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Abstract: This research introduces a non-enzymatic electrochemical sensor utilizing flower-like nickel
oxide/carbon (fl-NiO/C) microspheres for the precise detection of L-glutamic acid (LGA), a crucial
neurotransmitter in the field of healthcare and a frequently utilized food additive and flavor enhancer.
The fl-NiO/C were synthesized with controllable microstructures using metal–organic frameworks
(MOFs) as precursors followed by a simple calcination process. The uniformly synthesized fl-NiO/C
microspheres were further characterized using Fourier transform infrared spectroscopy (FTIR), X-ray
powder diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and field emission scanning
electron microscopy (FE-SEM). The fl-NiO/C was utilized as a modifier on the surface of a glassy
carbon electrode, and an impedimetric sensor based on electrochemical impedance spectroscopy (EIS)
was developed for the detection of LGA. The proposed sensor demonstrated excellent catalytic activity
and selectivity towards LGA across a broad concentration range of 10–800 µM with a sensitivity of
486.9 µA.mM−1.cm−2 and a detection limit of 1.28 µM (S/N = 3). The sensor was also employed
to identify LGA in blood plasma samples, yielding results that align with those obtained through
HPLC. This achievement highlights the potential of fl-NiO/C microspheres in advancing cutting-edge
biosensing applications.

Keywords: non-enzymatic; electrochemical; flower-like microstructure; microsphere; L-Glutamic
acid; neurotransmitter

1. Introduction

L-glutamic acid (LGA) exerts a decisive influence on a variety of brain functions as a
principal excitatory neurotransmitter within the nervous system [1]. Disruption to LGA
metabolism has been linked to a number of neurological disorders. These include stroke [2],
Alzheimer’s disease [3], brain trauma [4], schizophrenia [5], epilepsy [6], and multiple
sclerosis [7]. However, it is already established that LGA issues do not independently
precipitate these conditions. To identify more efficacious treatments, it is necessary to
examine the manner in which LGA interacts with other brain chemicals [8–10]. In addition
to its neurological implications, LGA serves as a flavor enhancer in foodstuffs. Neverthe-
less, excessive consumption can result in adverse effects such as headaches and gastric
distress [11]. Hence, monitoring LGA concentrations is imperative both in dietary and
medical contexts.

Over the past two decades, various methods have been developed to quantify LGA
such as chromatography [12], fluorometry [13], spectrophotometry [14], capillary elec-
trophoresis [15], and electrochemical (bio)sensors [16–18]. Among them, electrochemical
(bio)sensors have gained prominence in this field owing to their sensitivity, affordability,
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and easy operation. Electrochemical (bio)sensors designed for LGA detection can be di-
vided into two categories: enzyme-based biosensors and non-enzymatic sensors. The first
category of sensors employs the glutamate oxidase (GluOx) enzyme to produce hydrogen
peroxide (H2O2) as a byproduct during the oxidative deamination of LGA in the presence of
oxygen (O2). The production of H2O2 is directly related to the concentration of LGA [19,20].
However, enzyme-based biosensors face challenges due to the high costs of GluOx and
its susceptibility to denaturation. Recently, advancements have led to the emergence of a
second category of sensors that rely on the direct electrooxidation of GLA through the use
of materials, which mimic the catalytic activity of GluOx. These non-enzymatic sensors are
gaining popularity as an alternative to enzyme-based sensors. Transition metal/metal oxide
nanomaterials and a variety of protein mediators have been employed as non-enzymatic
sensing materials for the detection of LGA [21,22]. Among the materials under consider-
ation, those based on nickel (Ni) in various forms, including nanowire [23], nickel oxide
(NiO) nanoparticles [24], metal–organic frameworks (MOF), and their nanocomposites [16]
have been identified as promising catalysts for LGA oxidation in an alkaline medium. This
is due to their cost efficiency, electrocatalytic activity, and stability. A recent development
by our research team has led to the creation of two non-enzymatic GLA sensors, utilizing
two distinct synthesized materials: Ni-MOF and Ni-NiO-MOF-carbon nanocomposite. An
investigation into their catalytic abilities has yielded promising results. The combination
of carbon layers and MOFs forms a cavity-like network structure, which subsequently
develops into a porous network. This structure enhances the electrocatalytic effect of Ni
and NiO compared to the sheet-like structure of Ni-MOF [25]. This indicates that the
creation of porous three-dimensional (3D) materials enhances the electrocatalytic activity
of Ni-based materials.

In this context, the flower-like Ni structures have been the subject of considerable
interest due to the extensive three-dimensional surface area that provides abundant space
for redox reactions in electrochemical processes [26]. In particular, the fabrication of flower-
like Ni derivatives based on the use of MOF as a precursor enables the creation of an
adjustable porous 3D nano/micro structure [27]. Subsequently, a simple calcination process
under atmospheric conditions can produce metal oxides from their corresponding MOFs,
resulting in materials with inherited or identical morphologies [28].

In this investigation, we successfully synthesized porous 3D flower-like nickel ox-
ide/carbon (fl-NiO/C) microstructures using nickel-benzene dicarboxylate (Ni-BDC) MOF
as a precursor. Subsequently, nanosheets of Ni-MOF underwent a morphological transition
during calcination, transforming into flower-like NiO microspheres. The fl-NiO/C were
then employed to develop a straightforward non-enzymatic sensor for LGA detection
on a glassy carbon electrode (GCE). The sensor was characterized using multiple elec-
trochemical techniques. For the selective and sensitive detection of LGA across a wide
linear range, electrochemical impedance spectroscopy (EIS) was used as an alternative to
traditional methods like amperometry and differential pulse voltammetry. The proposed
system exhibited satisfactory sensing performance, including a low detection limit, a wide
dynamic range, optimal sensitivity, and suitability for measuring LGA in real samples.

2. Experimental Section
2.1. Reagent and Materials

Chemical reagents, including Benzene-1,4-dicarboxylic acid (H2BDC), nickel nitrate
hexahydrate (Ni(NO3)2.6H2O), LGA, glucose (Glu), uric acid (UA), ascorbic acid (AA),
tyrosine (Tyr), cysteine (Cys), glutamine (Gln), 5-hydroxytryptamine (5-HT) and sodium
hydroxide (NaOH), were purchased from Sigma Aldrich. N,N-dimethylformamide (DMF)
and ethanol were obtained from Merck. The chemicals were used as received without
further purification. All solutions were prepared using deionized double-distilled water,
and each chemical solution was freshly prepared before the experiment. Human blood
plasma was obtained from the Pars Laboratory, Yazd, Iran.
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2.2. Equipment

Fourier transform infrared spectroscopy (FT-IR) using a BRUKER EQUINOX 55 single
beam spectrometer, X-ray powder Diffraction (XRD) using D8 Advance Bruker and Cu
Kα radiation (λ = 1.54 Å) (Munich, Germany), energy-dispersive X-ray spectroscopy (EDS)
(model EM8000F, Guangzhou, China), and field emission scanning electron microscopy
(FE-SEM) using MIRA3G Tescan (Brno, Czech Republic) were employed to characterize
the synthesized the fl-NiO/C. To evaluate the electrochemical properties of the prepared
electrodes, we utilized an Autolab potentiostat/galvanostat (PGSTAT-302 N, Eco Chemie,
and Utrecht, The Netherlands) with a standard three-electrode setup: modified GCE as the
working electrode, platinum wire as the counter electrode, and Ag/AgCl/KCl (Sat.) as the
reference electrode.

2.3. Preparation of Ni-BDC MOF as a Precursor

Ni-BDC MOF was synthesized using a typical solvothermal procedure [29]. Specifi-
cally, Ni (NO3)2.6H2O (0.564 g, 1.8 mmol) and H2BDC (0.262 g, 1.2 mmol) were separately
dissolved in 10 mL of DMF at room temperature using magnetic stirring. Afterward, the Ni
(NO3)2 solution was added gradually to the H2BDC solution and stirred for 30 min. Then,
the resulting solution was placed in a Teflon-lined autoclave (50 mL) and heated at 150 ◦C
for 12 h. The light green precipitate was collected through centrifugation, washed thrice
with ethanol and water, and then, dried at 80 ◦C overnight.

2.4. Preparation of Fl-NiO/C Microsphere

The one-step calcination process was employed to synthesize fl-NiO/C microspheres.
Initially, the Ni-BDC powder was ground and placed in a tubular furnace. The subsequent
annealing process was carried out at 500 ◦C (heating rate of 5 ◦C/min) in the air for two hours.
Following this, the black powder was collected after cooling back to room temperature.

2.5. Preparation of Fl-NiO/C/GCE

To prepare the modified GCE with fl-NiO/C, a GCE with a surface area of 0.03 cm2

was polished first using 0.3 µm alumina powder, followed by rinsing with deionized water.
Thereafter, it was immersed in a solution containing water and ethanol in a ratio of 1:1,
and sonicated for 10 min. Subsequently, 2 µL of the fl-NiO/C suspension (5 mg/mL in
ethanol) was dropped on the clean surface of the GCE and was allowed to air dry at room
temperature. The resulting sensor was designated as fl-NiO/C/GCE.

3. Results and Discussion
3.1. Material Characterization

To analyze the structural and compositional properties of the synthesized Ni-BDC
MOF as precursor and the fl-NiO/C microsphere, FTIR and X-ray diffractometry (XRD)
techniques were employed. The XRD patterns of Ni-BDC and fl-NiO/C microsphere are
shown in Figure 1A. The major diffraction peaks of Ni-BDC were observed at 2θ of 15.15,
16.03, and 17.23, corresponding to the (001), (10-1), and (2-10) crystal planes, which were
assigned to Ni-MOF and matched well with CCDC no. 638866, as previously reported [30].
Following the calcination of Ni-BDC, the XRD pattern of fl-NiO/C showed diffraction peaks
at 37.2◦, 43.3◦, 63.0◦, 75.6◦, and 79.5◦, which are attributed to the (111), (200), (220), (311),
and (222) planes of face-centered cubic nickel, respectively. These peaks are consistent with
the standard NiO spectrum (JCPDS, No. 47-1049) [31]. In addition, FTIR characterization of
Ni-BDC and fl-NiO/C (Figure 1B) has been carried out as confirmation of their successful
synthesis. The FTIR spectrum of Ni-BDC displayed two distinct peaks at approximately
1575 and 1381 cm−1, which correspond to the asymmetric and symmetric stretching modes
of the coordinated carboxylate (–COO−) groups of the BDC ligands, respectively [30].
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Figure 2. (A, B, and C) FE-SEM images of Ni-BDC MOF and (D, E, and F) fl-NiO/C in different 
magnifications. 

Figure 1. (A) XRD patterns and (B) FTIR spectrums of Ni-BDC MOF and fl-NiO/C.

Similarly, in the case of fl-NiO/C, the absorption peaks detected at around 3427, 1600,
and 1402 cm−1 are assigned to O−H stretching vibration and symmetric and asymmetric
–COO− stretching vibrations, respectively. Moreover, the peak observed at 439 cm−1 is
attributed to Ni−O vibration absorption in fl-NiO/C, which is consistent with absorption
bands of metal oxides below 1000 cm−1 due to interatomic vibrations [32].

Further information on the morphology of the microstructures was obtained from the
FE-SEM and EDS results. In the FE-SEM images, it can be observed that Ni-BDC MOF
consists of numerous sheet-like structures having micro width and nano thickness, as
depicted in Figure 2A–C. Upon heat treatment, these sheet-like structures entangled with
each other and formed microspheres resembling flowers, as seen in Figure 2D–F. Upon
magnification of the images, it was observed that the surfaces of the microspheres were
significantly rough due to being covered by a large number of cross-linked nanosheets. In
the following step, the EDX technique was used for the elemental analysis and chemical
characterization of samples. The result of the EDX analysis showed the presence of Ni, O,
and C elements in both Ni-BDC and fl-NiO/C (as shown in Figure 3A,B). Ni and C were
found to have a similar distribution pattern in Ni-BDC MOF. Upon further investigation
of the fl-NiO/C mapping, it was observed that the regions were rich in Ni and O and
contained lower amounts of C, which could be due to the NiO coating in these areas.
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3.2. Electrochemical Behavior of the fl-NiO/C/GCE

Cyclic voltammetry and EIS were used to study the electrochemical behavior of fl-
NiO/C microspheres. To determine and compare the active surface area of fl-NiO/C/GCE
with that of the bare GCE, cyclic voltammograms (CVs) of both bare and fl-NiO/C/GCE
were recorded in 0.1 M KCl containing 5.0 mM [Fe (CN)6]3−/4− as redox probe at various
scan rates (Figure S1). The active surface area of the electrodes was determined by employ-
ing the Randles–Sevcik equation and utilizing the resulting slope of the plot of the current
versus the square root of the scan rate (ϑ 1/2) [33]:

I = 2.69 × 105n3/2 ACD1/2ϑ1/2 (1)

where (I) is the oxidation peak current, (A) is the surface area of the electrode, (n) is the
electron transfer number, (D) is the diffusion coefficient of [Fe (CN)6]3−/4−, (C) is the
concentration of [Fe (CN)6]3−/4−, and (ϑ) is the scan rate. The calculated surface areas for
bare and modified electrodes were 0.035 and 0.093 cm2, respectively. This result indicates
that the incorporation of fl-NiO/C significantly enhanced the electrode’s active surface area.

The surface coverage of the electrode, Γ, was estimated using the following equa-
tion, which employs the Sharp method [34], whereby the peak current can be directly
proportional to the concentration of electroactive species on the electrode surface:

I =
(

n2F2 AΓϑ
)

/4RT (2)

The n represents the number of electrons involved in a reaction, while A is the active
surface area (0.093 cm2) of the fl-NiO/C. The symbol Γ (mol/cm2) represents the surface
coverage, and the other symbols have their usual meanings. From the slope of anodic peak
currents versus scan rate (as shown in Figure S2), the surface concentration of fl-NiO/C
was calculated to be Γ = 11.49 × 10−9 mol/cm2 when n = 1.

To assess the changes in electrical properties and electron transfer following the modi-
fication of the GCE, and to confirm the modification’s effectiveness, CVs and EIS spectra
were recorded for both the bare GCE and the fl-NiO/C/GCE in 0.1 M KCl containing
5.0 mM [Fe(CN)6]3−/4− (Figure 4A,B, respectively). As illustrated in Figure 4A, the bare
GCE exhibited a pair of characteristic redox current peaks at 0.17 V and 0.22 V, result-
ing from the ferro- and ferricyanide redox reactions. In comparison, the fl-NiO/C/GCE
exhibited a markedly enhanced redox peak current.
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rate 50 mV/s), and (D) CVs of Bare GCE and fl-NiO/C/GCE with 1mM LGA in 1 M NaOH at a scan
rate of 50 mV/s.

EIS was conducted to confirm the CV results over a frequency range of 0.1 Hz to
100 kHz, with an applied potential of 0.22 V and a signal amplitude of 5 mV, as shown
in Figure 4B. The impedance data were fitted using the Randles equivalent circuit, which
appropriately models the impedance behavior of the evaluated electrochemical sensor. This
circuit includes a constant phase element (CPE) to represent non-ideal capacitive behavior,
often arising due to factors like surface roughness, electrode inhomogeneities, or other
deviations from ideality (inset of Figure 4B). In the equivalent circuit, Rs represents the
solution resistance, Cdl denotes the double layer capacitance, ZW is the Warburg impedance
for diffusion processes, and Rct is the charge transfer resistance. The CPE is defined by
parameters Y0 (or Q) (admittance at 1 rad/s) and n (which indicates the extent of deviation
from ideal capacitance). For our system, the value of Y0 is 4.39 µM ho·sn, where n is 0.767.

The Nyquist plots (Figure 4B) reveal distinct semicircles in the high-frequency region
for each electrode, indicative of Rct. The linear portion in the low-frequency region is
attributed to diffusion-limited processes. Notably, the Rct value for the bare glassy carbon
electrode (GCE) is 326.1 Ω, which decreases to 218.3 Ω when modified with fl-NiO/C
microspheres. This reduction in Rct reflects the role of the porous 3D structure of fl-
NiO/C microspheres in increasing the electrochemically accessible surface area. The
modified structure enables additional electron transfer pathways, thus improving electrical
conductivity and facilitating faster electron exchange.
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The electrocatalytic behavior of fl-NiO/C/GCE towards LGA was analyzed in 1 M
NaOH solution via cyclic voltammetry, employing a scan rate of 50 mV/s. As shown
in Figure 4C, in the absence of LGA, the bare GCE is relatively inactive within a specific
potential range and does not show any significant signals. On the other hand, the fl-
NiO/C/GCE exhibits clear redox peaks at potentials of 0.32 V (anodic) and 0.23 V (cathodic).
Two distinct theories have been proposed to explain the observed redox peaks. One theory
suggests that these peaks arise from the oxidation of Ni2+ to Ni3+ and its corresponding
reduction [35]. An alternative interpretation, as proposed by Jamal et al., indicates that
the anodic peak results from the oxidation of NiO to NiOOH, while the cathodic peak
represents its subsequent reduction [24]. The elemental characterization of fl-NiO/C,
obtained from EDX and XRD analyses, showed that the microspheres are predominantly
composed of NiO, supporting the second hypothesis that the electrochemical behavior is
due to the conversion of NiO to NiOOH and vice versa. Figure 4D shows the performance
of bare GCE and fl-NiO/C/GCE in the presence of 1 mM LGA. Upon the addition of LGA,
the bare GCE did not exhibit any response to LGA, as LGA cannot readily undergo the
electron transfer at the surface of a bare electrode, even when subjected to a significantly
higher voltage. In contrast, the presence of LGA resulted in a significant increase in the
anodic peak current (Ipa) of fl-NiO/C/GCE, from 4 to approximately 130 µA. Conversely,
the cathodic peak becomes undetectable. This suggests that fl-NiO/C is involved in a
catalytic process in alkaline media, as previously observed for nickel and nickel oxide-
modified electrodes [36–38]. As observed, the anodic peak has undergone a slight shift
to a higher potential, which is attributed to the restricted diffusion of LGA towards the
electrode, a phenomenon that has been previously reported [24,39,40].

The mechanism of LGA oxidation by fl-NiO/C microspheres can be illustrated through
the following reactions [17,23,24]:

fl-NiO/C + H2O + 2OH− ↔ fl-Ni(OH)2/C + 2OH− (3)

fl-Ni(OH)2/C + OH− ↔ fl-NiOOH/C + H2O + e (4)

fl-NiOOH/C + L-glutamic acid → Oxogluartate + fl-Ni(OH)2/C (5)

To obtain more information about the electrochemical mechanism, a series of CVs
were conducted at different scan rates, ranging from 10 to 70 mV/s (Figure 5A). As the scan
rates increased, the oxidation peak potential was observed to shift slightly towards a more
positive potential. This shift confirmed that the electrochemical reaction was kinetically
limited. In correspondence with the Randles–Sevick equation [41], a plot of Ipa versus the
square root of scan rate (υ 1/2), in the range of 10–70 mV/s, was obtained (Figure 5B). The
linear enhancement of the LGA oxidation current to the υ 1/2 and the linear relationship
between log I and log υ with a slope value of 0.39 (that is, near the theoretical value of 0.50),
as displayed in Figure 5C, imply that the reaction was controlled by diffusion. Additionally,
a graph of the normalized current (I/υ 1/2) against the scan rate (inset shown in Figure 5A)
displayed the typical EC’ process characteristics [33]. In order to gain insights into the
kinetics of the electrooxidation process, particularly the electron transfer coefficient (α) and
the number of electrons (n) involved in the LGA oxidation reaction, the Tafel plot of E vs
log Ipa was generated. This plot was derived from the rising portion of the CV at a scan rate
of 10 mV/s. At this scan rate, it is assumed that the electro-oxidation process is influenced
solely by electron transfer kinetics without the effects of mass transport limitations. By
employing the Tafel slope equation (slope = 2.3RT/(nf(1 − α))), the combined value of
n(1 − α) was determined to be 0.57. Given the documented range for α between 0.3 and
0.7 [42,43], it is reasonable to estimate n = 1 and α = 0.43. This transfer coefficient aligns
well with the typical range for electrochemical reactions, thereby supporting a one-electron
transfer mechanism in the LGA electrooxidation process [44].
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3.3. Chronoamperometric Measurements

Chronoamperometry experiments were further conducted to estimate the catalytic
rate constant (k) and the diffusion coefficient (D) of LGA at the fl-NiO/C/GCE surface. The
current time profiles were obtained for varying concentrations of LGA (0, 250, 500, 700, and
1000 µM) in 1M NaOH solution (Figure 6). The working electrode’s potential was adjusted
to 0.6 V. According to the Cottrell equation, the D of LGA can be determined by plotting
the current (I) versus the square root of time (t1/2). The experimental plots for different
concentrations of LGA are shown in Figure 6 inset (a), which have been fitted accordingly.
After plotting the slopes of the lines against the LGA concentration (Figure 6 inset b), the
resulting slope enabled the calculation of an average value for D, which was found to be
1.49 × 10−6 cm2.s−1. Moreover, based on the Galus method, k for the oxidation of LGA at
the fl-NiO/C/GCE surface was calculated using the following equation:

IC/IL = γ(1/2)
[(

π(1/2)er f
(

γ(1/2)
)
+ exp(−γ)

)
/γ(1/2)

]
(6)

where IC is the catalytic current of LGA at the fl-NiO/C/GCE, IL represents the limited
current in the absence of LGA, and γ = k.Cb.t where Cb is the bulk concentration of
LGA. When γ approaches 2, the error function is nearly equal to 1. In such cases, the
aforementioned equation can be simplified as follows:

IC/IL = π(1/2)γ(1/2) = π(1/2)(kCbt)(1/2) (7)
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To determine the rate constant value of the catalytic process, IC/IL was plotted against
t 1/2 for various concentrations of LGA, as shown in Figure S4. The slopes of the resul-
tant plots were then used to calculate an average value for k, which was found to be
5.212 × 103 M−1.s−1. This value confirms that fl-NiO/C film provides rapid electron
transfer for the oxidation of LGA.

3.4. Electrochemical Impedance Spectroscopy (EIS) Measurements

EIS has recently emerged as a promising alternative to amperometry and differential
pulse voltammetry for the development of sensitive, enzyme-free impedimetric biosensors,
particularly for biomolecule detection at low concentrations [45,46]. The sensor functions
by tracking changes in Rct in relation to the target molecule concentration, offering a reliable
approach to the detection of analytes. In this study, EIS was further utilized to evaluate the
effectiveness of fl-NiO/C/GCE as an LGA impedimetric sensor in a frequency range of
100 kHz to 0.1 Hz. The oscillation amplitude was set to 10 mV, and the working potential
was adjusted at 0.45 V vs Ag/AgCl. The Nyquist plots of the fl-NiO/C/GCE in 1 M NaOH
for various LGA concentrations are shown in Figure 7A. As can be seen, the Rct magnitude
decreases gradually with the addition of concentrations ranging from 10.0 to 800.0 µM
LGA. The inset of Figure 7A illustrates the modified Randles equivalent circuit (MREC),
which is used for EIS data fitting. The calibration curve plotting the logarithmic effect of
LGA concentration addition on the Rct response of the fl-NiO/C/GCE sensor is depicted
in Figure 7B.

Accordingly, the linear fit for the Rct of LGA follows the equation Rct = −1337.6 (log
[LGA]) + 2922.1 in the 10–100 µM and Rct = −187.66 (log [LGA]) + 615.21 in the 100–800 µM.
The detection limit and sensitivity in the lower concentration ranges were obtained as
1.28 µM (S/N = 3) and 428.98 µA.mM−1.cm−2, respectively. These results demonstrate
that EIS is not only comparable to commonly used methods such as amperometry and
differential pulse voltammetry, but also offers greater sensitivity, with a lower detection
limit and a broader linear concentration range towards LGA detection. A comparison of the
data presented in Table 1 [19,21,23,24,47,48] shows that the fl-NiO/C/GCE impedimetric
sensor exhibits superior analytical performance compared to previous studies.
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Table 1. Comparison of different non-enzymatic sensors for L-glutamic acid detection.

Electrodes Detection
Method

Linearity Range
(mM)

Sensitivity
(µA mM−1 cm−2)

LOD 2

(µM)
Enzyme References

NiNAE 1 I–V 0.50–8.00 65.0 135.00 no enzyme [23]

NiO/GCE Amperometric 1.00–8.00 11.00 272.00 no enzyme [24]

Au@MoS2/Chitosan/
GCE DPV 3 0.00005–0.20 --- 0.03 no enzyme [48]

PPy 4/Nafion/Chitosan/
GlutOx 5 Amperometric 0.01−0.88 38 2.5 GlutOx [47]

sGlutOx/cMWCNT 6/
AuNP/Chitosan

Cyclic
voltammetry 0.005–0.5 155 1.6 GlutOx [19]

GlutOx/APTES 7/
ta-C/P 8 Amperometric 0.01–0.5 2.9 10.0 GlutOx [21]

fl-NiO/C/GCE EIS 0.01–0.80 486.98 1.28 no enzyme This work
1 Nickel nanowire array, 2 limit of detection, 3 differential pulse voltammetry, 4 polypyrrole, 5 glutamate oxidase,
6 multi-walled carbon nanotubes, 7 (3-aminopropyl)triethoxysilane, and 8 tetra-hedral amorphous carbon.

3.5. Interference Study of Biosensor

The sensor’s selectivity was evaluated by testing the electrode in the presence of
common oxidative species such as Glu, AA, and UA, which are often found alongside
LGA in biological environments. Additionally, structurally related biomolecules, includ-
ing Tyr, Cys, Gln, and neurotransmitters like 5-HT, were also tested. The impedimetric
responses of the fl-NiO/C/GCE electrode in a 1M NaOH solution included standard
concentrations of these interfering species alongside LGA (60 µM). Using the equation
(Rct(mix)−Rct(LGA))/Rct(LGA), we assessed the impact of these potential interferences
on LGA recognition. The highest relative standard deviation (RSD%) for interference was
between 1.3% and 5.7%, demonstrating the sensor’s accuracy in detecting LGA (as shown
in Figure 8).
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3.6. Stability, Reproducibility, and Repeatability

The stability of the fl-NiO/C/GCE in detecting 200 µM LGA was examined using
amperometry through monitoring the sensor’s response for 600 s before and after the intro-
duction of LGA. The findings illustrated in Figure S5A indicate that the sensor maintained
nearly 97% of its initial current response to LGA even after 1000 s, signifying satisfactory sta-
bility. Additionally, to confirm the stability and effectiveness of the electrode modification,
up to 100 CVs of fl-NiO/C/GCE were recorded (Figure S5B). As shown, approximately 65%
of the redox peak current of fl-NiO/C/GCE was retained even after 100 CV cycles, indicat-
ing that the fl-NiO/C modification remained adhered to the electrode surface. Subsequent
evaluation after 10 days (sensor remained at 4 ◦C) demonstrated a consistent response with
low relative standard deviation (RSD)(Figure S6). Furthermore, five distinct electrodes
were fabricated, and their sensing responses towards LGA were assessed using CV to
evaluate reproducibility (Figure S7). The obtained RSD of 2.5% highlights the sensor’s
good reproducibility. Additionally, the prepared fl-NiO/C/GCE sensor was immersed in
a 1M NaOH solution with 0.8 mM LGA, and the Rct was evaluated over 10 consecutive
measurements. The resulting standard deviation from these measurements was 1.7%,
indicating excellent repeatability.

3.7. Utilizing the Sensor for Real Sample Analysis

To validate the practical feasibility of the fl-NiO/C/GCE sensor, it was employed to
detect LGA in blood plasma samples using EIS method. Three blood plasma samples (I–III)
with known LGA concentrations, determined via high-performance liquid chromatography
(HPLC), were obtained from a local clinical laboratory in Yazd, Iran. All serum samples
were, indeed, treated with NaOH solution prior to measurement. The LGA levels were
established through a calibration curve, with the recovery rates for samples spanning from
98 to 102%, as indicated in Table 2.

Upon statistic studies and juxtaposing the experimental t values with the critical t
value (tcrit = 2.89 at confidence level of 99%), it became apparent that there existed no
significant disparity between the results obtained from the proposed impedimetric sensor
and those obtained from the HPLC method, demonstrating the sensor’s utility for analyzing
real samples. Impedimetric diagrams of blood plasma samples are shown in Figure S8.
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Table 2. Determination of LGA level in blood plasma sample using the fl-NiO/C/GCE electrode (in
1 M NaOH solution).

Blood Plasma Sample Method Found by This Sensor (µM) Found by HPLC (µM) Recovery% texperimental

I EIS 89.1 90.1 98.91 1.21

II EIS 46.0 45.1 102.13 1.27

III EIS 30.9 31.3 99.55 1.83

4. Conclusions

The study successfully developed 3D porous flower-like microspheres of NiO/C
through a direct calcination method of Ni-BDC MOF, which were subsequently utilized as
a non-enzymatic sensing material to modify the surface of GCE for the detection of LGA.
The electrochemical results indicated that the uniformly structured 3D fl-NiO/C micro-
spheres provided a larger electrochemically accessible surface area for LGA, effectively
enhancing the electron transfer kinetics. Furthermore, the proposed impedimetric sensor
demonstrated remarkable potential for practical LGA detection, showcasing exceptional
sensitivity, low detection limits, and a wide linear range. Additionally, the developed
non-enzymatic sensor exhibited notable reproducibility, selectivity, and stability, along with
successful application in real samples, confirming its potential in biosensing.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bios14110543/s1, Figure S1. CVs of fl-NiO/C/GCE in 5.0 mM [Fe
(CN)6]3−/4− in 0.1 M KCl at a scan rate of 20–800 mV/s (A) and the plot of I versus υ1/2 (B). CVs of
bare GCE in 5.0 mM [Fe (CN)6]3−/4− in 0.1 M KCl at a scan rate of 20–800 mV/s (C) and the plot of I
versus υ1/2 (D). Figure S2. Cyclic voltammogram of fl-NiO/C/GCE in 1 M NaOH solution at various
scan rate 10–100 mV/s. (Inset: Plot of I versus υ). Figure S3. CVs of fl-NiO/C/GCE in 1 mM LGA in
1 M NaOH at a scan rate of 10 mV/s (A). Tafel plot E vs log I (B). Figure S4. The IC/IL vs. t1/2 plot at
different concentrations of LGA (250, 500, 700, and 1000 µM) (A). The plot of the slope of the (IC/IL
vs.t1/2) vs. C1/2 (B). Figure S5. Amprometric response of fl-NiO/C/GCE 600 s before and after injection
of 200 µL GLA (A) and CVs of fl-NiO/C/GCE in 1 M NaOH without LGA for 100 cycles, scan rate
50 mv/s (B). Figure S6. Stability of the fl-NiO/C/GCE during different times. Figure S7. CVs of 5
prepared fl-NiO/C/GCE in 1mM LGA in 1 M NaOH at a scan rate of 50 mV/s. Figure S8. EIS responses
of the fl-NiO/C/GCE towards sample (I–III).
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