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Abstract: Pulse Wave Velocity (PWV) analysis is valuable for assessing arterial stiffness and cardio-
vascular health and potentially for estimating blood pressure cufflessly. However, conventional PWV
analysis from two transducers spaced closely poses challenges in data management, battery life, and
developing the device for continuous real-time applications together along an artery, which typically
need data to be recorded at high sampling rates. Specifically, although a pulse signal consists of
low-frequency components when used for applications such as determining heart rate, the pulse
transit time for transducers near each other along an artery takes place in the millisecond range,
typically needing a high sampling rate. To overcome this issue, in this study, we present a novel
approach that leverages the Nyquist–Shannon sampling theorem and reconstruction techniques for
signals produced by bioimpedance transducers closely spaced along a radial artery. Specifically,
we recorded bioimpedance artery pulse signals at a low sampling rate, reducing the data size and
subsequently algorithmically reconstructing these signals at a higher sampling rate. We were able
to retain vital transit time information and achieved enhanced precision that is comparable to the
traditional high-rate sampling method. Our research demonstrates the viability of the algorithmic
method for enabling PWV analysis from low-sampling-rate data, overcoming the constraints of
conventional approaches. This technique has the potential to contribute to the development of
cardiovascular health monitoring and diagnosis using closely spaced wearable devices for real-time
and low-resource PWV assessment, enhancing patient care and cardiovascular disease management.

Keywords: Nyquist–Shannon sampling; signal reconstruction; biosignal processing; Pulse Wave
Velocity; bioimpedance; cardiovascular health

1. Introduction

Pulse Wave Velocity (PWV) analysis is a critical and non-invasive technique used in
clinical practice and research to assess arterial stiffness [1–3] and cardiovascular health [4–6].
PWV provides essential insights into the functioning of the arterial system, offering valuable
information about arterial compliance, vascular tone, and cardiovascular risk [7,8]. It is a
strong predictor of cardiovascular events and overall mortality, making it an indispensable
tool for the early detection and management of cardiovascular diseases [9]. However,
PWV analysis for closely spaced transducers typically requires high sampling rates, more
than 10 kHz, to accurately capture the fast-changing dynamics of arterial pulse wave
pairs [10]. Additionally, such high sampling rates come with several challenges, including
data management complexities, increased memory storage requirements, limited real-time
applications [11,12], and affected power consumption [13,14]. Effectively, the use of high
sampling rates can be impractical for wearable devices, which are becoming increasingly
popular for continuous health monitoring [15,16].
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To address the challenges associated with high-frequency sampling in a wearable
device, we propose a novel approach that enables PWV analysis from low-sampling-
rate data while maintaining accuracy and precision. Our method leverages the Nyquist–
Shannon sampling theorem, a fundamental principle in signal processing, to reconstruct
pulse signals at a higher sampling rate [17,18].

2. Materials and Methods

In this study, we employed a BIOPAC NICO-100C system to record bioimpedance
artery pulse signals along the radial artery of the wrist at reduced sampling rates of 250 Hz,
500 Hz, and 1 kHz. We then reconstructed the pulse signals at a higher sampling rate
of 10 kHz using MATLAB. The reference bioimpedance signals were directly recorded
at a high sampling rate of 10 kHz using the BIOPAC NICO-100C system and used for
comparison to the existing PWV measurement method [19].

2.1. Measurement Setup for Radial Artery Pulse Using Bioimpedance

The measurement of the radial artery pulse using bioimpedance and the process of
PWV assessment are depicted in Figure 1. To begin, a current pump is utilized to inject
a constant sinusoidal current into the wrist, independent of the resistance value of the
targeted area [20,21]. This current injection is performed through two electrodes located
on the distal and proximal ends, which serve as the injection points for the differential
signal. The remaining four electrodes are positioned in between these outer electrodes, two
closer to the proximal injection electrode (Channel 1) and two closer to the distal injection
electrode (Channel 2), and are used to measure the impedance returning from the tissue
and radial artery.
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Figure 1. Schematic for measuring radial artery pulse using bioimpedance and the PWV measure-
ment process.

To record the data and carry out this analysis, we employed the BIOPAC NICO-100C
system. The acquired data were processed using a custom MATLAB code specifically
designed for signal resampling. By reconstructing the pulse signals at a higher sampling
rate through resampling techniques, we ensured that vital information was retained and
the precision of the PWV measurements was enhanced.

The key step in the PWV analysis was the calculation of pulse transit time (PTT). For
this paper, we define PTT as the time taken for the arterial pulse wave to travel between
Channel 1 and Channel 2. Once PTT is determined, it is divided by the distance between
the channels to extract the PWV [22,23].

2.1.1. Hardware Setup Configuration

For the hardware setup, we utilized the BIOPAC MP160 Data Acquisition and Analysis
system, along with two NICO-100C devices [24]. The MP160 was employed for data
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acquisition and analysis, while the two NICO-100C devices were used for current injection
and pulse measurement. Only one of the NICO-100C devices was responsible for current
injection, and the second one was connected solely to the voltage measurement terminal [19].
In general, higher frequencies can result in better current conduction through the body’s
tissues. Taking this into consideration, we opted to use the highest injection frequency
available, which is 100 kHz [24–26]. A low-pass filter (LPF) with a cutoff frequency of 10 Hz
was also utilized for filtering to eliminate high-frequency noise from the recorded signals.
The specific illustration of the hardware configuration is illustrated in Figure 2.
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Figure 2. Hardware setup configuration for PWV measurement (injection current frequency of
100 KHz; filter settings included a 10 Hz low-pass filter (LPF)).

2.1.2. Software Setup Configuration

In the software setup, we used a total of six channels for signal processing. The first
and second channels consisted of the raw data recorded at a low sampling rate. To make it
easier to visualize the pulse peaks, we created the third and fourth channels to represent
the derivative of the raw data. Additionally, to remove the noise and artifacts present in
the signals, we applied windows and digital filters to the fifth and sixth channels. For
windowing, we opted for the Blackman window, which exhibits reduced sidelobes and
higher-frequency resolution compared with classical windows. By utilizing the Blackman
window, we effectively minimized spectral leakage [27–29], which is vital for obtaining pre-
cise pulse wave information. Furthermore, we incorporated a digital low-pass filter with a
cutoff frequency of 10 Hz. This filter was applied to each signal to eliminate high-frequency
noise. All the sampling rates for each channel were set to the same respective values and
were higher than 125 Hz to avoid aliasing in the reconstructed signal [30,31]. Thus, when
using the proposed method, it is crucial to identify noise sources in the signal and set the
sampling rate to at least higher than the Nyquist frequency of that signal. The software
configurations for this signal adjustment can be found in Supplementary Figure S1.

2.1.3. Data Acquisition

For data acquisition, a total of 6 repositionable electrodes were utilized. Two outer
electrodes delivered a sinusoidal current of 400 µA with a frequency of 100 kHz [24], while
the inner electrodes recorded the voltage variation over a specific time frame and were
separated by 3.2 cm. The data were collected for roughly 19 s. The collected data were
extracted in the Excel file format to facilitate signal processing.
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2.2. Biosignal Reconstruction and Processing

The signal reconstruction process was carried out using MATLAB. By leveraging the
Nyquist–Shannon sampling theorem, we resampled the raw low-sampling-rate data at a
higher sampling rate while preserving critical information [31,32]. Visual explanations of
these concepts are discussed in Figure 3. The resampling technique allowed us to enhance
the precision of the PWV measurements and achieve comparable results with those obtained
with the conventional high-sampling-rate method (Figure 3a). The relationship between the
sampling frequency threshold and the Nyquist rate is shown in Figure 3b. Where B is the
highest frequency component, T = 1

fs
and fs is the sampling frequency. The sampled signal,

xraw, can be completely identified from its coordinates at a series of locations separated
by fewer than 1/(2B) seconds if it does not contain any frequencies over B Hz. Therefore,
anything greater than 2B Hz samples per second is a theoretically sufficient sampling rate.
Thus, flawless reconstruction is attainable for a band limit, B < fs

2 , for a given sample rate,
fs [18,31]. In the experimental code used, the raw data’s sampling rate w automatically
extracted when the data are inputted. The user then determines the desired sampling rate
for signal reconstruction. Subsequently, frequency domain analysis is conducted to verify
whether the signal has been correctly interpreted [33–36].
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Figure 3. (a) Example waveforms of the digitally sampled signal and its reconstructed signal. (b) The
relationship between Nyquist frequency, Nyquist rate, and the determination of signal frequency and
sampling rate.

2.3. Data Validation

The data validation process employed in this study followed the established proce-
dures commonly used for PWV analysis [19]. To ensure the reliability and accuracy of
our results, we carefully examined the collected data. First, any abnormal data points
that deviated significantly from expected physiological ranges were excluded from further
analysis. Specifically, we defined significant abnormal deviation in this experiment as data
points with PWV values exceeding 20 m/s or falling below 0 m/s, and these were removed
from the dataset [23]. Next, we calculated the average PWV value from the remaining valid
data points.

3. Results
3.1. Signal Reconstruction Results

The results of the signal reconstruction in the MATLAB Workspace showed a change
in frequency and an increased number of samples (Figure 4).
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In addition to utilizing the MATLAB Workspace, the confirmation of signal reconstruc-
tion can also be achieved through signal morphology and frequency analysis (Figure 5a,b).
In Figure 5a, for this experiment, time is represented on the X-axis, while the Y-axis displays
the amplitude of the signal, enabling a direct comparison of the raw and processed signal
waveforms. By visually examining the similarity of the original signal and the processed
data on the time axis, we could see qualitatively that the signals were similar after the
signal reconstruction process. Furthermore, the frequency domain analysis could be used
to assess the quality of the signal reconstruction. By comparing the frequency components
at the same time intervals, we could further validate the accuracy of the reconstructed
signal. Figure 5b qualitatively illustrates the similarity between the raw data and the
post-processed data in the frequency domain. Both signals exhibited similar frequency
components within the typical heart rate range of 1 to 5 Hz, along with their respective
second and third harmonic components [37–39]. The consistency of these frequency com-
ponents confirms the successful reconstruction of the signal, adding further confidence
to the reliability of the results. Restored images for other frequencies can be found in
Supplementary Figures S2–S4.

The resemblance of the waveforms served as a robust indicator of the accuracy and
efficacy of the reconstruction method employed. As one can see from Figure 6, we investi-
gated the degree of matching using Zero-Normalized Cross-Correlation (ZNCC) [40,41].
All signals exhibited a correlation of 95% or higher, confirming the quantitative similarity
between the originals and the signal reconstructions in this experiment.

The use of both time-domain and frequency-domain analyses offered a comprehen-
sive and thorough evaluation of the signal reconstruction process. This dual approach
allowed us to confirm the accurate restoration of the original signal, providing insights into
the fidelity of the reconstruction method employed. By qualitatively and quantitatively
assessing the results from both analyses, we could ascertain the robustness of the signal
reconstruction process and the reliability of the data obtained.

During signal reconstruction, there can be numerous conducted or radiated noise
sources that may affect the signal [42]. These noise sources can affect the signal frequency
component and impact the Nyquist frequency [43,44]. Specifically, in the context of this
experiment, when a wall-mounted power source at 60 Hz was used as a noise source and
the sampling rate was set to 125 Hz, it resulted in strong aliasing when reconstructing
the signal was attempted (Figure 7a). On the other hand, when the signal was properly
reconstructed at the Nyquist frequency (250 Hz), a clear pulse was observed (Figure 7b).



Biosensors 2024, 14, 92 6 of 13
Biosensors 2024, 14, x FOR PEER REVIEW 6 of 13 
 

 
Figure 5. (a) Image of representative amplitude data as a function of time for the raw data sampled 
at 10 KHz; data sampled at 250 Hz; and post-processed, up-sampled 250 Hz data. (b) Raw and post-
processed data were analyzed in the frequency domain with 5 s divisions. This analysis confirmed 
that both signals were distributed in the same frequency band throughout the entire time without 
aliasing. 

During signal reconstruction, there can be numerous conducted or radiated noise 
sources that may affect the signal [42]. These noise sources can affect the signal frequency 
component and impact the Nyquist frequency [43,44]. Specifically, in the context of this 
experiment, when a wall-mounted power source at 60 Hz was used as a noise source and 
the sampling rate was set to 125 Hz, it resulted in strong aliasing when reconstructing the 
signal was attempted (Figure 7a). On the other hand, when the signal was properly recon-
structed at the Nyquist frequency (250 Hz), a clear pulse was observed (Figure 7b). 

Figure 5. (a) Image of representative amplitude data as a function of time for the raw data sampled at
10 KHz; data sampled at 250 Hz; and post-processed, up-sampled 250 Hz data. (b) Raw and post-
processed data were analyzed in the frequency domain with 5 s divisions. This analysis confirmed that
both signals were distributed in the same frequency band throughout the entire time without aliasing.
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3.2. Resolution Comparison with the Traditional High-Frequency Sampling Method

To compare the resolution and precision of the proposed method, a pair of bioimpedance
signals was recorded at a 10 kHz sampling rate. These signals were then down-sampled to
250 Hz and subsequently reconstructed to 10 kHz using the proposed method. A compari-
son was performed of these three signals: the down-sampled signal at 250 Hz, the signal
reconstructed using the proposed method, and the original 10 kHz signal.

Figure 8a provides an example of the selected signal pairs sampled at 10 kHz, and
Figure 8b shows an enlarged version of Figure 8a. In Figure 8c, the enlarged, down-selected
250 Hz signal is depicted, and it can be observed that while the peak points were accurately
detected, the data points between the two peak points are limited to only one, indicating a
low resolution. However, in Figure 8d, not only have both peak points been successfully
identified but also, there are 96 data points between the peaks, which is comparable to
the existing method shown in Figure 8b. This demonstrates that the proposed method
achieves nearly identical resolution compared to the conventional method. Furthermore,
considering that the number of data points between intervals did not simply increase by
a factor of 40 (10 kHz divided by 250 Hz), which would have been the case if it were a
simple interpolation, but rather by a more complex ratio, it became evident that this was
not a result of simple interpolation but rather of the signal having been resampled and
reconstructed. This is because the digitized signal and the restored signal had different peak
values at different time instances. In fact, when looking at the PTT intervals, it can be seen
that the restored signal is more similar to the PTT of the originally recorded 10 kHz signal.
The method of peak detection in the restored signal is detailed in Supplementary Figure S5.
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Figure 8. Comparison of resolution for each method based on a pair of pulses. (a) Actual signal pair.
(b) Enlarged view of the data points near the peak for the actual signal (10 kHz). (c) Enlarged view of
the data points near the peak without processing (250 Hz). (d) Enlarged view of the data points near
the peak (processed as 10 kHz).

The reason for the digitized signal and the restored signal having different peak
values can be more easily understood by examining the signal reconstruction method.
The reconstruction of a signal is crucial in determining how the signal behaves between
discontinuous points. To achieve this, a smoothing factor can be applied. However, this will
affect the signal in the time domain, directly impacting the maximum frequency. Hence,
applying a smoothing factor in the time domain can result in limiting the signal’s bandwidth
to unexpected intervals. The reason for this is that there is a one-to-one correspondence
between the time domain and the frequency domain. In this situation, the smoothing factor
will result in the neglect of considerations in the frequency domain [18]. This will force
a bandwidth restriction, and therefore, we need a method of reconstructing the signal
while considering the signal from a frequency-domain perspective. To achieve continuous
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signal reconstruction from digitized samples, there must be a unique match between the
appearances of the sampled signal in its continuous time domain and its frequency domain.
The detailed theoretical justification of why the digitized signal and restored signal will
have different peaks is provided in the supplemental information, including Supplementary
Figure S6 and Supplementary Information. In summary, it is a result of how functions
interacting in the convolution process causes peak points to differ between digitized and
reconstructed signals. Overall, the result was that this process increased the accuracy in
measuring the peak points of pulses, allowing for a more precise measurement of PWV.

3.3. PWV Measurement Results

The results of PWV measurement were obtained using the proposed method and
compared to the conventional approach across eight trials [19]. The PWV values derived
from the proposed method were evaluated to determine if they fell within the normal
range [23]. Deviation analysis was also conducted to assess the data dispersion between
the two methods. Furthermore, the total number of pulse pairs was examined to identify
any abnormal data that could potentially lead to inaccurate results. Cases where data were
deemed abnormal (e.g., defined above as data points with PWV values exceeding 20 m/s
or falling below 0 m/s) were excluded from this analysis, and the proportion of omitted
data was calculated to assess the data fidelity.

Each method was tested with eight trials across three sampling frequencies and the
traditional 10 KHz sampling, and the results are presented in Figure 9a. According to a
published paper that conducted a comprehensive study of 780 healthy individuals, focusing
on PWV, it has been revealed that PWV values exhibit a substantial association with age.
In the current study context, the anticipated PWV range for ages 30–39 was within the
4.08 m/s to 8.26 m/s bracket, while the total range from the whole participation was
3.12 m/s to 13.4 m/s [45]. Therefore, in this study, we evaluated the effectiveness of our
approach based on whether it fell within the PWV range mentioned above. As shown
in Figure 9b, the proposed method yielded average PWV values of 6.04 m/s at 250 Hz,
6.27 m/s at 500 Hz, and 6.35 m/s at 1000 Hz, and the conventional method at the 10 kHz
sampling rate resulted in 6.87 m/s. These values suggest that the proposed method aligns
with the standards of healthy men in their 30s from previous studies. The average PWV for
each method showed a comparable accuracy, and the maximum deviation in the average
PWV over the eight trials for each method demonstrated comparable accuracy to the
conventional method.
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Figure 9. (a) PWV values obtained from eight trials using the proposed method and the conventional
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statistical data analysis; * p = 0.71; ** p = 0.70; *** p = 0.46.

In Table 1 and Figure 10a, we have compared the pre- and post-exercise PWV mea-
surements as a function of sampling frequency using the same method to observe what
happened to the PWV values with exercise. Considering the fact that PWV is a variable
associated with arterial stiffness and that the pressure did not change, it is not surprising
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that there were no significant changes in the PWV immediately after biking [46]. The
participants rode a bicycle at maximum speed for about 10 s. The measurements after
exercise were also repeated eight times for each method. As noted, the average PWV
value after exercise for the 250 Hz case was 6.41 m/s; for 500 Hz, it was 6.89 m/s; for
1000 Hz, it was 6.06 m/s; and finally, for the conventional 10 kHz, it appeared as 7.23 m/s,
showing that there were no significant differences between these and the PWV values
before exercise. Additionally, a comparison of heart rates before and after exercise was
conducted to verify whether artery pulse signal measurements were performed correctly.
Before exercise, the average rate was 91.3 BPM (Beats Per Minute), and after exercise, it was
106.5 BPM. This comparison indicates that, although the PWV did not change significantly,
the exercise heart rates did increase and were within the normal range for light exercise, as
anticipated [46]. This also aligns with previous research that has suggested that there is no
significant relationship between heart rate and PWV [47] and that the proposed method
can be applied reliably with variations in heart rate. To cross-verify that the experimental
method did not affect blood pressure, blood pressure and heart rate were measured using
Finapres® NOVA before and after the bicycle was ridden (Supplementary Figure S7).

Table 1. PWV values compared before and after exercise.

Sampling Rate 250 Hz 500 Hz 1000 Hz Traditional

Conditions Normal Exercise Normal Exercise Normal Exercise Normal Exercise

PWV [m/s] 6.04 6.41 6.27 6.89 6.35 6.06 6.87 7.23
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Comparisons can also be made from the perspective of data size reductions. All data
comparisons were based on roughly 19 s of recorded data. The size of these data at a
sampling rate of 250 Hz was 422 KB; at 500 Hz, it was 845 KB; and at 1000 Hz, it was
1.6 MB. The conventional method of PWV measurement at 10 KHz exceeded 16.6 MB of
data. This shows why the conventional method poses challenges for real-time wearable
device development. Not only does such a large data size impose limitations on hardware
for prolonged recording but it also becomes impractical to store. Of course, depending on
the added channels and precision ratio, the data size can vary. However, the fact remains
that higher sampling rates have the most significant impact on file size. This presents a
major obstacle for real-time data transmission. In such situations, high-capacity real-time
data processing can potentially lead to data loss. Therefore, data recovery at low sampling
rates can have an advantage in terms of hardware and mitigating data loss [48–50].
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4. Discussion

The successful application of the Nyquist–Shannon sampling theorem and signal
reconstruction techniques in enabling PWV analysis from low-sampling-rate data has
significant implications for the field of cardiovascular health monitoring with wearable
devices. In this paper, a performance evaluation was conducted at a sampling rate of 10 kHz
in order to conduct comparison using BIOPAC. However, beyond the comparison via
BIOPAC, further research is needed on a wider range of PWVs across varying aged subjects
to verify the optimal reconstruction sampling frequency for PWV values and show clinical
feasibility. By overcoming the constraints of conventional high-sampling-rate approaches,
our method opens up new possibilities for PWV collection and analysis using wearable
devices. This could lead to more widespread adoption of PWV assessment, enabling the
early detection and management of cardiovascular diseases and providing timely and
valuable cardiovascular health information to individuals and healthcare professionals.
Low-data-management complexities and reduced processing requirements also make our
approach well-suited for resource-constrained environments, improving healthcare access
in underserved areas.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bios14020092/s1.
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