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Abstract: The rotation of cells is of significant importance in various applications including bioimag-
ing, biophysical analysis and microsurgery. Current methods usually require complicated fabrication
processes. Herein, we proposed an induced charged electroosmosis (ICEO) based on a chip manip-
ulation method for rotating cells. Under an AC electric field, symmetric ICEO flow microvortexes
formed above the electrode surface can be used to trap and rotate cells. We have discussed the
impact of ICEO and dielectrophoresis (DEP) under the experimental conditions. The capabilities of
our method have been tested by investigating the precise rotation of yeast cells and K562 cells in a
controllable manner. By adjusting the position of cells, the rotation direction can be changed based on
the asymmetric ICEO microvortexes via applying a gate voltage to the gate electrode. Additionally, by
applying a pulsed signal instead of a continuous signal, we can also precisely and flexibly rotate cells
in a stepwise way. Our ICEO-based rotational manipulation method is an easy to use, biocompatible
and low-cost technique, allowing rotation regardless of optical, magnetic or acoustic properties of
the sample.

Keywords: controlled rotation; microfluidics; induced charge electroosmosis; dielectrophoresis

1. Introduction

Precise manipulation of cells and particles including transportation, trapping and
rotation is an essential requirement in biotechnology [1–6]. Among them, rotating is
an important capacity utilized in various fields [7], such as single-cell analysis [8], cell
imaging [1,9], organism studies, drug discovery and cell microsurgery including cell nuclear
transfer [10] and cell injection [11]. In contrast to plane rotation of cells, 3D rotational
manipulation can reveal more details of cells, which is useful in cell imaging, cell analysis
and cell screening [12].

Although many approaches [12,13] have been proposed for the rotational manipu-
lation of particles and cells, 3D rotation of cells is more challenging. Manual rotation
using a micropipette tip to rotate the cells is usually used in laboratories. However, this
method has several disadvantages including low efficiency, poor precision and inconsis-
tent performance. A variety of microfluidic methods have been exploited to generate 3D
rotation including stepper motors [14], predefined microchannel geometries [15], optical
means [16,17], magnetic means [2,18], electrical means [19,20] and acoustic means [21–24].
The stepper motor approaches can manipulate particles and cells rapidly and precisely,
but they need complex devices and are not easily integrated with microfluidic chips. The
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predefining microchannel geometry approaches are easy to implement, yet they lack ac-
curacy. For optical means, their operations require a high-power laser which is not only
expensive but also harmful for cells. Cells can be rotated by magnetic means by embedding
magnetic nanoparticles into them which are complicated and may affect the cell viability.
Recently, the acoustic approaches have been studied as a powerful tool for manipulating
cells. Acoustic streaming flow [24], radiation torque [25] and the surface acoustic wave [26]
can be used to rotate samples. Nelson et al. combined microindentation with an acoustically
driven, bubble-based device for noninvasive trapping and 3D characterization of objects
by driving acoustic bubbles to generate microstreaming flows and rotate samples [22,23].
The limitations of these techniques are that they can only rotate samples unidirectionally
near the bubbles and the bubbles are not stable. In addition, the chips are expensive to
fabricate and their operations require high voltage amplitudes. Han et al. [27] reported
an electrorotation method for measuring the dielectric properties of cells using a three-
dimensional octode. Yasukawa et al. [28] developed a simultaneous electrorotation device
for monitoring the rotation rate of multiple single cells upon chemical stimulation. Using
electrorotation torque [20], 3D rotational manipulation can be achieved in a microchamber,
but it requires fabrication of a complex chip using a 3D electrode. Puttaswamy et al. [29]
employed a simple method to fabricate a chip with 3D electrodes. By using this chip, they
could trap single cells and cell clusters and rotate them stably. The above electric methods
for cell rotation are based on dielectrophoresis (DEP), which is related to the electrical
properties of cells.

Induced charge electroosmosis (ICEO) [30–34] is a phenomenon of the nonlinear
electroosmotic slip that occurs when an electric field acts on the ionic charge it induces
around a polarizable surface. ICEO has received extensive attention due to its notable
feature of microflow generation [35–40]. The vortexes generated by ICEO have been widely
used for cell trapping and microfluid mixing [40]. To achieve cell rotation, cells need to
be trapped in advance. A variety of methods have been developed in cell trapping [41–43],
including optical [44–49], acoustic, magnetic [50] and electric techniques [51–53]. But
optical and acoustic traps always attract the cells to the point of highest energy intensity.
Herein, we exploited the ICEO flow around a bipolar electrode that achieves 3D rotational
manipulation at different locations in the channel by controlling the applied signal as
shown in Figure 1. It can rotate PS microbeads, yeast cells and K562 cells at the bipolar
electrode. Our method relies on vortexes generated by electroosmotic slip to 3D rotate
cells. Compared with the current electrical methods, the 3D rotation in our method is not
related to the electrical properties of cells. The rotation speeds of samples can be changed
flexibly by adjusting the applied signals. Additionally, cells can be rotated in a continuous
or stepwise fashion to achieve precise control of cell behavior. By applying a gate voltage
on the bipolar electrode, cells can be moved from the bottom edge of the floating electrode
to the top edge which facilitates rotating cells in a bidirectional way and reducing the
applied voltage. This proposed approach is easy to fabricate, more precise, energy saving,
biocompatible and controllable, with great compatibility with other chips, making it easier
to scale into a versatile tool for cell and microorganism research.
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Figure 1. (a) A 3D schematic of the device. (b) The top view of the ITO electrodes under the main 
channel. (c) A schematic of the experimental setup. The illustration of the basic physics behind 
ICEO: (d) as soon as the electric field is applied, the electric field lines perpendicularly intersect the 
center electrode at the beginning. (e) Then, ions in solution are driven to the center electrode. When 
the double layer is fully formed, the electric field will be screened from the center electrode and 
paralleled to the surface of the electrode. The ions in the double layer will be driven to generate slip 
velocity and two counterrotating vortexes. (f) When the center electrode is energized with Vg (Vg < 
V/2), a positively charged double layer forms, which drives the fluid away towards the grounded 
electrode and builds asymmetric vortexes. (g) Photograph of the assembled device. (h) A micros-
copy image of the black dashed line area in (g) showing the main channel and the ITO electrodes. 
Scale bar, 200 µm. 

2. Theory Background 
A schematic of our device is shown in Figure 1a. The device includes a straight PDMS 

microchannel and a set of electrodes patterned on an indium tin oxide (ITO) glass. The 
details of the ITO electrodes are shown in Figure 1b. The center electrode is placed in the 
middle of the main channel, denoted as the gate electrode, and the other electrodes are 
the driving electrodes. When the driving electrodes are excited by an AC signal and the 
center electrode is floating, an ICEO flow is generated to produce vortexes in the PDMS 
channel which can rotate yeast cells in different directions (Figure 1c). 

The schematic of ICEO principle is shown in Figure 1d, e and f. The governing equa-
tions for the coupled electric potential distribution and flow field can be found in the SI. 
According to (S1), assuming electrolytes with a constant conductivity 𝜎, the electric po-
tential in the fluid bulk can be achieved. We assume the compact Stern layer as a capacitor 
connected in tandem to the diffuse layer capacitor. In this case, the total capacitance of the 
induced double layer (IDL) is: 𝐶 = 𝐶ௌ𝐶𝐶ௌ+𝐶 = 𝐶1 + 𝛿 (1)

Figure 1. (a) A 3D schematic of the device. (b) The top view of the ITO electrodes under the main
channel. (c) A schematic of the experimental setup. The illustration of the basic physics behind ICEO:
(d) as soon as the electric field is applied, the electric field lines perpendicularly intersect the center
electrode at the beginning. (e) Then, ions in solution are driven to the center electrode. When the
double layer is fully formed, the electric field will be screened from the center electrode and paralleled
to the surface of the electrode. The ions in the double layer will be driven to generate slip velocity
and two counterrotating vortexes. (f) When the center electrode is energized with Vg (Vg < V/2), a
positively charged double layer forms, which drives the fluid away towards the grounded electrode
and builds asymmetric vortexes. (g) Photograph of the assembled device. (h) A microscopy image of
the black dashed line area in (g) showing the main channel and the ITO electrodes. Scale bar, 200 µm.

2. Theory Background

A schematic of our device is shown in Figure 1a. The device includes a straight PDMS
microchannel and a set of electrodes patterned on an indium tin oxide (ITO) glass. The
details of the ITO electrodes are shown in Figure 1b. The center electrode is placed in the
middle of the main channel, denoted as the gate electrode, and the other electrodes are the
driving electrodes. When the driving electrodes are excited by an AC signal and the center
electrode is floating, an ICEO flow is generated to produce vortexes in the PDMS channel
which can rotate yeast cells in different directions (Figure 1c).

The schematic of ICEO principle is shown in Figure 1d, e and f. The governing
equations for the coupled electric potential distribution and flow field can be found in the
SI. According to (S1), assuming electrolytes with a constant conductivity σ, the electric
potential in the fluid bulk can be achieved. We assume the compact Stern layer as a capacitor
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connected in tandem to the diffuse layer capacitor. In this case, the total capacitance of the
induced double layer (IDL) is:

C0 =
CSCD

CS + CD
=

CD
1 + δ

(1)

where CD = ε/λD is the capacitance of the diffuse layer, CS is the capacitance of the
Stern layer, δ = CD/CS is the ratio of the diffuse layer to the Stern layer capacitance and
λD =

√
Dε/σ is the Debye screening length. D = 2 × 10−9 m2s−1 is the bulk diffusivity

and ε = 7.08 × 10−10 Fm−1 is the permittivity.
The current from the bulk charges the induced double layer. For the diffuse layer, we

can obtain a surface conservation equation:

C0
dΨ0

dt
= −σn̂ · ∇ϕ = σEn (2)

where Ψ0 is the induced zeta potential, n is the unit normal vector pointing from the
electrode into the bulk and ϕ is the bulk potential, En is the normal component of the
electric field.

The boundary condition at the insulating surface becomes ∂ϕ/∂y = 0. When the
center electrode is floating, using complex amplitudes and the Helmholtz–Smoluchowski
equation we can find the ICEO slip velocity on the surface of the center electrode in (S4).
When an AC signal is applied to the center electrode, we assume the phase gap is zero
and the expression of the ICEO slip velocity is (S6). The slip in this situation is called fixed
potential ICEO. Under this circumstance, the potential of the center electrode is coupled to
the external circuit and acts like a driving electrode.

The DEP force [54] will act on the particles and cells in solution when an AC signal is
applied. If particles and cells are assumed as spherical, the time-average DEP force acting
on them can be written as:

< FDEP >= πr3εmRe[K(ω)]∇
(∼

E·
∼
E
∗)

(3)

where r is the cell radius, εm is the medium permittivity, E is the electric field strength and
K(ω) is the Clausius–Mossotti factor which is given by:

K(ω) =
ε∗p − ε∗m

ε∗p + 2ε∗m
(4)

ε∗p = εp − j
σp

ω
(5)

ε∗m = εm − j
σm

ω
(6)

where εp and εm are the permittivity of particles or cells and medium, σp and σm are the
conductivity of particles or cells and medium and ω is the angular frequency of the signal.
The calculation of yeast cells is based on a 2-shell spherical model. The calculation of K562
cells is based on a 1-shell spherical model. The electrical properties of yeast cells are based
on a publication from Talary et al. [55]. The electrical properties of K562 cells are based on
a publication from Demircan et al. [56].

The DEP velocity of particles and cells is defined as:

< VDEP >=
< FDEP >

fr
(7)

where fr is the resistance factor of particles or cells.
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3. Methods
3.1. Device Fabrication

A schematic of the fabrication process is given in Figure S1. The major fabrication
steps include: (1)–(4) PDMS channel fabrication, (5)–(8) ITO electrode patterning and
(9) plasma bonding. A photograph of our device with electrical connections and tubing
is shown in Figure 1g. A microscopy image of our device is shown in Figure 1h. The
PDMS microchannel, with a height of 70 µm and width of 540 µm, was fabricated by
photolithography and PDMS replica molding. First, the channel mold was prepared by spin-
coating a 70 µm thick layer of SU-8 2050 photoresist (MicroChem, Inc., Washington, MA,
USA) in a substrate and then patterned by optical lithography. The channel mold needs to be
treated with trichloro (1H,1H,2H,2H-perfluorooctyl) silane (97%, SigmaAldrich, Shanghai,
China) for one hour to modify its surface. After that, a mixture of polydimethylsiloxane
base and cross-linker (Sylgard 184, Dow Corning, Midland, MI, USA) at a ratio of 10:1
(w/w) was poured onto the mold and cured at 90 ◦C for 1 h. Finally, the channel was
punched to open an inlet and an outlet for sample loading and unloading after the cured
PDMS was peeled off. In order to have a clear observation of fluid and sample, a glass
substrate which was coated with ITO film was used for fabricating electrodes. To fabricate
the ITO electrode patterns, we first spin-coated the positive AZ4620 photoresist on the
surface of ITO film, followed by optical lithography and developing. Lastly, the ITO film
was etched by HCl solution to obtain electrode patterns. The parameters of electrodes are
summarized in Figure S3 and Table S1. Once both PDMS channel and ITO electrodes were
prepared, they were treated with oxygen plasma and then bonded together. The details of
the fabrication process can be found in our previous work [40].

3.2. Sample Preparation

Buffer solution should have a low conductivity which can reduce the Joule heating
effect. In this work, buffer solution was composed of 13% (w/v) sucrose + 2% (w/v)
PBS + 85% (w/v) deionized water, which had a conductivity of 19 mS/m. The samples
used in our study were PS microbeads with diameters of 10 and 15 µm, yeasts cells and
K562 cells. To prepare yeast cells, 50 mg of baker’s dry yeast was reactivated in 10 mL
of DI water at 30 ◦C for 1 h. After that, yeast suspension of 1.5 mL was transferred to a
centrifuge tube and washed three times. Then, the yeast cells were resuspended in 8 mS/m
KCl solution. PS microbeads were transferred to KCl solutions with σm = 8 mS/m to make
a suspension for the experiments. To obtain the required cell or particle density, the yeast
and microbead solutions were diluted with KCl solution of the same conductivity. Human
myelogenous leukemia cell line K562 was grown at 37 ◦C, 5% (v/v) CO2. The culture
medium consisted of RPMI 1640 (Biological Industries), supplemented with 10% (v/v)
heat-inactivated fetal bovine serum (FBS) and 1% (v/v) penicillin–streptomycin (Biological
Industries). Before the experiment, the cells were incubated with 0.1 mg/mL fluorescein
diacetate (FDA) (Sigma-Aldrich) in culture medium (37 ◦C, 5 min). Then, they were washed
three times with buffer solution. To obtain the required cell density, the K562 cell solutions
were diluted with buffer solution of the same conductivity.

3.3. Experimental Setup

The AC signals energized on the ITO electrodes were generated by using a func-
tion generator (DG4062, RIGOL, Beijing, China). Samples were stably injected into the
microchannel by a pump (Wenhao Co., Ltd., Suzhou, China). Images and videos were
observed using a microscope (NIB-100, Novel Optics, Ningbo, China) with a CCD camera
(T830, Novel Optics, China). All acquired images and videos were analyzed by ImageJ.
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4. Results and Discussion
4.1. Rotating Mechanism of the ICEO Method

To understand the role of the DEP force and ICEO flow on the cell rotation, we first
simulated the distribution of ICEO velocity and DEP velocity on the y–z plane of the PDMS
channel using a commercial software package (COMSOL Multiphysics 6.0). The electric
current interface and the laminar flow interface [57,58] were used here. Equation (S4) or
(S6) was the boundary condition of the center electrode under different circumstances. For
the boundary condition of the driving electrode, Equation (S6) can be a reference. By using
those boundary conditions, we can simulate the ICEO in COMSOL. Under an AC electric
field of V = 10 V, Vg = floating and f = 500 Hz, the simulation results indicate that the ICEO
flow dominates over the DEP velocity as shown in Figure 2a, since the ICEO velocity in the
channel is much faster than the DEP velocity. The ICEO flow will maintain its dominance
when the frequency changes from 200 Hz to 2500 Hz or the amplitude changes from 7 V to
12 V (Figure 2d,e). When the ICEO-induced drag force is powerful enough to balance the
gravitational force and DEP force, the cell floats to the equilibrium position in the center
of the microrecirculation zone. The cell is then captured at the center of the microvortex
and the shear stress from the recirculation flow in the microvortex induces the out of plane
rotation of the cell located in the vortex. The steady ICEO microvortexes formed above
the electrodes can be used to rotate cells precisely. As shown in Figure 2a (top row), the
ICEO produces four symmetric vortexes in the microchannel which rotate, respectively,
clockwise, counterclockwise, clockwise and counterclockwise. It is noted that two of the
vortexes are located above the center electrode and the other two vortexes occur above
the driving electrodes. In addition, the centers of those vortexes are not on the surface of
electrode edges but above the surfaces and near the edges. To identify the position of the
vortex center, we simulate the ICEO velocity of the y–z plane along the yellow and black
dashed lines in Figure 2a. Figure 2f shows the velocity distribution on the black dashed
line, where there is a minimum point which is at about 24 µm on the z-axis marked with a
red circle. We take this point as a reference to draw the yellow dashed line and plot the
relationship between the ICEO velocity and Y coordinate in Figure 2g. Except for the gaps
between electrodes and the walls of the channel, we find four points which are marked with
red circles that have lower velocity. We believe that those four points are the approximate
locations of the vortex centers as vortex centers have the minimum ICEO velocity where the
cell will be trapped. Y coordinates of those four points are about 57, 203, 395 and 541 µm,
while electrode edges’ Y coordinates are 75, 180, 420 and 525 µm. Figure 2c shows a plot of
the real parts of Clausius–Mossotti factors for yeast cells and PS particles at the suspending
medium conductivity of 8 mS/m. When the frequency is lower than 100 kHz, both yeast
cells and PS particles are influenced by nDEP force which can help them to move away
from the surface of electrodes and be trapped in a vortex. To explore the ability of this
method for adjusting the position and direction of cell rotation, when we further apply
a voltage of 1 V to the center electrode, the zeta potential distribution above the center
electrode will be modified which leads to the occurrence of asymmetric vortexes across the
channel for changing cell rotation position. It is noted that the ICEO velocity on the left
side of the channel will be enhanced due to the asymmetric distribution of zeta potential
(Figure 2b). Moreover, we analyze the relationship between the average velocity of ICEO
at surfaces of the left driving electrode and the applied voltages of Vg (Figure 2h). The
simulation results indicate that the average velocity of ICEO at surfaces of the left driving
electrode is much faster when Vg < V/2 which will help to decrease the applied power.
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Figure 2. (a) The distribution of ICEO velocity (top) and DEP velocity (bottom) in the microchannel
under an AC field of V = 10 V, Vg = floating and f = 500 Hz. There are two vortexes above the
center electrode which are symmetrical and rotating in opposite directions. Another two vortexes
are respectively above the driving electrodes. They rotate in opposite directions symmetrically. Red
and blue colors indicate high and low velocity of ICEO (top) and DEP (bottom), respectively. The
direction of ICEO (top) and DEP (bottom) streaming lines is indicated by the red arrows. Yellow and
black dashed lines show the position of the vortex center. (b) The distribution of ICEO velocity in the
microchannel under an AC field of V = 10 V, Vg = 1 V and f = 500 Hz. The rotation directions of four
vortexes are the same as in (a), but they become asymmetrical. (c) Real parts of the CM factors as a
function of frequency for yeasts, 10 µm PS particles and 15 µm PS particles at suspending medium
conductivity of 8 mS/m. (d) Frequency-dependent electrode surface average velocity of ICEO and
DEP of yeasts under an AC field of V = 10 V and Vg = floating. (e) Voltage-dependent electrode
surface average velocity of ICEO and DEP of yeasts under an AC field of Vg = floating and f = 500 Hz.
(f) ICEO velocity of y–z plane at black dashed line in (a). (g) ICEO velocity of y-z plane at yellow
dashed line in (a). (h) Relationship between the average velocity of ICEO at surfaces of left driving
electrode and the applied voltages of Vg under an AC field of V = 10 V and f = 500 Hz.

4.2. Controllable Rotation of Yeast Cells

Cell rotations are important in determining cell morphology accurately by cell imaging
and performing cell surgery. To have a good observation, the rotation speed of cells cannot
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be too fast due to the limited observation capabilities of the human eye. On the other hand,
it will increase the detection time if the rotation speed is too slow. In addition, since our
method can rotate cells in a precise and controllable manner, we can further rotate different
types of cells with various sizes at a fixed speed based on the ICEO flow. To demonstrate
the rotation performance of our method, we conducted rotation experiments using yeast
cells. As shown in Figure 3, when an electric field was applied (Vg = floating), under nDEP
force and ICEO, yeast cells moved from electrode edges to centers and from electrode
surfaces to above the electrode. Then, yeast cells were trapped by vortexes induced by
ICEO vortexes (Figure 3a, 3b (left row), 3b (right row) and 3c) and continuously rotated
or focused into a particle beam in the middle of the center electrode (Figure 3b (middle
row)). The rotation directions of yeast cells were different depending on the position.
Yeast cells rotated clockwise in the up driving electrode and bottom edge of the center
electrode (Figure 3a and 3b (right row)) and rotated counterclockwise in the down driving
electrode and top edge of the center electrode (Figure 3b (left row) and 3c). Furthermore,
the rotation speed of yeast cells can be changed depending on the applied signals and
the rotation position. We further analyzed and characterized the rotation speed of yeast
under different conditions. We first investigated the influence of the applied voltage on the
rotation performance, as shown in Figure 4a. At a frequency of 500 Hz, when the applied
voltage increases, the yeast cells rotate faster. Moreover, the rotation speeds of yeast cells at
driving electrodes were faster than that at the floating electrode. When the voltage was
7 Vpp, yeast cells were rotated at about 9.1 rpm near the driving electrode and at about
8.3 rpm near the floating electrode. As the voltage increased to 12 Vpp, the rotation speed
was increased to about 56.8 rpm at the driving electrode and reached about 29.6 rpm at the
floating electrode. Compared with the simulation results (Figure 2e), the rotation speed of
yeast cells changes with voltage in the same trend as the ICEO speed. This is also consistent
with (S8). The slip velocity is positively related to the electric field strength. The higher slip
velocity creates vortexes with faster speed that rotate yeast cells faster. Subsequently, we
studied the effect of the applied frequency on the rotation performance at a fixed voltage of
10 Vpp, shown in Figure 4b. It is clear that the speeds of yeast cells at the driving electrodes
were faster than that at the floating electrode. For yeast cells at the driving electrode, the
rotation speed was about 18.5 rpm under a frequency of 200 Hz, increased to 33.4 rpm
at 500 Hz and finally decreased to 21.2 rpm under a frequency of 2500 Hz. For yeast at
the floating electrode, the rotation speed was about 7.7 rpm under a frequency of 200 Hz,
increased to 21.1 rpm at 1500 Hz and decreased to 11.8 rpm under a frequency of 2500 Hz. It
is noted that the rotation performances at the floating and driving electrodes show the same
change tendency when applying different frequencies. Although there is a slight difference
between the frequency corresponding to the peak rotation speed and the simulation results
(Figure 2d), they all conform to the ICEO theory [30] that ICEO velocity will increase with
frequency as the frequency is below the characteristic RC charging frequency. ICEO flow
decays rapidly above the characteristic RC charging frequency due to a relaxation process.
Apart from the above factors, we also investigated the relationship between the rotation
speed and the diameter of the manipulated object. Generally, the diameter of yeast is 5 µm,
and sometimes yeast cells aggregate together which makes them bigger. So, we selected
clusters which had different numbers of yeast cells and PS particles with diameter of 10 µm
and 15 µm to calculate their speed under the same conditions. As shown in Figure 4c,d,
the rotational speed of the sample decreased as the diameter of the manipulated object
increased. Overall, our device could not only rotate yeast cells simultaneously in the y–z
plane, which would provide a comprehensive view of cells without a confocal microscope,
but also allow the rotation of cells with different sizes by selecting an appropriate voltage
and frequency.
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Figure 3. Schematic of the device in operation. (a) Schematic and image sequences showing that
the yeast is continuously rotated clockwise at up driving electrode (Movie 1). (b) Schematic and
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4.3. Controllable Rotation of K562 Cells

In the aforementioned experiments, we achieved a three-dimensional rotation of yeast,
a representative fungus. To demonstrate the applicability and universality of our method,
we select K562 cells as a representative of biological cells to carry out the experiments. K562
cells are the first artificially cultured cells of human myeloid leukemia, which are widely
used in the research of tumor and leukemia therapy, drug targets and other fields. Here, we
conducted the rotation experiments using K562 cells to verify the versatility of our method.
The K562 cell solutions were diluted with buffer solution at both 8 mS/m and 19 mS/m to
investigate the influence of the medium conductivity on the rotation performance. Firstly,
we simulated the real parts of the CM factors of K562 cells as a function of the applied
frequency in aqueous solutions with different medium conductivities (Figure 5a). The
frequency-dependent surface averaged ICEO velocity at the driving electrode surface is dis-
played in Figure 5b. The simulation results show that K562 cells experience an nDEP force
at a low frequency, while the averaged ICEO velocities on the driving electrode surfaces
increase first and then decrease with frequency in solutions with different conductivities.
When the applied frequency is less than 1250 Hz, the rotation speed of the K562 cell in
a low-conductivity medium with 8 mS/m is faster than that in aqueous solutions with
19 mS/m. The experimental results are consistent with the simulation data. As shown in
Figure 5c, for K562 cells in aqueous solutions with a conductivity of 8 mS/m, the rotation
speed near the driving electrode is about 13.4 rpm under a frequency of 500 Hz, increases
to a peak of 17 rpm at 750 Hz and then decreases to 7.7 rpm under a frequency of 2000 Hz.
For K562 cells near the floating electrode, the rotation speed was about 10.1 rpm under
a frequency of 500 Hz, increased to a peak of 11.9 rpm at 1000 Hz and then decreased
to 5.3 rpm under a frequency of 2000 Hz. In aqueous solutions with a conductivity of
19 mS/m, the rotation speed of K562 cells located near the driving electrode was about
7.1 rpm under a frequency of 500 Hz, increased to a peak of 8.4 rpm at 1250 Hz and then
decreased to 7.8 rpm under a frequency of 2000 Hz. The image sequence of K562 cells
is shown in Figure 5d,e. It is noted that the rotation speed of K562 cells at the driving
electrode was faster than that at the floating electrode. The rotation speed of K562 cells in
aqueous solutions with 8 mS/m was faster than that in solutions with 19 mS/m when the
applied frequency increased to 2000 Hz. Furthermore, we studied the influence of ICEO
rotation on the cell viability using FDA in the experiments. K562 cells were observed and
compared before and after the rotational manipulation of cells. All cells remained green
under fluorescence after a two-hour experiment (Figure S2), which demonstrates that our
proposed rotation method is safe for cells.

4.4. Bidirectional Rotation of Cells

When the center electrode is floating, four symmetrical ICEO vortexes occur and the
cells can be trapped and rotated in the microvortexes. To exploit the ability of adjusting the
direction of cell rotation, we further investigate the effect of the gate voltage applied to the
center or bipolar electrode (BPE) on the rotation position and direction. When a gate voltage
is applied to the center electrode, asymmetric vortexes can be produced in the microchannel,
which can be used to adjust the cell-trapping position due to the location change of the
vortex center. The detailed process for adjusting cell-rotating position is shown in Figure 6e.
When the center electrode is floating, the yeast cells are trapped in the middle of the center
electrode and form a focused particle beam (Figure 6e). Then, by applying Vg = 9.5 Vpp or
Vg = 0.5 Vpp (V = 10 Vpp), we could either focus the yeasts at the top edge of the center
electrode or the bottom edge of the center electrode. Thus, via adjusting the BPE voltage,
the position of cells can be changed which will allow the bidirectional rotation of yeast cells.
Figure 6 shows the experimental process of rotating yeast cells in opposite directions by
changing the cell-rotating position. A yeast cell was rotated counterclockwise at the bottom
edge of the center electrode under a signal of 1000 Hz and 10 Vpp (Figure 6a). When the
applied voltage becomes 1 Vpp, the ICEO velocity decreases quickly and the yeast cells
fall down to the electrode surface due to gravity. After yeast cells sink to the surface of
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the electrode, a signal of V = 10 Vpp and Vg = 9.9 Vpp is applied and large ICEO flow
vortexes appear at the bottom edge of the center electrode. The large vortexes would push
yeast cells away and, as a result, cells are unable to be trapped in the vortexes. The yeast
gradually slowed down as it slid from the bottom edge to the top edge. Afterward, we
applied a signal of f = 500 kHz and Vg = 1 Vpp. At this time, yeast cells experience pDEP
force and are attracted toward the top edge of the center electrode (Figure 6b). The signal
applied at the center electrode would generate an asymmetric pDEP effect which could
enhance the pDEP force of yeast near the top edge (Figure 6d). As soon as the yeast was
trapped at the top edge of the center electrode, we applied a signal of 1000 Hz 10 Vpp again
to rotate the yeast clockwise at the top edge of the center electrode (Figure 6c). Apart from
moving cells at the center electrode and changing the direction of rotation, asymmetric
vortexes also could augment the rotation speed of cells at one side of the channel. The
rotation speed of yeast cells under the condition of a 0.5 Vpp signal at the center electrode
and a 5 Vpp signal at the driving electrode is close to the speed with a 10 Vpp signal at the
driving electrode. This would decrease the voltage to rotate cells and reduce consumption.
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Figure 5. (a) Real parts of the CM factors as a function of frequency for K562 cells at suspending
medium conductivities of 8 mS/m, 19 mS/m. (b) Frequency-dependent driving electrode surface
average velocity of ICEO of K562 cells under an AC field of V = 10 Vpp and Vg = floating. (c) Plot of the
rotation speed against frequency under an AC field of V = 10 Vpp, Vg = floating. (d,e) Image sequence
showing that the K562 cell is continuously rotated clockwise at suspending medium conductivities of
19 mS/m (Movie 3), 8 mS/m. Red arrows indicate a specific point on K562 cells and black arrows
show the rotation direction. Scale bar, 3 µm.
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Figure 6. Rotating yeast cells in opposite directions using ICEO. (a) Image sequences showing that
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the rotation direction. (b) Image sequences showing the process of moving yeast rotating at the
bottom edge of BPE to the top edge of BPE. The red circles display the yeast cells. (c) Image sequences
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Scale bar, 50 µm.
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4.5. Stepwise Rotation of Cells

In cell research, sometimes we need to observe a specific location of cells which
requires highly precise and controllable manipulation. By applying a pulsed signal instead
of a continuous signal, we further exploit the stepwise rotation of cells in a controllable
manner using our proposed device. Cells can be rotated stepwise at any angle we needed.
For example, yeast cells would rotate by 60◦ when a signal pulse of 500 Hz and 10 Vpp with
a duration of 0.6 s is applied. After three steps, yeast was rotated by 180◦ (Figure 7a). By
reducing the duration of the pulse down to 0.2 s, the same yeast cell could be rotated by 20◦

in one step (Figure 7b). According to the results in Figure 4a,b, the stepwise rotation angle
can also be flexibly adjusted by changing the applied voltage and frequency. In the process
of step rotation, yeast cells did not drift along the channel apparently and cell viability is
unaffected (Figure S2). Thus, with the above stepwise manipulation using our technique,
the views of cells from any angle can be controlled and observed for further analysis.
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We also summarized and compared some reported electric methods and our proposed
device as shown in Table 1 below. Our method ensures all kinds of particles or cells can be
rotated regardless of their properties based on ICEO flow. In contrast with other electric
methods, we proposed a microfluidic device to rotate cells and particles in 3D. The rotation
speed can be controlled by adjusting the voltage and frequency of the applied signals. By
flexibly adjusting the applied signals at driving electrodes and the center electrode, cells
can be moved from one vortex to another and the rotation direction will be changed as
well. Additionally, in our methods, cells can be rotated stepwise by applying a pulsed
signal. The rotational manipulation of this ICEO-based method does not rely on physical
properties of the cells and particles which makes this method universal. However, the
electrode may be electrolyzed when the amplitude of the applied signal is too high. For
example, when the frequency of the applied signal is 500 Hz, 20 V will be the upper limit.
In addition, the stability of rotation is determined by the signals applied. From the movie,
we can see the slight change of yeast cells’ position in both x- and y-directions, although
the rotation of K562 cells is more stable. Although the positions of yeast cells were slightly
changed during the rotation process, the rotation process can still be controlled precisely
and the rotation performance can be evaluated accurately. In addition, the performance
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of cell rotation can also be further improved by optimizing and adjusting the medium
conductivity, applied signal and the electrode design.

Table 1. An overview of recently reported electric methods for rotating cells.

Method Rotation Stability Change Direction Stepwise Electric Property

Habaza et al. [1] High Yes No Related
Huang et al. [19] High Yes No Related
Benhal et al. [20] High Yes No Related
Puttaswamy et al. [29] High No No Related
Our work Normal Yes Yes Unrelated

5. Conclusions

In this paper, we for the first time proposed an ICEO-based method for precise rotation
of different cells, including yeast cells and K562 cells. The rotation speeds of cells are
controlled by voltage, frequency and solution conductivity. By applying a gate voltage
to form the asymmetric ICEO microvortexes, the rotation position of cells can be flexibly
adjusted which further changes the rotation direction of cells. Moreover, our device can
not only rotate cells continuously but it can also rotate cells stepwise by applying a pulsed
signal. Yeast cells would rotate by 60◦ when a pulsed signal of 500 Hz and 10 Vpp with a
duration of 0.6 s is applied. The angle of stepwise rotation can be adjusted by changing the
duration of the pulsed signal. In contrast to mere DEP-based methods, using this proposed
hybrid method based on ICEO flow, multiple cells regardless of their properties can be
rotated by adjusting the ICEO flow via changing the applied electric signal. These results
verified the unique ability of this method to guide and control the rotation of living materials
in an ordered and predetermined way. Our approach is simple to fabricate and operate and
can be extended to other cells or small organisms by design modifications of devices. It can
also be integrated with other devices to compose platforms for bioengineering, biophysics
and medicine studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios14030112/s1, Figure S1: A schematic of the fabrication
process of the microfluidic device including: (1)–(4) PDMS channel fabrication, (5)–(8) ITO electrodes
patterning, and (9) plasma bonding; Figure S2: The cell viability of K562 (a) and yeast (b) cells in the
experiment. All cells remain green under fluorescence; Figure S3: A schematic of the electrodes and
channel of the microfluidic chip; Figure S4: The rotation speed of yeast cells in different conditions.
Green: a signal of 0.5 Vpp, 400 Hz at the center electrode and a signal of 5 Vpp, 400 Hz at the driving
electrode. Blue: a signal of 10 Vpp, 400 Hz at the driving electrode; Table S1: Geometrical parameters
for the structure of the proposed chip.
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