. Chen et al. de-
veloped a microfluidic filter plate based on the hanging drop method to facilitate spheroid
formation while separating unbound or dead cells during cytotoxicity assays [38,39]. This
method enables direct optical imaging to measure drug-induced cytotoxic effects on tumor
spheroids, eliminating the need for live or dead fluorescent staining. It offers a cost-effective
way to evaluate T-cell cytotoxicity with chimeric antigen receptors, enhancing immune
cell-based assays and drug testing in 3D tumor models. Additionally, Tang et al. reported
a method for producing heterocellular spheroids with controllable core–shell structures
using inertial focusing in rotating hanging droplets [40]. These core–shell models exhibit
biological functions significantly different from conventional heterocellular models, em-
phasizing the role of spatial arrangement in tissue function. This technique may allow for
precise control over GBM spheroid size and geometry by adjusting cell suspension density
and droplet morphology. Further advances, such as incorporating microfluidics, offer the
potential to overcome the limitations of traditional methods and enable more sophisticated
recapitulation of the GSC niche.
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Figure 3. Multi-inlet spheroid generator (MSG) for tumor spheroid formation and modulation. The
MSG allows additional solutions to be introduced through a side inlet without increasing force on
the hanging drop, ensuring stability. This setup enables controlled addition of drugs or stromal cells,
providing precise control over drug concentrations and stromal cell ratios. The MSG is, thus, ideal for
high-throughput screening and accurate modeling of the tumor microenvironment [37].

3.1.2. Low-Adhesion Plates

Low-adhesion plates are designed to prevent cell attachment, promoting cell aggrega-
tion and spheroid formation. This method is widely used for its simplicity and scalability,
facilitating high-throughput drug screening [41]. Tumor spheroids formed in these plates
exhibit more physiologically relevant cell–cell interactions and extracellular matrix (ECM)
production, making them valuable for investigating drug resistance and testing potential
therapeutics [42]. For example, studies have shown that growing GBM spheroids under hy-
poxic conditions can induce a shift to a more glycolytic metabolism, a hallmark of GSCs [43].
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Similarly, ultra-low-adhesion hydrogels, such as N-octanoyl glycol chitosan, have been
developed to generate GBM spheroids as in vitro tumor models [44].

One of the most commonly used tools is the ultralow attachment (ULA) 96-well plate,
which allows for easy manipulation. However, these plates can produce spheroids of
varying sizes, as some may adhere to the well walls or multiple spheroids may form in a
single well. Despite this, spheroids cultured in ULA plates retain their phenotypic traits,
and uniform-sized spheroids can also be achieved by adjusting parameters like the center-
to-center distance between polydimethylsiloxane (PDMS) micropillars [45]. Using this
method, we generated a uniform population of GBM spheroids with an average diameter
of 200 µm. These spheroids exhibited significantly higher expression of GSC markers, such
as hypoxia-inducible factor-1α (HIF-1α) and CD133 [46], compared to GBM cells cultured
in a monolayer (Figure 4).
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Figure 4. Expression of GSC markers HIF-1α and CD133 in U87 cell monolayers and spheroids
formed in wells and ULA plates. (A) HIF-1α is absent in the nucleus of monolayer cells but localized
in the nuclei of cells within spheroids. Scale bar: 100 µm. (B) CD133 expression is higher in spheroids
compared to monolayers, indicating an increased stem cell population. Scale bar: 100 µm. (C) qRT-
PCR analysis reveals elevated mRNA levels of HIF-1α and CD133 in spheroids, confirming hypoxic
conditions and enhanced stemness [45]. Student’s t-test, * p < 0.05, ** p < 0.01, *** p < 0.001. Reprinted
under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) license.
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Spheroids can be used not only for brain tumor research, but also for studying the
permeability of substances across the blood–brain barrier (BBB) in normal physiology. BBB
prevents blood-borne substances from entering the central nervous system. Isogai R et al.
performed the permeability evaluation of macromolecules in multicellular spheroidal BBB
models formed by using 96-well V-bottom plates [46].

The platform’s simplicity and compatibility with microfluidic components, such as
channels and medium reservoirs, make it suitable for high-throughput screening. Mathew-
Schmitt S et al. established a human blood–tumor barrier (BTB) in vitro test system for
therapeutic screening [47]. GBM spheroids generated by seeding the glioblastoma cell lines
in 24-well AggreWell™ 400 plates were co-cultured with human induced pluripotent stem
cell (hiPSC)-derived brain capillary endothelial-like cells (iBCECs) in a cell culture insert-
based format. Preclinical therapeutic screening and GBM-induced pathological changes
at the BBB were tested in the BTB in vitro test system. Recently, Park et al. introduced a
novel spheroid culture system that integrates a mesh structure coated with hexanoyl glycol
chitosan, an ultralow adhesion material, into culture dishes to enhance ovarian spheroid
formation [48]. This approach could enable precise control of GBM spheroid generation
without traditional molding processes. Despite the limitations of low-adhesion plates in
fully replicating the tumor microenvironment due to the absence of ECM, their utility in
supporting high-throughput screening makes them essential for preliminary drug testing
and functional assays, particularly in cancer stem cell research.

3.1.3. Magnetic Levitation Method

Magnetic levitation is a technique that uses magnetic fields to suspend cells without
physical contact. Pioneered by Dr. Utkan Demirci’s team, this method embeds cells
with magnetic nanoparticles and uses magnetic fields to levitate and aggregate them
into spheroids [49]. This innovative approach enables the creation of 3D cell cultures
for investigating biological processes and conducting high-throughput cancer research
screening [50,51]. Human GBM cells cultured using magnetic levitation showed both
morphological and molecular similarities to human tumor xenografts in immunodeficient
mice. Notably, N-cadherin, a transmembrane protein involved in cell–cell adhesion, was
expressed in the membrane, cytoplasm, and cell junctions of 3D-levitated cells, mimicking
its expression in tumor xenografts. In contrast, 2D cultures showed N-cadherin only in the
cytoplasm and nucleus, with no membrane expression. Magnetic levitation allows for the
formation of large, homogeneous spheroids of other type of cancer cells, including breast
cancer, without the need for scaffolding materials [52].

Magnetic levitation can be used to study spheroid formation, as well as in vitro
invasion assays. Molina et al. used the method to form spheroids from matched sets of
tumor mass (Core) and invasive (Inv) cells isolated from mouse brains (Figure 5A) [53].
Inv-GFP and Core-GFP spheroids were brought into contact with normal human astrocyte
(NHA)-mCherry spheroids using a magnetic field (Figure 5B) and imaged over time
(Figure 5C). While Core cell spheroids maintained intact edges with minimal invasion
into the astrocyte structure (Figure 5C, right panel), Inv cell spheroids displayed edge
breaching and increased invasiveness. The Matrigel transwell assay further confirmed a
slightly higher invasive capacity of Inv cells compared to Core or parental cells (Figure 5D).
Additionally, Inv cells exhibited significantly reduced proliferation compared to Core cells
(Figure 5E), indicating a trade-off between invasiveness and proliferation. These results
demonstrate that magnetic levitation is a highly effective method for studying the invasive
properties of GBM cells within brain parenchymal models.
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(C) Serial fluorescence imaging over 48 h revealed an invading front of Inv cells at the contact area
with NHAs (dotted line), while Core cells maintained an intact surface with NHAs. (D) Matrigel
invasion assay confirmed higher invasiveness in Inv cells compared to parental (Par) or Core cells.
(E) MTT assay indicated that Core cells proliferated faster than Inv cells [53]. (Reprinted under the
terms of Creative Commons Attribution 4.0 International (CC BY 4.0) license).

3.2. Scaffold-Based Methods

While scaffold-free methods have provided insights into GBM pathology, they lack the
full 3D ECM microenvironment of native tissue. To address this, researchers have focused
on modeling invasion using 3D in vitro culture models, embedding tumor spheroids within
3D hydrogels composed of tissue ECM preparations or purified ECM proteins like collagen
I and employing 3D bioprinting [54–56].
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3.2.1. Embedding GBM Spheroids in ECM Gels

Scaffold-based approaches in biofabrication use biomaterials to create a supportive
framework that mimics the ECM of native tissues, enabling cell growth, organization, pro-
liferation, differentiation, and function in a controlled environment. Hydrogels, hydrophilic
polymer networks capable of retaining large amounts of water, are commonly used as
scaffolds due to their biocompatibility and tunable physical properties. These hydrogels
can be engineered to replicate the mechanical properties of brain tissue, providing a suitable
environment for glioblastoma cells to grow and interact. For instance, Koh et al. developed
a brain-derived extracellular matrix hydrogel to support the encapsulation and culture of
patient-derived glioblastoma cells in 3D [57]. Notably, after inhibiting ECM remodeling
enzymes like matrix metalloproteinases (MMP) 2/9 and hyaluronan synthase (HAS), the
GBM cells underwent morphological changes and exhibited reduced invasion (Figure 6).
The hydrogel’s composition and stiffness were optimized to promote the formation of
spheroids with enhanced stemness properties, including CD133 expression [58]. In addi-
tion to mimicking mechanical cues, hydrogels can be designed to incorporate bioactive
signals like growth factors and cell adhesion peptides to further simulate the in vivo tumor
microenvironment [59,60].
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Figure 6. The impact of the ECM microenvironment on the responsiveness of patient-derived
glioblastoma cells (pdGCs) to various inhibitors. (A) Proliferation of pdGCs in 2D and pdECM
environments with SB-3CT (10 µM, 100 µM). Decreased proliferation in pdECM at 100 µM. Student
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t-test, * p < 0.05; ** p < 0.01. (B,D) The MMP inhibitor SB-3CT inhibits pdGC invasion dose-
dependently. ANOVA, * p < 0.05. Scale bar = 100µm. (C,E) SB-3CT increases the proportion
of rounded invading cells (71.1% at 10 µM, 81.5% at 100 µM). (F) Zymography showing downregula-
tion of MMP2 and MMP9 at higher SB-3CT doses. (G) Proliferation of pdGCs after the hyaluronan
synthase (HAS) inhibitor 4-MU treatment (0.1 mM, 1 mM) in pdECM and 2D. Student t-test, * p < 0.05.
(H,I) 4-MU reduces invasion and causes a morphological shift from rounded to elongated cells in
pdECM. ANOVA, ** p < 0.01 (J) Representative image of 4-MU treated pdGCs in pdECM hydrogels
after 72 h invasion. (K) Magnified images showing elongated cell morphology after 4-MU treatment.
Scale bar = 100µm. (L) Molecular profiling showing downregulation of HAS1, HAS2, HAS3, MMP2,
and hyaluronidases 2 (Hyal2), with increased MMP1 and MMP9 after 4-MU treatment [57]. Different
letters indicate a significant difference statistically by ANOVA, p < 0.05 (Reprinted under the terms of
Creative Commons Attribution 4.0 International (CC BY 4.0) license).

While these simplified paradigms have provided novel insights into GBM pathology,
they lack the full 3D ECM microenvironment of native tissue. To address this, researchers
have focused on modeling invasion using 3D in vitro culture models, embedding tumor
spheroids within 3D hydrogels made from tissue ECM preparations or purified ECM
proteins like collagen I [54–56]. Hydrogels can encapsulate and gradually release growth
factors and drugs, enhancing cancer stem cell proliferation and differentiation [61]. For
instance, hyaluronic acid matrices, abundant in the brain, successfully recapitulated TGF-
β-induced invasion, offering a valuable platform for further study. This research showed
that GSC invasion of HA matrices could be predicted by TGF-β receptor 2 expression and
SMAD2 phosphorylation, suggesting a specific pathway through which TGF-β influences
GSC invasion. Additionally, GSC spheroid invasion strongly depends on the presence of
RGD peptides on the HA backbone. Mimicking the ECM is crucial for studying cancer
stem cell behavior in conditions similar to their natural environment. Studies show that
hydrogels promote tumor spheroid formation, better replicating tumor architecture and
the microenvironment compared to 2D cultures [44].

In summary, scaffold-based 3D culture systems have emerged as powerful tools for
replicating the GBM tumor microenvironment and studying GSC behavior.

3.2.2. 3D Bioprinting

Three-dimensional bioprinting is an advanced scaffold-based biofabrication technique
that involves the precise layering of bioinks—composed of living cells and biomaterials—to
create complex, three-dimensional tissue structures [62]. This technology mimics the natural
architecture of tissues by enabling controlled deposition of cells and ECM components,
facilitating the formation of functional tissue models. Using computer-aided design, 3D
bioprinting constructs biological structures layer by layer, offering unparalleled control
over cell placement, matrix composition, and spatial organization [63]. Brain tumor models
created through 3D bioprinting have been shown to more accurately recapitulate in vivo
tumor characteristics compared to traditional 2D and 3D culture methods.

Several methods are used in 3D bioprinting [64]. Extrusion-based bioprinting con-
tinuously extrudes bioinks through a nozzle, allowing for the creation of large, complex
structures [65]. This method is ideal for printing tissues that require high mechanical
strength, such as cartilage or bone. Inkjet bioprinting, by contrast, deposits droplets of
bioink onto a substrate through thermal, piezoelectric, or electromagnetic forces, making
it suitable for high-resolution printing and constructing tissues with detailed microarchi-
tectures [66]. Laser-assisted bioprinting uses laser pulses to precisely deposit cells and
bioink onto a substrate, offering the fine control needed to build tissues with intricate
structures [67].

In GBM research, 3D bioprinting enables the creation of highly customized tumor
models that replicate key features of the in vivo tumor microenvironment, including het-
erogeneous cell populations, ECM composition, mechanical properties, and vascular net-
works [64,68]. By incorporating various cell types such as GSCs and differentiated glioma
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cells, along with ECM components, in a spatially organized manner, 3D bioprinting offers
a more accurate platform for studying GBM biology, invasion mechanisms, and drug
resistance.

Various biomaterials, such as gelatin, alginate, and collagen, are extensively utilized in
3D bioprinting to offer structural support and bioactive cues crucial for GBM cell growth,
migration, and differentiation [69]. These materials are selected for their biocompatibility,
mechanical properties, and capacity to support glioblastoma cell adhesion and prolifer-
ation. Gelatin, derived from collagen, provides a natural environment that fosters the
adhesion and survival of GSCs [70]. Alginate, a polysaccharide, forms hydrogels with
adjustable mechanical properties that can replicate brain tissue stiffness, making it ideal for
cultivating GBM cells [71]. Collagen, the most abundant protein in the brain’s ECM, offers
structural integrity and enhances GBM cell adhesion, migration, and differentiation [72].
By integrating these biomaterials with relevant cell types, growth factors, and other ECM
components, researchers can develop GBM models that closely mimic the in vivo tumor
microenvironment.

One of the major challenges in constructing GBM models is fabricating vascularized
structures, which are essential for providing nutrients and oxygen to cells, ensuring their
long-term viability and function. Advancements in bioprinting techniques, such as in-
corporating endothelial cells and growth factors, are being explored to address this issue.
We reported the integration of vascular networks within 3D GBM models to better study
GBM cell–endothelial cell interactions, angiogenesis, and the effects of anti-angiogenic
therapies (Figure 7) [73]. Uniform-sized GBM multicellular tumor spheroids (MCTSs)
were seeded onto the GAF hydrogel layers with and without vascularized tissues. It was
observed that CD31, an endothelial marker, indicated vascular structures infiltrating into
MCTSs (Figure 7B(i,ii)). Additionally, MCTSs with vascularized structures, composed of
U87 cells, HUVECs, and fibroblasts, exhibited significantly higher expression of epithelial-
to-mesenchymal transition (EMT) markers, N-cadherin and vimentin (VIM), compared to
non-vascularized MCTSs (Figure 7G). This increase in EMT marker expression, linked to
angiogenesis and invasion, suggests that vascularization promotes more aggressive tumor
behavior.

Despite the challenges, 3D bioprinted GBM models have provided valuable insights
into the interactions between GSCs and the tumor microenvironment, revealing how these
interactions contribute to drug resistance and tumor progression. Additionally, they have
been used to screen potential therapeutic agents, offering a more predictive platform for
evaluating drug efficacy and safety.

In summary, scaffold-based approaches in biofabrication, particularly 3D bioprinting,
provide a powerful tool for creating realistic tumor models that allow for the study of
complex interactions between cancer cells and their microenvironment. These models
hold great potential for advancing cancer research, especially in understanding drug
resistance and developing more effective treatments. By addressing current challenges and
continuing innovation, scaffold-based biofabrication can significantly impact oncology and
personalized medicine.

3.3. Organoid Culture

GBM organoids are 3D in vitro models that closely mimic the architecture, cellular
diversity, and microenvironment of GBM tumors [74–76]. Derived from patient tumor
samples or stem cells, these organoids are cultured to form self-organized, tissue-like
structures. GBM organoids replicate key features of primary patient tumors, including the
presence of GSCs, tumor heterogeneity, and complex cellular interactions within the tumor
microenvironment. These models are especially valuable for studying GBM biology and
drug responses in a more physiologically relevant context than traditional 2D cultures [77].
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Figure 7. The effects of vascularized tissue on the growth and epithelial-to-mesenchymal transition
(EMT) of GBM multicellular tumor spheroids (MCTSs). The figure compares multicellular GBM
spheroids without (A) and with (B) vascularized tissue. The scale bar represents 200 µm or ((B) (i,ii))
100 µm. GBM spheroids were fixed and stained for CD31 (green) or F-actin (red). CD31, an endothelial
marker, showed that vascularized structures infiltrated into MCTSs (B(i,ii)). Nuclei were stained
with DAPI (blue). Measurements included tumor area (C), height (D), aspect ratio (E), and volume
(F) for spheroids with and without vascularization. (G) Additionally, mRNA expression levels of
N-cadherin and vimentin were analyzed [73]. Student’s t-test; * p < 0.05, ** p < 0.01, *** p < 0.001;
“NS” denotes “not significant”. (Reprinted under the terms of Creative Commons Attribution 4.0
International (CC BY 4.0) license).
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GBM organoids are typically generated by culturing tumor or stem cells in a 3D matrix,
often using a scaffold-free method or embedding them in hydrogels like Matrigel, which
provides essential ECM components for supporting cell growth and organization. Cells
are seeded to promote self-assembly, forming spherical structures that can be maintained
long-term. The culture medium is supplemented with growth factors and nutrients to
support GBM cell development and proliferation, allowing the organoids to form complex
structures resembling primary tumors. By using patient-derived GBM cells, organoids
retain the genetic and epigenetic characteristics of the original tumor, making them a
robust model for personalized medicine and for studying tumor behavior, invasion, and
therapeutic resistance [77,78]. These organoids facilitate interactions between cells in differ-
ent states within an in vitro system, effectively mimicking the tumor microenvironment.
GBM organoid models have been used to replicate cellular states found in primary patient
tumors, including specific SOX2+ GSC niches [79]. The outer rim of the GBM organoids
displays high proliferative activity and is enriched with SOX2+ cells, which contribute
to resistance against standard-of-care treatments and other clinically relevant therapies
(Figure 8). A spatially resolved loss-of-function screen in the organoids revealed that WDR5
is indispensable for maintaining the SOX2-enriched, therapy-resistant niche.

3.4. Microfluidic Device

Microfluidics is a technology that manipulates small fluid volumes in microscale chan-
nels, creating controlled environments that mimic in vivo conditions [80]. This technology
is crucial in cancer research, especially for GBM, an aggressive brain cancer known for its
rapid progression and recurrence. Microfluidic models significantly advance the replication
of the complex TME of GBM, which includes various cancerous and non-cancerous cells,
biomolecules, and ECM components that drive tumor growth [81].

A key material in constructing microfluidic devices is polydimethylsiloxane (PDMS),
valued for its transparency, ease of fabrication, and biocompatibility [82]. PDMS allows for
precise control over nutrient and oxygen gradients, making it ideal for studying complex
tumor behaviors, including those seen in GBM. Its versatility enables researchers to closely
mimic the physical and chemical conditions of the TME, providing valuable insights into
tumor dynamics and therapeutic responses [83].

Microfluidic platforms are essential for modeling GBM, as they can accurately replicate
the complex environment of the BBB, crucial for understanding GSCs. The BBB is a major
obstacle in GBM treatment, limiting therapeutic agent delivery to the tumor [84]. For
example, the microfluidic system models the selective permeability of the BBB by layering
human brain endothelial cells (HBMEC) and pericytes (HBVP). The upper layer mimics
the endothelial barrier, while the lower layer stabilizes barrier function through pericyte
interactions. A porous membrane between the layers allows for controlled diffusion of
substances, replicating selective transport across the BBB. Physiological shear stress mimics
blood flow conditions, further enhancing the accuracy of the model [85]. Microfluidics
allows for precise modeling of how drugs, including nanoparticles, penetrate the BBB
and reach GBM tumors, while enabling real-time, high-resolution monitoring of drug
delivery and GSC interactions. By simulating in vivo-like conditions, such as hypoxic
tumor regions, microfluidics enhances preclinical testing of targeted therapies and improves
the predictability of treatment outcomes. These platforms are invaluable for studying GSC
behavior and evaluating therapies in a realistic, controlled environment [86].

Among scaffold-based methods, microfluidics excels in precisely creating vascular
structures, providing fluid flow, and observing GBM-induced angiogenesis [87]. This
leads to the development of a 3D organotypic microfluidic model incorporating a pre-
established microvascular network. This innovative model allows for the investigation
of interactions between patient-derived GSCs and endothelial cells, focusing on tumor
invasion. The pre-established vasculature enhances GSC invasion and promotes an invasive
morphology while maintaining the stem-like characteristics of the GSCs. Notably, CXCL12-
CXCR4 signaling was identified as a key pathway driving GSC invasion, and the CXCR4
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antagonist AMD3100 successfully reduced invasion in co-culture conditions, highlighting
the importance of studying multi-cell interactions for drug discovery [88].
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Figure 8. A spatial functional genomics screening process to identify essential genes in GSC niches
using organoid models. (A) GBM GSCs were infected with an inducible shRNA library targeting
epigenetic modifiers and grown into organoids. Upon doxycycline induction, shRNA expression
(indicated by the dsRed reporter) was activated, and organoids were labeled with a blue dye (CMAC)
to mark the outer rim. (B) Z-stack images and individual slices show labeling intensity in GBM528
organoids, highlighting overlap between labeled regions. (C) Organoids were dissociated, and single
cells were sorted into rim (CMAC+) and core (CMAC−) populations using FACS. DNA was then
extracted for barcode sequencing to analyze shRNA distribution. (D) A rank-ordered list of genes
targeted by the shRNA screen shows depletion in the SOX2-enriched niche (CMAC+), highlighting
niche-specific hits (blue) and common hits (black). (E) A Venn diagram displays genes specific to
SOX2-enriched and SOX2-depleted niches, along with those common to both regions [79]. (Reprinted
under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) license).

Recent advancements in microfluidic models have improved the replication of the
GBM TME, particularly the perivascular niche, which is crucial for supporting GSCs [89,90].
These 3D models more accurately represent cellular interactions between GSCs, endothelial
cells, and astrocytes, demonstrating enhanced GSC invasion and the maintenance of stem-
like properties. For example, Adjei-Sowah, E.A. et al. developed a microfluidic GBM
tumor-on-a-chip model with three interconnected regions—vasculature, stroma, and tumor
(Figure 9) [91]. Hexagonal microposts, spaced 100 µm apart, separated these regions while
preserving their distinct characteristics, enabling cellular interactions and GSC invasion
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from the tumor to the stroma. Using this model, they performed single-cell RNA sequencing
(scRNA-seq) to reveal key ligand–receptor pairs, such as SAA1-FPR1 and RSPO3-LGR6,
driving GSC migration. This approach highlights the potential of microfluidic models for
uncovering molecular mechanisms and advancing drug discovery in GBM, with future
studies possibly integrating immune cells to explore their role in chemo-resistance and
immunosuppression.
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Figure 9. Microfluidic model of GBM tumor microenvironment. (a) Schematic of the microfluidic
device showing compartments for tumor, stroma, and vasculature. The model comprises three
concentric cell culture regions—vasculature, stroma, and tumor—surrounded by media channels.
Hexagonal microposts, spaced evenly at 100 µm, define these regions, allowing clear distinction
between tumor, stroma, and vascular components in an organotypic arrangement while maintaining
interconnectivity. This setup enables cellular interactions and the invasion of GSCs from the tumor
region into the adjacent stromal region. (b) Phase-contrast images of cell organization at Day 0,
Day 1, and Day 3, illustrating structural development within the device. Scale bar: 100 µm. (c) Im-
munofluorescence staining for actin, CD31, and DAPI at the tumor–stroma interface, demonstrating
endothelial network formation. Scale bar: 50 µm. (d) High-magnification images of the tumor region,
tumor–stroma interface, and stroma region, with astrocytes indicated by yellow arrows. Scale bar:
20 µm [91]. (Reprinted under the terms of Creative Commons Attribution 4.0 International (CC BY
4.0) license).
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Microfluidic devices provide a valuable platform for mimicking the glioblastoma TME,
but they face several limitations. Most 3D printers used for these devices cannot achieve
resolutions finer than 200 µm, which can affect the structural integrity of small or complex
channels, potentially causing flow disruptions or clogging [92]. Materials like acrylate and
acrylonitrile butadiene styrene may absorb lipids and proteins, compromising channel
stability and experimental results [89]. While PDMS facilitates short-term gas and nutrient
exchange, it is inadequate for long-term studies [93]. Additionally, replicating the GBM
niche and isolating GSCs in these systems remains challenging.

Despite these limitations, microfluidic devices offer significant advantages over tradi-
tional 2D and 3D cultures by simulating dynamic fluid flow as well as nutrient and oxygen
gradients, which are crucial for accurately studying tumor growth, metastasis, and drug
responses [94]. This precision enables modeling in vivo conditions like pseudopalisade
formation and hypoxia, offering insights into key features of GBM progression [95]. To fully
realize their potential, addressing these limitations through improvements in materials and
design is essential, enhancing the physiological relevance and effectiveness of microfluidic
platforms in cancer research and therapy development [96].

4. Current Challenges and Future Directions in GBM Tumor Modeling: Scaffold-Free,
Scaffold-Based, Organoid, and Microfluidic Approaches

A significant challenge for scaffold-free methods is their inability to fully replicate the
complex tumor microenvironment, particularly the ECM. Since these models rely on the
natural self-aggregation of cells without external support, they often lack the structural
and mechanical cues that influence cell behavior in vivo. Additionally, capturing tumor
heterogeneity is difficult, as the model tends to be more simplistic than the actual diversity
found in GBM tumors. Future directions for scaffold-free methods involve improving
techniques to better mimic physiological conditions, such as introducing oxygen gradients
or other environmental factors to enhance the realism of these models.

For scaffold-based methods, a primary challenge is selecting biomaterials that ac-
curately represent the brain’s ECM while maintaining biocompatibility and mechanical
properties conducive to cell growth. Although scaffold-based methods offer greater control
over cell organization and microenvironmental conditions, replicating the full complexity of
the brain’s structural and biochemical properties remains difficult. Additionally, fabricating
models with vascular structures to support long-term cell viability is challenging. Future
developments will likely focus on creating more sophisticated scaffolds that incorporate
dynamic elements like nutrient delivery systems, vascularization, and real-time monitoring,
bringing these models closer to mimicking the in vivo conditions of glioblastoma.

One key challenge in organoid culture methods is the uncontrollability of organoid size
and morphology, leading to variability in experimental outcomes. While organoids excel at
replicating the 3D architecture and cellular heterogeneity of tumors, their complexity makes
it difficult to maintain consistent structural features across samples. Another challenge
is the lack of vascularization, which limits their size and viability over extended periods.
Future directions for organoid models will likely focus on developing more standardized
protocols to reduce variability and enhance reproducibility. Advances in vascularization
techniques and incorporating immune system components are also crucial for making
organoids more reflective of the in vivo tumor environment.

Microfluidic models offer unique advantages in GBM research, enabling precise control
over the TME and replicating features like the BBB for real-time studies on drug delivery
and cellular interactions. However, limitations persist as the 3D printing resolution in
microfluidics is often insufficient for small channels, and materials like acrylate and ABS
can absorb proteins, affecting channel stability. Additionally, while PDMS allows for short-
term gas and nutrient exchange, it is unsuitable for long-term studies due to its tendency
to absorb small molecules and degrade mechanically, underscoring the need for improved
materials and designs to fully harness the potential of microfluidic platforms in cancer
research.
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In summary, although each method has its strengths, specific challenges limit their
ability to fully replicate the GBM tumor microenvironment, as summarized in Table 1.
Future research will focus on addressing these limitations by introducing more physio-
logically relevant conditions and improving reproducibility and scalability, particularly in
areas like vascularization and tumor heterogeneity.

Table 1. Advantages and limitations of tumor spheroid formation methods.

Method Technique Mechanism Advantages Limitations Reference

Scaffold-free

Hanging Drop
Method

Suspends small cell droplets;
allows spheroid formation
via gravity

Simple; cost-effective;
uniform spheroids

Susceptible to
droplet detachment;
limited scalability

[33]

Low-Adhesion
Plates

Uses non-adherent surfaces
to prevent cell attachment to
promote aggregation into
spheroids

Easy to use;
suitable for
high-throughput
screening

Variability in
spheroid size;
lacks ECM

[41,42]

Magnetic
Levitation Method

Uses magnetic nanoparticles
to levitate and aggregate
cells into spheroids

Forms large spheroids
rapidly

Costly; potential
biocompatibility
issues

[49,50]

Scaffold-based

ECM Gels
Embeds cells in hydrogels to
mimic the natural tumor
ECM microenvironment

High biocompatibility;
mimics natural
microenvironment

Limited mechanical
strength; requires
tuning of ECM

[57,59]

3D Bioprinting
Layer-by-layer printing of
bioinks to create complex
3D structures

Formation of
functional tissue
models;
better mimics in vivo
tumor traits

Expensive setup;
limited bioink
options

[62,63]

Organoids GBM Organoids
Self-assembly of cells to
create 3D tumor models

Mimics tumor
heterogeneity and
stem cell niches

Long culture times;
variability in size
and structure

[77]

Microfluidics
Microfluidic
Devices

Uses microchannels to
create controlled,
dynamic environments for
cell growth

Real-time monitoring;
precise control of
microenvironments

Complex
fabrication;
scalability
challenges

[80,81]

5. Conclusions

Scaffold-free, scaffold-based, and microfluidics models, as well as GBM organoids,
offer valuable in vitro platforms to recapitulate the complex GBM tumor microenviron-
ment, especially the niches of GSCs. Scaffold-free methods provide simplicity and cost-
effectiveness, but lack the structural complexity of the tumor’s ECM. Scaffold-based ap-
proaches, using hydrogels and other materials, better mimic the brain’s ECM and support
cellular interactions and invasion studies, though they still face challenges in fully replicat-
ing tumor biology. GBM organoids, while effective at recapitulating the 3D architecture and
cellular diversity of primary tumors, face limitations in consistency and vascularization.
Microfluidic GBM models advance the replication of the complex TME of GBM, which
includes various cancerous and non-cancerous cells, biomolecules, and ECM components
that drive tumor growth.

Each model has distinct advantages and limitations, and further innovations in bio-
fabrication techniques, such as incorporating vascular networks and immune system
components, will be crucial for improving their physiological relevance. Moving forward,
these models will play a vital role in developing more effective therapies targeting GSCs
and their role in GBM progression and therapeutic resistance.
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