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Abstract: Surface-enhanced Raman scattering (SERS) is a powerful optical sensing platform that
amplifies the target signals by Raman scattering. Despite SERS enabling a meager detection limit,
even at the single-molecule level, SERS also tends to equally enhance unwanted molecules due to
the non-specific binding of noise molecules in clinical samples, which complicates its use in complex
samples such as bodily fluids, environmental water, or food matrices. To address this, we developed a
novel non-fouling biomimetic SERS sensor by self-assembling an anti-adhesive, anti-fouling, and size-
selective Lubricin (LUB) coating on gold nanoparticle (AuNP) functionalized glass slide surfaces via
a simple drop-casting method. Compared to a conventional AuNPs-SERS substrate, the biomimetic
SERS meets the requirements of simple preparation and enables direct droplet detection without any
sample pre-treatment. Atomic force microscopy was used to confirm the self-assembled Lubricin
coating on the AuNP surface, acting as an anti-fouling and size-selective protection layer. A series of
Raman spectra were collected using melamine as the target analyte, which was spiked into 150 mM
NaCl solution or undiluted milk. It was demonstrated that the LUB coating effectively prevents
the detrimental fouling generated by the proteins and fats in milk, ensuring the clear detection of
melamine. Our sensor showed high selectivity and could detect melamine in milk at concentrations
as low as 1 ppm. Given that the EU/US legal limit for melamine in food is 2.5 ppm, this sensor offers
a promising, cost-effective solution for routine screening and has potential applications for detecting
food adulteration in the food safety, environmental monitoring, aquaculture, and biomedical fields.
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1. Introduction

Melamine, a nitrogen-rich organic compound, has been widely used in various indus-
trial applications such as the manufacturing of dyes [1], inks [2], resins [3–5], coatings [5],
and adhesives [6], after being polymerized with formaldehyde due to its stability and
cost-effectiveness [7,8]. However, the improper use of melamine in the food industry,
specifically in the milk and dairy sector, has garnered significant controversy because
of its potential health risks and fraudulent use [9]. Melamine is illegally added to milk
because it contains approximately 67% nitrogen by molecular weight. The practice of
adding melamine to milk products was encouraged primarily by economic incentives. By
artificially inflating the apparent protein content of milk, melamine allows unscrupulous
producers to meet nutritional standards and pass quality tests, which typically use nitrogen
content to estimate protein levels [7,10]. The primary drawback of using melamine in dairy
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products is its toxicological impact on human health [11–16]. When ingested, melamine
reacts with cyanuric acid to form insoluble melamine–cyanurate crystals in the kidneys,
triggering renal failure and other severe urinary complications [17–21]. The infamous
2008 Chinese milk scandal, which resulted in the hospitalization of tens of thousands
of infants and several fatalities, starkly highlighted the dire consequences of melamine
adulteration in food [22–26]. This incident underscored the health hazards associated with
melamine and led to a global demand for stricter food safety regulations and more robust
analytical methods to detect melamine levels in milk [27–29].

The detection and analysis of melamine contamination necessitate sophisticated
analytical techniques, such as high-performance liquid chromatography [30–33], gas
chromatography–mass spectrometry (GC-MS) [31,34], liquid chromatography–mass spec-
trometry (LC-MS) [31,35,36], and enzyme-linked immunosorbent assay (ELISA) [37–41],
which are time-consuming, involve complex sample preparation and complicated opera-
tion procedures, and are relatively expensive. Non-destructive analytical methods such
as electrochemical detection, infrared and Raman spectroscopy, and surface-enhanced
Raman scattering (SERS) are considered better tools for providing rapid, accurate, and
point-of-care (PoC) sensing results. Compared to other sensing techniques, SERS can
provide fingerprint information of the target analyte, facilitating multiplex sensing results.
SERS also yields high signal enhancement due to the localized surface plasmon resonance
of metallic nanoparticles, e.g., Au nanoparticles [42–45]. Different SERS-based methods for
melamine detection have been developed; most of them focus on improvements to SERS
substrates such as fabricating new SERS substrates with high sensitivity and high perfor-
mance [10,17,46–49], modifying the SERS substrate surface with SERS probes [50–52], and
labeling metallic nanoparticles with SERS tags [53–55]. However, SERS analysis of target
molecules in undiluted milk samples has not been addressed. Undiluted milk samples are
complex mixtures of large-sized interference contaminants, including milk proteins like
casein micelles (~0.3 µm), ions, and milk fat globules (ranging from 200 nm to 15 µm), with
a range of absorptivity on the SERS active surface.

Lubricin (LUB) is a type of glycoprotein originally found in articular joints [56–59].
LUB can self-assemble on a variety of flat surfaces, including metallic, polymer, inorganic,
2D, and electrode surfaces [60–68]. The tri-block structure of the LUB molecule comprises
two end-domains that adhere to the substrate surfaces and a 200 nm mucin domain
carrying negative charges. When the LUB molecules adsorb on the substrate surface,
the two highly adhesive end-domains bind to the substrate surface, while the heavily
glycosylated central portion, named the mucin domain, forms a polymer-like brush due
to the repulsive forces generated by negatively charged mucin domains. According to
previous atomic force microscopy and neutron reflectometry studies [62,69,70], a fully
extended LUB mucin domain forms a roughly 100 nm high, ‘telechelic’ structure. LUB
coatings have been found to exhibit remarkable anti-adhesive, anti-fouling, and size-
selective transport properties [60,63,70–72], performing even better than polyethylene
glycol under certain conditions [63]. Compared to other polymeric anti-fouling layers, LUB
coatings require no complex surface chemistry or engineering, thus preserving the surface
properties of the sensor substrate. As a protective layer in electrochemical and optical
(SERS) sensors, LUB coatings have been used to separate the target analyte from complex
clinical samples such as saliva, protein solutions, undiluted milk, and unprocessed whole
blood [71–74].

In this work, we investigate the use of LUB as a protective and separation layer in
the SERS sensing platform for detecting melamine in undiluted milk samples. The self-
assembled LUB-coated SERS sensor (biomimetic SERS) was fabricated for the rapid and
sensitive detection of melamine in undiluted milk samples, and its sensing performance
was compared with a bare SERS sensor (without the LUB protection layer). To confirm that
Lubricin had self-assembled on the bottom of the AuNP surface, the AFM technique was
used to characterize the bare SERS and biomimetic SERS and compare the morphologies and
adhesion behaviors of the bare SERS and biomimetic SERS via AFM imaging and normal-
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force distance measurements, respectively. Compared to the bare SERS, the biomimetic
SERS successfully detected undiluted milk samples spiked with melamine, with a detection
limit of 1 ppm. This biomimetic SERS sensor demonstrates great potential for extension to
various future applications, such as environmental contaminant analysis, food safety, and
biofluid analysis.

2. Materials and Methods
2.1. Materials and Reagents

Melamine, H2O2, aminopropyltriethoxysilane (APTES, ≥98%), sodium tetrachloroaurate
(III) dehydrate (AuCl4Na2·H2O), and sodium citrate tribasic dihydrate (Na3C6H5O7·2H2O)
were purchased from Sigma-Aldrich, and H2SO4 was purchased from ASIS Scientific. Undi-
luted, ‘full cream’ milk was purchased from a local supermarket (Woolworths, Australia).
The Lubricin (LUB), also known as PRG-4, utilized in this study was a recombinant human
full-sequence variant with >99.5% purity, as verified and supplied by Lubris BioPharma
(Framingham, MA, USA). The initial LUB concentration was 2.3 mg/mL in 1× PBS, with
0.1% polysorbate 20 added as a stabilizing agent, acting as both a surfactant and a potential
adhesion enhancer for substrate surfaces. A total of 2.5 mL of LUB solution underwent
dialysis against 500 mL of PBS without polysorbate using a Slide-A-Lyzer cassette with a
20,000 molecular weight cutoff. This process was conducted over 24 h, with the dialysate
replaced after approximately 4 and 8 h. Once dialyzed, the LUB solution was divided
into aliquots, flash-frozen in liquid nitrogen, and stored until needed. All chemicals were
analytical-grade and used as received unless noted otherwise. Deionized water (DI water,
18.2 MΩ/cm) was provided by a Thermo Scientific Nanopure system (Waltham, MA, USA).

2.2. Sensor Fabrication

The same Au nanoparticles (AuNPs) as reported in previous works were used to
fabricate the easiest SERS active substrates [72,75]. Briefly, 40 mL of 1 mM stocked
AuCl4Na2·H2O solution was heated to the boiling point, and then 4 mL of 1% sodium
citrate solution was rapidly added to the AuCl4Na2·H2O solution while stirring. A colloidal
Au solution gradually formed as the citrate reduced the gold (III), and the solution was kept
heated until it turned deep red. To prepare the colloidal Au-modified surface (bare SERS),
the glass slide was first rinsed with DI to remove any dust from the surface and then cleaned
using a freshly prepared piranha solution, which consists of 98% H2SO4 and 30% H2O2
with a volume ratio of 3:1, for 0.5 h at 80 ◦C to remove any organic contaminations on the
surface and obtain a completely smooth and hydroxylation layer, as shown in Scheme 1A.
The cleaned glass slide was then modified with APTES to obtain a homogeneous amine
group surface by the vapor deposited method. Specifically, the piranha solution-cleaned
glass slide was put into a beaker with 1 mL of pure APTES and left in the oven overnight at
70 ◦C, followed by DI water rinse and curing at 110 ◦C for 15 min (see Scheme 1B). To obtain
the AuNP-coated glass slide (Bare SERS), the glass slide was immersed in the gold colloidal
solution for 2 h at room temperature and then the glass slide was rinsed with DI water,
as shown in Scheme 1C. Finally, the Lubricin was self-assembled on the AuNP-coated
glass slide to fabricate the biomimetic SERS by directly dropping 100 µL of 130 µg/mL
stocked Lubricin solution for 20 min to allow the Lubricin molecules to adhere onto the
AuNP-modified surface, which was then rinsed with a large amount of DI water to remove
any unbound Lubricin molecules from the surface of the biomimetic SERS (see Scheme 1D).
The drop-casting method has been proven to be an effective and efficient method in previ-
ous works using different surfaces as substrates, including Au surfaces [62,63,69,70,72,76],
mica [62,68,77,78], polymers [62,79,80], 2D nanomaterials [61,62], and electrodes [60,71,73].
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Scheme 1. (A–D) Schematic illustration of the fabrication of the biomimetic SERS sensor. (E,F) SERS
measurements of melamine-spiked undiluted milk with the bare SERS sensor and the biomimetic
sensor, respectively.

2.3. AFM Characterization of the Biomimetic SERS

The bare SERS and biomimetic SERS sensors were fabricated as above. The sen-
sors were stored in Petri dishes containing PBS buffer for subsequent atomic force mi-
croscopy (AFM) imaging and normal-force distance measurements. As detailed in prior
research [60,61,63,70,81], AFM imaging and measurements were performed using a JPK
Nanowizard Sense AFM equipped with triangular silicon nitride cantilevers (Bruker MSCT).
The cantilever ‘D’ from the MSCT multi-cantilever set, with a nominal tip radius of 10 nm
and spring constant of 0.04 N/m, served as the imaging and measurement tip in contact
mode. For normal-force distance measurements, a previously established protocol was em-
ployed. The cantilevers were first cleaned for 15 min using a biological UV–ozone cleaner
to eliminate organic residues from the tips. Subsequently, the normal spring constant in
air and the inverse optical lever sensitivity (invOLS) in 150 mM NaCl were calibrated.
Measurements were performed with a ramp length of 2 µm, an approach and retraction
velocity of 1 µm/s, and no dwell time at peak force. Data analysis was carried out using
version 6.1.175 of the JPK Data Processing software.

3. Results
3.1. AFM Imaging and Normal Force Distance Measurements

The key component of the biomimetic SERS sensor is the self-assembled Lubricin layer
on the bare SERS surface, which is expected to show the anti-fouling and size-selective
properties when detecting melamine molecules in undiluted milk. AFM imaging and
normal-force distance measurements were employed to confirm the existence of the LUB
layer on the bare SERS surface. AFM imaging and normal-force distance measurements
were performed to access the surface morphologies and adhesion behaviors, respectively,
of the bare SERS and biomimetic SERS. The adhesion results of the LUB layer on the DNA
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sensor, including adhesion force, energy, and adhesion force range, provided information
about the organization and uniformity of the LUB coatings, which are directly related to
the anti-fouling property and sensing performance of the biomimetic DNA sensor.

The morphologies of the bare SERS and biomimetic SERS were measured via AFM
imaging and are shown in Figure 1. Figure 1A shows the represented AFM images of bare
SERS with an average roughness Ra value of 5.36 nm, and Figure 1B shows the 3D image
of Figure 1A. Compared to the bare SERS, the biomimetic SERS (see Figure 1C,D) with an
average roughness Ra value of 3.87 nm shows a noticeable decrease in surface roughness,
indicating that LUB self-assembled on the SERS surface and formed a uniform layer, which
is in agreement with our previously reported LUB-coated Au surface which was measured
by the AFM imaging method [62,63,69–72].
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Figure 1. (A) Representative AFM images of bare SERS. (B) Corresponding 3D image of Figure 1A.
(C) Representative AFM images of biomimetic SERS. (D) Corresponding 3D image of Figure 1C. The
AFM images were collected using contact mode and the Ra values listed on the images are averages
of the RMS data for each. The average roughness shown was calculated from ten total traces of an
individual image.

To further investigate the difference in the adhesion behaviors of bare SERS and
biomimetic SERS, a series of AFM normal-force distance measurements were conducted on
the bare SERS and biomimetic sensors and followed by plotting the normal-force distance
curves of LUB on different surfaces, as shown in Figure 2. Figure 2 shows representative
AFM normal-force distance measurements taken during the approach and separation of the
AFM tip against the bare SERS and biomimetic sensor, respectively. For the normal-force
distance curve of the bare SERS, as shown in Figure 2A and similar to what was previously
reported [62,69,70], there was no adhesion measured on bare SERS since there was no LUB
layer on the Au surface. In contrast, for the LUB-SERS plotted in Figure 2B, a typical normal-
force distance force curve was obtained on the LUB-modified surface. Compared to the
AFM normal-force distance curve of the bare SERS, a large increase in the range of the steric
repulsive forces was measured during the approach stage due to the repulsive interactions
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between the AFM tip and the mucin domain of the LUB layer. During the separation
process of Biomimetic SERS, there was an obvious adhesion behavior that occurred when
the AFM tip was pulled up and away from the Biomimetic SERS surface. Briefly, the LUB
molecule, bound to the AFM tip, was detached from the Biomimetic SERS in a fraction
of the measurements, and the corresponding adhesion force and adhesion energy were
recorded. The observed LUB adhesion force curve again indicates that the LUB molecules
have self-assembled on the bare SERS surface and formed a ‘telechelic-like’ structure.
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DNA sensor.

3.2. Analysis of Melamine with Bare SERS

For the SERS measurements of buffer and undiluted milk media spiked with melamine,
two types of sensors were used. The bare SERS sensor, fabricated by simply depositing
colloidal Au nanoparticles on an APTES-modified glass microscope slide, is shown in
Scheme 1C. The same bare SERS sensor showed good SERS activity for the detection of
Rhodamine 6G- and L-cysteine-spiked buffer (150 mM NaCl) in a previous work [72].
Compared to the bare SERS sensor, the biomimetic SERS sensor was developed by coating a
self-assembled Lubricin layer on the bare SERS sensor as a protection layer with anti-fouling
and size-selective properties. The two end-domains of Lubricin physically adhere to the
surface, while the 200 nm long, negatively charged mucin domain fully extends due to
internal repulsive forces, forming a telechelic polymer-like loop structure on the substrate
surface (see Scheme 1D) [61,62,68]. Previous works have shown that the self-assembled
Lubricin layer covers only about 15% of the substrate surface area and consists of more than
95% water. The low coverage and highly diffuse nature of the Lubricin layer allow it to act
as a molecular sieve, physically blocking large-sized fouling molecules such as proteins
and cells, while small-sized target molecules, including ions, drugs, and other chemicals,
can diffuse into the Lubricin layer and interact with the underlying substrate surface. The
size-selective property of Lubricin has been demonstrated and utilized in electrochemical
sensors [60,71,73] and optical (SERS) sensors [72].

Firstly, to obtain the SERS spectra of melamine in pure buffer as a reference, SERS mea-
surements were conducted to analyze clean buffer (150 mM NaCl) spiked with melamine
using the bare SERS (without the self-assembled Lubricin layer) as the sensor. Figure 3A
displays the SERS spectra of the melamine-spiked buffer collected with bare SERS, in
which the predominant peaks of the SERS spectra of melamine at 680 cm−1 and 700 cm−1,
assigned to the triazine ring with a protonated form and a neutral molecular form, can be
observed [46,82].
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Figure 3. (A) SERS measurement of melamine in buffer made with bare SERS. (B) SERS measurements
of pure milk and melamine–spiked undiluted milk made with the bare SERS sensor or biomimetic
SERS, respectively.

To understand the impact of the non-specific binding of fouling molecules such as
fats and proteins in undiluted milk on the performance of bare SERS when used to detect
melamine, the bare SERS sensor was next challenged with undiluted milk without the
melamine target and with 100 ppm of the melamine target, respectively. Figure 3B shows
the SERS spectra of undiluted milk only and melamine–spiked undiluted milk with the bare
SERS sensor, respectively. There were no identical peaks observed for the undiluted milk.
Similarly, as demonstrated in Scheme 1E, due to the uncontrolled non-specific bindings of
unwanted fats and proteins in the undiluted milk, the target melamine molecules cannot
access or bind on the bottom AuNPs, as a result of which there are no enhanced Raman
signals from melamine generated at any position with the bare SERS sensor.

3.3. Analysis of Undiluted Milk Spiked with Melamine with Biomimetic SERS

Before evaluating the anti-fouling and size-selective transport properties of the self-
assembled Lubricin layer, we studied the ability of target melamine molecules to diffuse
into the Lubricin layer and adsorb onto the underlying AuNPs. SERS measurements were
conducted using buffer spiked with 100 ppm melamine as the analyte, with bare SERS
and biomimetic SERS used as the Raman sensors. Figure 4A shows the SERS spectra of
melamine in buffer, obtained under identical measurement parameters using biomimetic
SERS and bare SERS. Compared to the SERS spectra of melamine in buffer collected with
bare SERS, the spectra collected using biomimetic SERS still show Raman scattering at the
same peak positions. However, a noticeable decrease in peak intensities at both 680 cm−1

and 700 cm−1 is observed when the biomimetic SERS is used. Interestingly, the peak at
700 cm−1, attributed to the triazine ring with a neutral molecular form, was significantly
affected by the self-assembled Lubricin layer. The decrease in peak intensity at 700 cm−1

may be due to the impact of the self-assembled Lubricin brush altering the orientation
and form of the melamine molecules as the molecules diffused through the Lubricin brush
layer to adsorb on the bottom of the AuNP surface. Despite the obvious effect of the self-
assembled Lubricin layer on melamine as it travels through the layer, it can be concluded
that the Lubricin layer does not significantly inhibit the ability of melamine molecules to
access the AuNPs and generate SERS signals.
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To assess the anti-fouling and size-selective properties of the Lubricin layer in pre-
venting the surface fouling of the sensor by the fats and proteins in the undiluted milk, the
biomimetic SERS sensor was finally challenged against undiluted milk by directly pipetting
the melamine-spiked undiluted milk sample onto the biomimetic SERS sensor’s surface.
Figure 4B shows the SERS spectra of melamine collected from undiluted milk using the
biomimetic SERS sensor and bare SERS, as well as the SERS spectra of melamine in a clean
buffer collected with biomimetic SERS. Compared to the SERS spectra of melamine in
buffer previously collected with biomimetic SERS, the overall intensity of the SERS spectra
at 680 cm−1 is significantly reduced, a consequence of the reduction in ‘free’ melamine con-
centration due to the blocking of melamine molecules by milk proteins and fats. However,
the SERS spectra of melamine are observed and identified, importantly maintaining the
same peak position at 680 cm−1 with the biomimetic SERS sensor surface. There is a strong
correlation between the melamine spectra collected in undiluted milk and clean buffer,
both with a melamine concentration of 100 ppm. Again, comparing the melamine spectra
of clean buffer and undiluted milk collected with biomimetic SERS and the spectra of undi-
luted milk collected with bare SERS confirms the Lubricin anti-fouling layer’s capability to
identify melamine molecules from the complex food matrix, enabling its SERS detection.

3.4. Calibration of Undiluted Milk Spiked with Melamine with Biomimetic SERS

To evaluate the proportional relationship between melamine peak intensity and the
concentration of melamine in undiluted milk, and to determine the limit of detection
of the biomimetic SERS sensor for melamine in diluted milk, a calibration curve was
generated using serial dilutions of melamine in milk until no further melamine peaks
could be detected. Figure 5A shows representative melamine spectra collected using the
biomimetic SERS sensor from serial dilutions of melamine-spiked undiluted milk, ranging
from an initial concentration of 500 ppm to 1 ppm. The 680 cm−1 peak was chosen as the
characteristic peak corresponding only to the melamine scattering and used to quantify
the melamine concentration in milk. The relationship between the 680 cm−1 peak intensity
and melamine concentration is shown in B. Based on the calibration curve in Figure 5B, the
lowest detectable concentration of melamine in undiluted milk is 1 ppm.
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4. Conclusions

In conclusion, the detection and analysis of melamine in undiluted milk were achieved
by using the anti-fouling and size-selective transport properties of a self-assembled Lu-
bricin layer, which was fabricated using a rapid and chemical reaction-free method. The
Lubricin brush layer functions both as a protective layer, preventing fouling molecules
like fats and milk proteins from contaminating the SERS surface, and as a size-selective
membrane, allowing target molecules, such as melamine, to diffuse into the Lubricin layer
and adsorb onto the AuNPs to generate SERS signals. The successful detection of melamine
in undiluted milk strongly supports the application of Lubricin-covered sensing platforms
for highly fouling food matrices like coffee and juice, aquaculture and environmental
samples, and bodily fluids such as unprocessed whole blood, urine, and saliva for detecting
and analyzing mycotoxins, antibiotics, DNA, drugs, and other clinically relevant analytes.
Future work will focus on enhancing the selectivity of the sensor surface by employing
target recognition techniques such as molecularly imprinted polymers. Besides developing
analyte affinity, future research will investigate better SERS substrate surfaces to enhance
the detection limit of the Lubricin-enabled biomimetic SERS sensor.
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