
Citation: Zhou, J.; Liu, C.; Zhong, Y.;

Luo, Z.; Wu, L. A Review of Current

Developments in Functionalized

Mesoporous Silica Nanoparticles:

From Synthesis to Biosensing

Applications. Biosensors 2024, 14, 575.

https://doi.org/10.3390/

bios14120575

Received: 18 October 2024

Revised: 22 November 2024

Accepted: 24 November 2024

Published: 27 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

A Review of Current Developments in Functionalized
Mesoporous Silica Nanoparticles: From Synthesis to
Biosensing Applications
Jiaojiao Zhou 1 , Chen Liu 2, Yujun Zhong 3, Zhihui Luo 3,* and Long Wu 4,*

1 National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium
Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; jiaojiaozhou@whpu.edu.cn

2 School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
chen.liu@whpu.edu.cn

3 Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food
Science, Yulin Normal University, Yulin 537000, China; 18778837076@163.com

4 School of Food Science and Engineering, Key Laboratory of Tropical Fruit and Vegetables Quality and Safety
for State Market Regulation, Hainan University, Haikou 570228, China

* Correspondence: lzhui_1980@163.com (Z.L.); longquan.good@163.com (L.W.)

Abstract: Functionalized mesoporous silica nanoparticles (MSNs) have been widely investigated in
the fields of nanotechnology and material science, owing to their high surface area, diverse structure,
controllable cavity, high biocompatibility, and ease of surface modification. In the past few years,
great efforts have been devoted to preparing functionalized MSNs for biosensing applications with
satisfactory performance. The functional structure and composition in the synthesis of MSNs play
important roles in high biosensing performance. With the development of material science, diverse
functional units have been rationally incorporated into mesoporous structures, which endow MSNs
with design flexibility and multifunctionality. Here, an overview of the recent developments of
MSNs as nanocarriers is provided, including the methodologies for the preparation of MSNs and the
nanostructures and physicochemical properties of MSNs, as well as the latest trends of MSNs and
their use in biosensing. Finally, the prospects and challenges of MSNs are presented.

Keywords: mesoporous silica nanoparticles; biosensing; synthesis methods

1. Introduction

The application of nanobiotechnology to the field of biosensing has greatly promoted
the advancement of various nanosystems. One of the key aims in the development of
nanoscale biomaterials is to explore high-performance advanced nanomaterials. As an
emerging class of nanomaterials, mesoporous silica nanoparticles (MSNs) exhibit bioactive
behavior [1] due to their silanol groups [2], enabling their use in the manufacture of
nanocomposites for biomedical applications.

The properties of nanomaterials are related to their structures, and the application
of MSNs has been fueled by the following features: (1) their particle diameter can be
regulated according to the preparation conditions, ranging from several nanometers to
a few micrometers. Monodisperse nanoparticles can be obtained in a size range from
10 to 300 nm, which is relevant for biological environments, allowing the optimization
of the particle size for specific applications [3]. (2) The pore size is a key parameter for
the molecules that can be introduced into the mesopores. According to the surfactant
and synthesis conditions, the pore size can be adjusted to between 2 and 30 nm. Based
on this property, MSNs with a large pore diameter can be used for the adsorption and
delivery of biomolecules [4]. (3) The pore volume of traditional MSNs is calculated to
be within a range from 1 cm3/g to 4.5 cm3/g [5]. MSNs are well known for their capac-
ity to host a great number of molecules [6]. (4) MSNs were shown to possess different
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porous morphologies and textures, such as cubic and radial porosity, and controlling the
morphology of MSN pores has been reported, allowing the selective loading of different
molecular cargoes or tuning the cargo’s release [7]. (5) MSNs can be prepared and mass-
produced from commercial precursors. So far, various types of MSNs have been proven
to effectively co-deliver therapeutic agents, including core-shell MSNs and hollow MSNs
(HMSNs) [8]. The excellent performance of MSNs in biosensing applications has promoted
the development of new advanced multifunctional materials. In this sense, the contin-
uous progress of nanotechnology has promoted the development of nanoparticles that
can establish close interactions in the biological world. As mentioned above, the chemical
properties of the surfaces of MSNs can easily be adjusted. Many surface modification
strategies have been reported [9]; host–guest interactions can now be designed to achieve
multifunctional nanocarriers.

MSNs have been widely used to fabricate biosensors due to their unique properties
(Scheme 1). A timely review article on this topic is necessary because a large amount
of research on MSN-based sensors has now been published. In addition, great success
has been achieved in preparing MSN-based materials with different nanostructures, it is
necessary to review the various techniques developed for synthesizing MSNs. Herein, we
focus on the latest progress in MSN preparation and their applications in biosensing. The
challenges and the future prospects of MSNs are also discussed.
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2. Synthesis of Mesoporous Silica

Various methods can be used to synthesize MSNs with multiple shapes and physico-
chemical properties, but all of them are based on the hydrolysis and condensation of silica
precursors [9]. MSNs are often used as drug carriers to achieve the rapid release, slow
release, and controlled release of drugs, due to their unique mesoporous pore size and
adjustable nanopore structure [10]. However, when used for drug delivery, traditional
silica nanoparticles cannot be easily metabolized in the human body, thus greatly limiting
drug loading due to their pore size [11]. To solve this problem, researchers have devel-
oped methods for fabricating dendritic mesoporous silica nanocomposites (DMSNs) [12,13]
and hollow mesoporous silica nanoparticles (HMSNs) [14,15] by controlling some basic
parameters. By using these methods, the size of silicon nanoparticles can be controlled
from within a few micrometers to several nanometers, enabling significant changes in



Biosensors 2024, 14, 575 3 of 18

their physicochemical, surface, and structural properties, thereby greatly expanding the
application field of silicon nanomaterials.

Mesoporous materials with inorganic substances as skeletons are the products of
coordination between self-assembly and the sol-gel reaction. In the self-assembly process,
the inorganic framework materials are assembled on the surface of the template micelles,
while in the sol-gel process, the assembled framework materials are fixed in situ to generate
mesoporous products. Different methods, including the sol-gel method, hydrothermal
method, and template method, have been proposed to fabricate MSNs.

2.1. Sol-Gel Method

The sol-gel method involves the addition of active precursors to a solvent, which then
polymerizes to a gel at a specific temperature to produce mesoporous nanomaterials with
a uniform pore size [16]. This method reacts easily under homogeneous mixing and the
loaders are diffuse in the nm range. However, this method presents some disadvantages
because it is time-consuming and harmful to health. Moreover, the resulting gel would
be subject to shrinkage during drying. The synthesis of monodisperse nanoparticles was
first developed by Stöber and involves the hydrolysis of tetra alkyl silicate in a mixture of
ethanol and water under the catalysis of ammonia [17]. The preparation of MSNs mainly
follows the Stöber method, which is also known as the sol-gel method. Specifically, the
sol phase is generated by the reaction of hydrolysis and condensation, with high surface
activity compounds as precursors at alkaline or acidic pH, while the gel phase is a three-
dimensional structure produced by the condensation of colloidal particles through the
cross-linking of siloxane bonds [18,19]. Using surfactants, many types of MSNs can be
designed by changing the reactants. As early as 2012, MSNs with a uniform pore size
were synthesized for the first time by Shi’s team [20], using cetyltrimethylammonium
chloride (CTAC) as the structure-directing agent, tetraethyl orthosilicate (TEOS) as the silica
precursor, and triethanolamine (TEA) as the alkaline catalyst, achieving the size adjustment
of MSNs by changing the amount of TEA being added. In another study by Ang et al. [21],
MSNs were synthesized as drug carriers using a sol-gel method, and their surface was
further modified with amine and phosphonate groups. Specifically, MSNs were achieved
using surfactant cetyltrimethylammonium bromide (CTAB) as the structure-directing agent,
TEOS as the silica source, and NaOH as the base catalyst. The preparation of both pristine
and functionalized MSNs is shown in Figure 1A. In addition, researchers have investigated
whether changes in basic parameters, such as temperature and pH value, can adjust the
size of MSNs. In a study by Tella et al. [22], the effects of crux reaction conditions (such
as the amount of TEOS, pH value, and reaction time) on the synthesized MSNs were
systematically considered, and the pH value was concluded to be the most important factor
affecting particle size. The sol-gel method is the most frequently used technique to prepare
MSNs, offering the advantages of producing a uniform structure, controllable performance,
and saving time (due to the use of fewer excipients).

2.2. Hydrothermal Method

In the hydrothermal technique, synthesis is typically performed by the chemical reac-
tion of substances in a sealed container and heated aqueous solution at a high temperature
and pressure [23]. This approach has several advantages, including ease of controlling the
reaction and the formation of metastable substances for an adequate reaction. However,
this method has the disadvantages of harsh demands on the equipment and unmoni-
tored real-time processes. Specifically, a surfactant is used as a template with an acid or
base catalyst, which is then added to the solution to generate a hydrogel, followed by
placing the hydrogel in an autoclave. The treatment of the reaction precursors with high
temperature and pressure can be described as a process of separation of the precursors
and the removal of organic substances [24]. In a study by Dou et al. [25], an inside-out
preinstallation-infusion-hydration method for the targeted synthesis of Keggin heteropoly
acids within MSNs was reported. Discrete molybdenum dioxide (MoO2) nanoparticles
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were first prepared by a one-pot hydrothermal route; these were then used as cores to grow
shells of supramolecular templated silica with TEOS and CTAC in an alkaline solution.
With the thermal treatment of the as-synthesized core-shell spheres, the organic template
was burned off and a mesoporous shell was formed (Figure 1B). The hydrothermal method
is similar to the sol-gel procedure, except that right after template removal, the mixture is
transferred to an autoclave lined with polytetrafluoroethylene at a definite temperature.
The MSNs prepared by this method exhibit better performance in terms of regularity
and hydrothermal stability. The hydrothermal method has been extensively employed to
fabricate silica-related nanomaterials, especially for the synthesis and after-treatment of
mesoporous silica to ameliorate the regularity of its mesoporous pattern and amplify the
pore size.

2.3. Template Method

The template synthesis method, also known as the surfactant-assisted synthesis tech-
nique, is used to fabricate porous nanomaterials. This method can accurately control their
size, shape, structure, and properties. However, it requires complex template removal and
is commonly regarded as less efficient [12]. Up to now, various types of synthesis strate-
gies based on soft, hard, and self-template utilization and removal have been developed.
In these techniques, templates are used as structure-directing agents to produce hollow
porous structures.

In the soft template method, silica nanomaterials are prepared using single micelles,
micro lotion, vesicles, and bubbles as templates, followed by removing the templates
by simple centrifugal washing. It is a relatively simple method for the fabrication of
hollow silica nanoparticles, but it is difficult to produce nanoparticles with satisfactory
dispersion and regulate the particle size and shell thickness over a wide range. It is also
laborious to prepare nanoparticles on a large scale because of the demand for abundant
surfactants during the synthesis process [24]. In addition, it is challenging to eradicate
the template while retaining a good dispersion of nanoparticles. The residues may also
have some undesirable side effects in biomedical applications. The soft-template method
is widely used for double-shelled silica microcapsules with a stimulus response. For
instance, Zhou et al. prepared double-shelled silica microcapsules of pesticides using
N,N-dimethyldodecan-1-aminium nonanoate as the soft-template agent and solvent to
entrap avermectin (Ave) inside MSNs in situ [26]. Subsequently, a tannic acid–Cu (TA–Cu)
complex was employed as a sealing agent to cover the surface of Ave-loaded silica to form
Ave-IL@MSN@TA-Cu microcapsules (Figure 1C). This process did not involve the removal
of templates.

In the hard template method, prefabricated rigid particles are used to induce the
growth of SiO2 on their surface, followed by the treatment of calcination or by etching
removal of the templating agent after the formation of the shell layer [22]. Different kinds
of hard templates need different removal methods: Na2CO3 solution is used for the etching
removal of a silicon oxide template, while HCl solution is used for the etching removal
of a calcium carbonate template. The size and morphology of the hard template can be
designed in advance, which endows it with good stability and can effectively control the
particle morphology and cavity volume.

In recent years, researchers have developed a method for preparing HMSNs without
extra templates, which is known as the self-template method. In the absence of any
surface protection, selective etching of the interior of silica nanoparticles to obtain hollow
structures can be achieved. Several studies have shown that solid silica nanoparticles can
be transformed into hollow structures after acid and high-temperature treatment. The
outermost layer of silica nanoparticles by the Stöber reaction is the hardest, due to the
condensation of silicic acid and its aggregates, while the innermost layer of the porous
structure with a high swelling degree is the softest, allowing the thermal selective etching
of the inner layer [27].
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When preparing mesoporous silica nanoparticles, the pore structure, size, operation
difficulty, and experimental cost of the required nanoparticles should be considered when
choosing an appropriate preparation method. The properties of nanoparticles obtained by
diverse synthesis methods vary slightly, and the current optimal fabrication techniques can
be selected after comparison.
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heteropoly acids within MSNs, adapted from Ref. [25] with the permission of the American Chemical
Society. (C) Scheme of preparation and the possible release mechanism of Ave-IL@MSN@TA-Cu
microcapsules, adapted from Ref. [26] with the permission of the American Chemical Society.

3. Biosensing Applications of Mesoporous Silica Nanoparticles

Its unique ordered mesoporous structure, controllable pore size, and the above-
mentioned properties have enabled the wide application of mesoporous silica. To date, the
application of mesoporous silica has been explored in the field of biosensing. Herein, we
mainly focus on the various applications of MSNs in biosensing. These biosensors can be
mainly divided into six types: colorimetry, fluorescence, electrochemistry, electrochemilu-
minescence, surface-enhanced Raman scattering (SERS), and chemiluminescence.

3.1. Mesoporous Silica-Based Colorimetric Biosensors

Colorimetric biosensors have received much attention in analytical chemistry, owing
to their suitability for unaided visual observation, simplicity, low cost, and having no need
for any complicated apparatus, suggesting their potential for on-site detection. In various
colorimetric systems, the enzymatic oxidation of chromogenic substrates has been widely
used in colorimetric biosensing due to its label-free, rapid, and naked-eye observable
properties. Recently, nanozymes have garnered great interest. Compared with natural
enzymes, nanozymes are more stable, more controllable, and easier to prepare. MSNs are
ideal support matrices for optical sensing, in which these excellent adsorbents, including
nanozymes [28], indicators [29], etc., could be conveniently immobilized on the interior
or exterior surface of the mesoporous framework. In addition, the inert nature of the
silica matrix compared to the external environment facilitates the creation of a fascinating
platform on which to construct robust, sensitive, and rapid colorimetric sensors.

In a study by Norton et al. [29], a colorimetric sensor was prepared for in situ NO3
−

detection, based on a square-planar platinum(II) salt supported on MSNs. When exposed
to aqueous NO3

− with a pH of ≤0, the color and luminescence of platinum salts undergo
distinct changes, due to the substitution of PF6

− by NO3
−. This change in the photophysics

of the platinum salts is caused by their lattice rearrangement, resulting in prolonged
Pt. . . Pt. . . Pt interactions, accompanied by changes in electronic structure. Furthermore,
coupling this material with MSNs can enhance detection sensitivity. The colorimetric
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sensor has high selectivity for aqueous NO3
− with the existence of other interfering anions,

indicating its potential for NO3
− detection. Similarly, MSN chemosensors have been used

for the detection of other ions, such as cadmium ions [30], copper ions [31], mercury
ions [32], etc. However, single sensors can only detect a single analyte, which does not
meet the need for high-throughput discrimination, due to the similar structures of a series
of target analytes.

Sensor arrays based on nanomaterials have become powerful tools for detecting a
series of analytes with similar structures. Coupling the merits of sensor arrays with a
nanozyme–TMB system, a colorimetric sensor array for recognizing monoamine neuro-
transmitters was created by Wu et al. [33]. In their work, DMSN embedded with three metal
nanoparticles (Ag/Au/Pt) was used for the detection of six monoamine neurotransmitters.
These nanocomposites acted as nanozymes to oxidize TMB. Different monoamine neuro-
transmitters have different inhibitory effects on the catalytic efficiency of nanoenzymes,
resulting in different color changes in the nanozyme–TMB system. These color-change
patterns provide the fingerprint responses of monoamine neurotransmitters, which can be
distinguished through linear discriminant analysis. Using this sensor array, monoamine
neurotransmitters were successfully discriminated, with detection limits ranging from
0.03 to 0.38 µM, allowing human serum spiked with different monoamine neurotransmit-
ters to be directly differentiated by a fingerprint response. This sensor array may hold
great promise in practical applications, due to its outstanding discrimination performance
with biofluids.

Based on the reductive ability of thiolated compounds, colorimetric sensing could be
achieved through the color change of chromogenic substrates during the redox reaction.
In a study by Zhang et al. [34], an ultrasensitive core–shell nanozyme was prepared, with
DMSN as a core and MnO2 as a shell, for glutathione (GSH) sensing and cancer detection
(Figure 2A). The DMSN core not only serves as a carrier for camptothecin but also provides
a matrix for loading MnO2 shells. Owing to the high dispersion of MnO2 on the interior and
exterior surface of the DMSN, the atomic utilization efficiency of MnO2 was significantly
improved, leading to increased catalytic activity, enabling the catalysis of the oxidation of
TMB into oxTMB. Based on the oxidase-mimic property of MnO2, a colorimetric sensor
was established for GSH sensing in a linear range of 5–80 µM. After surface folic acid
modification, this nanocomposite could specifically detect cancer cells from 25 to 150,000
through the oxidation of TMB. This nanozyme opens up the new possibility of modulating
its activity for biomedical applications.
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Despite many reports of sensors based on the nanozyme–TMB strategy, there are few
reports on detection strategies that combine the specificity and selectivity of MSNs with
nanozyme-catalyzed visual detection. In a study by Amatatongchai et al. [35], an origami
3D-µPAD was designed for colorimetric carbaryl detection, based on MSN-PtNPs coated
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with a molecularly imprinted polymer (MSN-PtNPs@MIP) (Figure 2B). Coating an MIP
shell on the surface of MSNs endows the composites with numerous imprinting sites for
the sensitive and selective determination of carbaryl. The as-prepared MSN-PtNPs@MIP
not only acted as a nanozyme for the catalysis of TMB with the existence of H2O2 but also
provided cavities for selective carbaryl binding. Upon binding with carbaryl within the
3D-µPAD detection zone, a color change was observed from dark blue to light blue. This
origami 3D-µPAD-based assay achieved a detection limit of 1.5 ng/g for the carbaryl assay.

The utilization of mesoporous silica-based colorimetric biosensors has drawn wide
research attention, yet most of them are still in their infancy. Up to now, the most widely
used point-of-care detection items are the glucose meter and pregnancy test strip. The
realization of point-of-care detection would be a pivotal step in colorimetry. Furthermore,
the issues of food safety, disease diagnosis, and environment monitoring have prompted
an urgent need for portable sensing methods. In this regard, the rational design of corre-
sponding meters and kits founded on the stability of MSN-based biosensors would be able
to tackle this challenge.

3.2. Mesoporous Silica-Based Fluorescent Biosensors

Due to their high surface area, MSNs are generally used as fluorescence carriers in
fluorescence assays. These fluorescent materials, such as QDs and fluorescence dyes, are
commonly used for loading in MSNs.

In a study by Huang et al. [36], a novel strategy was proposed using a bright QD
assembly technique within MSNs, wherein mercapto-terminated MSNs could be used to
load QDs via thiol-metal coordination. Dentritic-SiO2/QDs/SiO2 spheres were combined
with a lateral flow strip assay for an ultrasensitive immunoassay of the C-reaction protein
in biological samples. Similarly, this novel MSN-QDs system was utilized as a convenient
detection platform for other analytes, such as the rabies virus [37] and ochratoxin A [38].
Specifically, these MSNs were prepared via a template method. Then, the pore channels
were used to carry QDs. Abundant QDs could be incorporated into their radial pores to
improve the sensitivity of MSN-based biosensing. Furthermore, the MSN-QD complex
is highly stable, even after several months of storage. Recently, Yang et al. explored
the potential of thiol-capped CdZnTe QDs as an exceptional signal tag for fluorescence
biosensing [39]. The NAC-capped CdZnTe QDs (NAC-CdZnTe QDs) exhibited superior
anti-interference capabilities and storage stability across various temperatures, pH levels,
and storage durations. Similarly, Huang et al. also reported a facile one-pot strategy to
prepare an MSN-QDs system in which QDs were confined into MSNs [40]. The prepared
QDs@MSNs exhibited excellent fluorescence intensity, water solubility, and stability.

To increase MSN surface area for the immobilization of multifunctional payloads,
uniformly sized and high-surface-area MSNs were prepared, using thiourea as the hy-
drolyzing agent, by Yadav et al. [41]. Subsequently, MSNs and 1,8-dimorpholinoanthracene-
9–10-dione were used to detect and remedy Cu2+ (Figure 3A). Quenching behavior was
observed, based on the fluorescence resonance energy transfer (FRET) in the presence of
Cu2+, achieving a detection limit of 0.13 µM. The produced material could adsorb Cu2+

with a maximum adsorption capacity of 398 mg/g, coupled with easy recycling.
Based on rhodamine 6G-loaded (R6G) and MnO2 nanosheet-coated MSNs, a fluores-

cence probe was designed for the detection of biogenic amines by Zhang et al. [42]. In the
presence of biogenic amines, diamine oxidase will catalyze them to generate H2O2, leading
to the reduction of MnO2 to Mn2+ and the signal recovery of R6G (Figure 3B). A good
recovery rate was obtained with spiked fish samples using the analytical method, revealing
its potential application in food safety.
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3.3. Mesoporous Silica-Based Electrochemical Biosensors

Electrochemical sensors have garnered much interest, owing to their low cost, high sen-
sitivity, fast response, and ease of miniaturization [43–46]. Most importantly, electrochemi-
cal sensors have the unique merit of offering both labeled and unlabeled detection [47,48].

To avoid interference during detection, Yang et al. integrated an electrochemical
sensor with magnetic solid-phase extraction for promethazine (PHZ) measurement in meat
samples [49]. Firstly, CoFe2O4/graphene was coated with C18-modified mesoporous silica
(MG@mSiO2-C18) to extract the PHZ, while a magnetic glassy carbon electrode modified
with nitrogen-doped hollow carbon microspheres (HCM) was used to attract MG@mSiO2-
C18 with the PHZ, achieving the direct detection of PHZ without an elution procedure. As
a result, this method exhibits a detection limit of 9.8 nM for a PHZ assay (Figure 4A).

The large number of silanol groups or organo-functional groups in MSNs provide a
means to anchor gating molecules to cap the pores, including DNA [50,51], proteins [52],
and nanoparticles [53]. These gating molecules can also uncap the pores by various external
stimuli, such as magnetic fields [54], pH [55], enzymes [56], and target molecules [57,58].
Based on the electrochemical properties of Ag anodic stripping and the high volume-to-
surface area of MSNs, Shi et al. proposed an MSN/AuNP@Ag-based electrochemical lateral
flow immunoassay for rapid AFP detection [59]. MSNs/AuNPs@Ag were prepared by
loading an Ag shell into a AuNP-coated DMSN. The electrochemical signal was significantly
enhanced upon anodic stripping. Moreover, the conjugation of AuNPs with the Ag shell
and the antibody facilitated efficient signal amplification. This developed electrochemical
biosensor has two advantages. First, the electrochemical signal allows for both qualitative
and quantitative analysis. Second, this biosensor holds substantial potential for home-based
diagnosis. This study not only offers a reference for the establishment of ultrasensitive
bioassays but also provides a prototype of a portable sensor.

Compared to other detection methods, a simultaneous detection method has drawn
attention due to its shorter analysis time [60]. On the basis of different signals being tag-
loaded onto the surface of Au-modified dendritic MSNs (DMSNs/Au), Sun et al. developed
an electrochemical immunosensor for the simultaneous determination of ovalbumin from
egg white and casein from milk in wall paintings [61]. DMSNs not only adsorbed more
electrochemical probes but also immobilized more antibodies, thus significantly improving
the sensitivity of the immunosensor. As a result, the fabricated immunosensor achieved
detection limits of 0.59 ng/mL and 0.36 ng/mL, respectively (Figure 4B).

To obtain a low background in electrochemical biosensing strategies, Cheng et al.
proposed an MSN-based sensing platform for mRNA detection through exonuclease-
induced target recycling amplification [62]. However, this nuclease-based amplification
strategy might suffer from inhibiting factors in complex sample analysis.
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Alternatively, a non-enzyme-based amplification strategy is highly desirable. Previous
authors proposed an ultrasensitive electrochemical sensing platform with a low background
for microRNA (miRNA) detection based on MSN containers, catalytic hairpin assembly
(CHA), and hybridization chain reaction (HCR) amplification [63]. Initially, methylene
blue (MB) would be sealed in MSNs by DNA. The presence of a target would induce the
release of MB due to the base paring reaction, coupled with the simultaneous occurrence
of CHA target recycling. Meanwhile, the CHA products could be captured and would
then trigger the HCR process to produce double-stranded DNA, which could be employed
for MB intercalation. In this way, an increased electrochemical signal could be recorded
(Figure 4C). Based on the nonenzymatic amplification strategy and low background, the
electrochemical platform could achieve a detection limit down to 0.037 fM.

In summary, electrochemical biosensors based on MSNs have shown high sensitivity
and selectivity. The development of various approaches has expanded the application of
MSNs and offers new avenues for research in this field.
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Figure 4. (A) Scheme of the electrochemical detection of PHZ, adapted from Ref [49] with the
permission of Elsevier. The images of (a) and (b) represent the preparation of CoFe2O4/graphene
coated with C18-functionalized mesoporous silica and the vertical coating of organic-inorganic
hybrid mesoporous silica on nitrogen-doped hollow carbon microspheres (HCM), respectively.
(B) Scheme of the multiplexed mechanism on the electrochemical immunosensor, adapted from
Ref [61] with the permission of Elsevier. The images of (a) and (b) represent the preparation of
signal nanotags based on different Au modified dendritic MSN and the electrochemical detection of
eggs and milk proteinaceous binders used in ancient wall paintings, respectively. (C) Scheme of the
electrochemical biosensor for miRNA detection, adapted from Ref [63] with the permission of the
American Chemical Society.

3.4. Mesoporous Silica-Based Electrochemiluminescent Biosensors

Electrochemiluminescence (ECL), also defined as electrogenerated chemiluminescence,
is a process wherein a high-energy electronic state is excited through an electrochemical
process [64]. A common strategy for constructing MSN-based ECL biosensors is the use
of MSNs as carriers to wrap ECL emitters for hole sealing. Coupled with biorecognition
molecules such as aptamers and antibodies, these nanocomposites can recognize specific
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target molecules, leading to the changing of ECL emitters, followed by an ECL signal
change [65,66].

In a study by Hong et al. [67], tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)3
2+) was

loaded into MSNs and the troponin I (TnI) antibody was attached to their surface. When
Ru(bpy)3

2+ reacted with tripropylamine, a strong ECL signal was produced that could
be monitored. This ECL lateral flow immunosensor (ECL-LFI) could successfully de-
tect TnI-spiked human serum within 20 min at femtomolar levels (Figure 5A). Therefore,
MSNs provide a new avenue for developing effective ECL-LFI biosensors for
biomarker detection.
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Donor-acceptor creation is an effective strategy to improve assay sensitivity. Li et al.
developed an ECL resonance energy transfer (ECL-RET) immunosensor using Ru@MSNs
as ECL emitters and manganese oxide nanoparticles (MnOx) as quenchers for sensitive
detection of the rabies virus [68]. Ru@DMSNs were obtained by loading Ru(bpy)3

2+ into
DMSNs as ECL emitters. MnOx can inhibit the formation of Ru@DMSN excited states,
accompanied by a decreased ECL signal. RABV quantification can be realized through
the variation of the ECL signal (Figure 5B). In another work, Wang et al. constructed
an ECL immunosensor for CA15-3 detection, based on a dual-quenching strategy [69].
Briefly, Ru(dcbpy)3

2+, poly-(ethylenimine) (PEI), and AuNPs were immobilized on DMSNs
(Ru-PEI/AuNPs@DMSNs) as luminophores. Upon the addition of CA15-3, Cu2O nanopar-
ticles coated with poly(dopamine) (Cu2O@PDA) nanocomposites were introduced to the
as-prepared Ru-PEI/AuNPs@DMSNs via an antigen–antibody interaction, causing remark-
able ECL quenching due to the dual quenchers of Cu2O and PDA (Figure 5C). The fabricated
sensor could detect CA15-3 within a wide linear range of 5.0 × 10−5–6.0 × 102 U/mL.
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Aggregation-induced ECL (AIECL) has introduced new vitality into the preparation
of ECL emitters. In a study by Jia et al. [70], an AIECL biosensor was proposed using
MSN matrix-confined 1,1,2,2-tetra(4-carboxylphenyl)ethylene (TPE) as an ECL emitter. TPE
and its co-reactant, TEA, were encapsulated in the MSNs to create a self-enhanced ECL
system. This self-designed WHPWSYC (WC-7) heptapeptide could significantly reduce
steric hindrance in CD44 affinity tests. Combined with the DNA strand displacement
reaction, this method exhibits a good ECL response to the CD44 antigen (Figure 5D).

3.5. Mesoporous Silica-Based SERS Biosensors

Surface-enhanced Raman scattering (SERS) can provide comprehensive informa-
tion about molecular vibration characteristics and can reflect the actual molecular
fingerprint [71–73]. The SERS technique has garnered much attention in various fields,
from biosafety to security screening [74–76].

Guo et al. prepared MSN-loaded gold nanocomposites and Rhodamine 6G (R6G) as
a SERS substrate (MSN-Rh6GAuNPs) for zearalenone (ZEN) detection [77]. The small
nanogaps between the AuNPs enabled the MSN-Rh6G-AuNPs to exhibit a strong SERS
signal, while the aptamer was used for ZEN recognition and Raman signal masking
(Figure 6A). Similarly, Zhu et al. designed a SERS biosensor for Staphylococcus aureus
(S. aureus) determination, based on MSNs [78]. Positively charged MSNs were used to
immobilize the signal molecules. Then, the aptamers of S. aureus were assembled on the
surface of MSNs via electrostatic interactions. In the presence of S. aureus, the assembled ap-
tamers were specifically bound to the bacteria, leading to the opening of the “gates” and the
release of signal molecules (Figure 6B). A low detection limit of 17 cfu/mL was achieved.

A dual signal-on biosensor with the characteristics of accurate detection is also pow-
erful in complex matrixes [79,80]. Coupling the benefits of the fluorescence technique
with SERS, Wu et al. proposed a SERS and fluorescence dual-mode biosensor for AFB1
detection [81]. Briefly, R6G, acting as a fluorescence and Raman signal molecule, was em-
bedded into the MSNs. Aptamers and polydopamine (PDA) were sequentially assembled
on the surface of the MSNs as dual-gated molecules. In the presence of AFB1, the release of
R6G was induced by the degradation of PDA and the specific binding between the aptamer
and AFB1 (Figure 6C). Consequently, the detection limits for AFB1 detection by Raman
and fluorescence spectroscopy were 0.133 pg/mL and 0.214 pg/mL, respectively. This
biosensor exhibited good storage stability over a period of one week, indicating its good
reusability and durability.
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3.6. Mesoporous Silica-Based Chemiluminescence Biosensors

Chemiluminescence (CL) biosensors have also drawn much research attention due to
their wide linear range, fast response, high sensitivity, simple operation, low background,
and suitability for miniaturization [82–84]. Comparatively, CL relies on illumination
through the chemical reactions of analytes with no need for a light source [85].

In a study by Sun et al. [86], a target-triggered CL sensor was proposed, based on a
hollow MSN embedded with luminol by aptamers. In the presence of prostate-specific
antigen, the prostate-specific antigen binds with its aptamer, leading to the release of
luminol and triggering the chemiluminescence reaction of luminol-H2O2. Under optimized
conditions, the sensor displayed a low detection limit of 0.27 pg/mL. The sensor also
exhibited good selectivity, reproducibility, and stability, with a spiked recovery ranging
from 99.3%–102.3% in serum samples without any further complex pretreatment.

To amplify the CL signal of a targeted analyte, Gu et al. prepared a CL biosensor for
nuclease activity and bacterial determination using hemin-MSN@DNA [87]. Specifically,
hemin was loaded into MSNs and then capped with the designed DNA. The capped DNA
would be hydrolyzed under DNA nuclease, triggering the release of hemin to enhance the
CL emissions for nuclease activity detection (Figure 7A). In addition, the nuclease derived
from bacteria could also digest DNA to trigger CL enhancement.

To improve detection accuracy, a CL sensor with a dual-aptamer recognition ef-
fect was proposed for thrombin detection, based on MSNs that were encapsulated with
iron porphyrin [88]. Briefly, MSNs were encapsulated with hematin by aptamer1 (Apt1/
hematin/M-SiO2) and magnetic microspheres were modified with aptamer2 (Apt2/NH2-
MS). In the presence of thrombin, Apt2/NH2-MS can recognize thrombin and separate it
with a magnet, followed by further recognition of the separated thrombin-Apt2/NH2-MS by
Apt1/hematin/M-SiO2, coupled with the simultaneous release of the encapsulated hematin
to catalyze the CL reaction of luminol-H2O2 (Figure 7B). In this way, a sandwich-type CL
sensor was constructed for thrombin detection.

To overcome the problems of detection accuracy and repeatability found in most flash-
type CL biosensors, Qian et al. proposed a glow-type CL biosensor based on a bimetallic
Co-doped ceria mesoporous nanocomposite (Co-ceria@MSN) [89]. This nanocomposite
would act as a nanozyme to catalyze the luminol/H2O2 CL reaction, producing a CL signal
(Figure 7C). Surprisingly, both the CL intensity and duration were strongly dependent
on GSH concentration. When further applied for GSH determination, this CL platform
presented a detection limit down to 10 nM.

In contrast to FRET, the CL resonance energy transfer (CRET) is generated from a
chemical reaction without external excitation [90,91]. On the basis of using MSNs as carriers
for embedding both the donor (HRP) and the acceptor (a functional DNA duplex), a new
CRET biosensor for miRNA detection was designed by Shen et al. [92]. By controlling the
energy-transfer distance, the donor emission could be quenched by the dye labeling the
acceptor DNA. Upon the addition of the target miRNA, the CRET system was destroyed,
followed by the release of the acceptor DNA due to the competitive hybridization of the
target miRNA. Consequently, the CL signal was recovered (Figure 7D). This strategy offers
a reference for biological assays.
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Figure 7. (A) Scheme of the stimulus-responsive CL platform for DNA nuclease and bacterial
detection, adapted from Ref. [87] with the permission of the American Chemical Society. (B) Schematic
CL sensor for thrombin detection, adapted from Ref. [88] with the permission of the American
Chemical Society. (C) Schematic CL reaction of Co-ceria@MSN, adapted from Ref. [89] with the
permission of Elsevier. (D) Scheme of CRET-based MSNs for miR-155 assay, adapted from Ref. [92]
with the permission of the American Chemical Society.

4. Summary and Outlook

In this review, we discussed the latest developments in MSN-based biosensing strate-
gies from the preparation of MSNs to biosensing applications, including colorimetry,
fluorescence, electrochemistry, ECL, SERS, and chemiluminescence biosensors.

Despite extensive research on MSNs, most of the studies on MSNs are still in their
infancy. The prospects for their practical applications are infinite, and further research
efforts need to focus on the following issues.

(I) In terms of preparation methods, more controllable strategies should be explored with
a desirable structure/composition.

(II) In terms of diagnostics, MSNs act as nanocarriers without orientation, so research
efforts should be made to improve their ability to combine with other substances and
enhance detection accuracy [93]. Meanwhile, their specificity cannot be ignored in the
performance evaluation of biosensors.

(III) In terms of safety, although the toxicity of MSNs is probably low, their long-term
toxicity is still unknown. Sufficient attention should be paid to decreasing their
toxicity and accelerating their degradability in biological systems.

(IV) In terms of application research, in-depth studies on other biosensing applications
of MSN nanomaterials are urgently needed. There is still room for the development
of biosensing applications based on MSNs, and these may provide references for
related researchers.

(V) Currently, most detection systems are still in their infancy, and their practical applica-
tion remains a challenge. Future studies should focus on their practical application,
especially the development of portable instruments [94].

(VI) MSNs have garnered much attention due to their merits, including high stability and
ease of loading, which make them possible for clinical translation. The preparation
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of highly homogeneous MSNs with a low molecular weight is a prerequisite for
promoting their clinical application.

(VII) The multifaceted capabilities of MSNs provide possibilities in terms of simultaneously
detecting multiple targets. Thus, the design of sensing arrays, combined with mi-
crofluidic technology, may expand the frontiers of their applicability. Furthermore,
integrating colorimetry with smartphones is promising for improving the portability
of biosensing.
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