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Abstract: The screen-printed carbon electrode (SPCE) is a useful technology that has been widely
used in the practical application of biosensors oriented to point-of-care testing (POCT) due to its
characteristics of cost-effectiveness, disposability, miniaturization, wide potential window, and sim-
ple electrode design. Compared with gold or platinum electrodes, surface modification is difficult
because the carbon surface is chemically or physically stable. Oxygen plasma (O2) can easily produce
carboxyl groups on the carbon surface, which act as scaffolds for covalent bonds. However, the effect
of O2-plasma treatment on electrode performance remains to be investigated from an electrochemical
perspective, and sensor performance can be improved by clarifying the surface conditions of plasma-
treated biosensors. In this research, we compared antibody modification by plasma treatment and
physical adsorption, using our novel immunosensor based on gold nanoparticles (AuNPs). Conse-
quently, the O2-plasma treatment produced carboxyl groups on the electrode surface that changed
the electrochemical properties owing to electrostatic interactions. In this study, we compared the
following four cases of SPCE modification: O2-plasma-treated electrode/covalent-bonded antibody
(a); O2-plasma-treated electrode/physical adsorbed antibody (b); bare electrode/covalent-bonded
antibody (c); and bare electrode/physical absorbed antibody (d). The limits of detection (LOD) were
0.50 ng/mL (a), 9.7 ng/mL (b), 0.54 ng/mL (c), and 1.2 ng/mL (d). The slopes of the linear response
range were 0.039, 0.029, 0.014, and 0.022. The LOD of (a) was 2.4 times higher than the conventional
condition (d), The slope of (a) showed higher sensitivity than other cases (b~d). This is because the
plasma treatment generated many carboxyl groups and increased the number of antibody adsorption
sites. In summary, the O2-plasma treatment was found to modify the electrode surface conditions and
improve the amount of antibody modifications. In the future, O2-plasma treatment could be used as
a simple method for modifying various molecular recognition elements on printed carbon electrodes.

Keywords: electrochemical immunosensor; gold nanoparticles; oxygen plasma; point-of-care; biosensors

1. Introduction

The screen-printed carbon electrode (SPCE) is a useful technology that has been widely
used in the practical application of biosensors oriented toward point-of-care testing
(POCT) [1–7]. Many researchers have reported on electrochemical biosensors that use SPCE
to detect hormones [8–10], ions [11,12], metals [13], nucleic acid [14–19], and proteins [20–23].
Although the sensitivity of the electrochemical biosensor is controlled by surface conditions,
such as the diffusion coefficient and electron transfer rate [24], these are altered by the modi-
fication of molecular recognition elements and blocking materials on the electrode surface.
We previously reported on biosensors that use redox reactions of gold nanoparticles and
found that antibodies and blocking materials modified on the electrode reduced the dif-
fusion coefficient and electron transfer rate [25]. As it is necessary to measure very small
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amounts of biomarkers to achieve POCT, electrochemical biosensors with higher sensitivity
and selectivity are required. Therefore, a more efficient method for modifying molecular
recognition elements, such as antibodies, without degrading their electrochemical properties
is required. However, compared to gold or platinum electrodes, the surface modification of
SPCEs is difficult because the carbon surface is chemically or physically stable [26]. For gold
or platinum electrodes, a self-assembled monolayer (SAM) based on alkanethiol is mainly
used for antibody modification [27–32]. Aptamers modified with a thiol group are also used,
based on the same principle [33]. In addition, drop-casted biopolymers and nanomaterials do
not depend on the electrode material [16,34–41].

For the carbon electrode, the direct production of a carboxyl group, which acts as a
scaffold for the covalent bonds on the carbon surface using electrochemical activation, has
been reported [42–44]. For example, the SPCE surface was activated to produce a carboxyl
group by applying a potential of 0.9 V for 60 s in a 0.5 M acetate buffer (ABS, pH 4.80) [45] or
1.0 V for 50 s in a 0.10 M sulfuric acid solution [46]. Oxygen plasma (O2-plasma) treatment
is an efficient technique for producing carboxyl groups on the surface [47–49] and is used
for surface cleaning and regeneration [50,51].

However, regarding SPCE, there have been no reports of antibody modification by
generating carboxyl groups using O2-plasma treatment, and only improvements in electro-
chemical performance have been discussed. For example, O2 plasma is used to remove the
binder from carbon inks and control the surface roughness of SPCE [52–57].

In this study, we compared antibody modification by O2-plasma treatment and phys-
ical adsorption using our novel immunosensor, which is a gold-linked electrochemical
immunoassay (GLEIA). This biosensor is based on a sandwich-type immunoassay applied
directly on the electrode and detects the antigen concentration through the redox current of
gold nanoparticles (AuNPs) modified with a secondary antibody [5,25,58–62]. Specifically,
the AuNPs on the electrode are oxidized at a high potential to produce gold ions, and the
concentration of nanoparticles is quantified by measuring the reduction current of gold ions.
The chemical reaction is Au + Cl4 ⇄ AuCl4 + 3e (E0 = 0.803 V, vs. Ag/AgCl sat.). We previ-
ously reported that physically adsorbed antibodies decrease the electrochemical reaction
rate because they act as a resistance on the electrode [25]. Thus, O2-plasma and covalent
bonding reagents can be used as an alternative antibody-modification method to physical
adsorption. We investigated the O2-plasma-treated surface by cyclic voltammetry (CV),
scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and contact
angle analysis. Consequently, the generation of carboxyl groups on the electrode surface,
changes in the surface charge, increased capacitance, and hydrophilicity were observed.
These changes can be explained by the generation of carboxyl groups on the electrode
surface, indicating that O2-plasma treatment is a simple and effective surface modification
method. We also observed that the O2-plasma-treated electrode showed higher sensitivity
than the electrode without O2-plasma for immunoglobulin A (IgA) because the covalently
bonded antibody inhibited nonspecific adsorption with the abovementioned changes on
the surface.

2. Materials and Methods
2.1. Reagents

All reagents used were of guaranteed grade and used without further purifica-
tion. All inorganic salts, 1-Ethyl-3-(3dimethylaminopropyl) carbodiimide ·HCl (EDC),
N-hydroxysuccinimide (NHS), polyethylene glycol (Mw is 20,000), trehalose dihydrate,
and pH 7.5 D-PBS (-) were purchased from Fujifilm Wako Pure Chemicals (Osaka, Japan).
AuNPs with diameters of 60 nm were purchased from BBI Solutions (Cardiff, UK). Anti-IgA
(α), Human, Goat-Poly, A80-102A, and Purified Human IgA, P80-102 were purchased from
Bethyl Laboratory (Montgomery, AL, USA). Bovine serum albumin (BSA) was purchased
from Jackson Immunoresearch (West Grove, PA, USA). All water used in this study was
Milli-Q water (18.3 MΩ cm).
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2.2. Instruments

A miniSTAT400 potentiostat was purchased from BioDevice Technology (Ishikawa,
Japan). A disposable screen-printed carbon electrode (DEP-EP-PP) with an integrated work-
ing electrode (surface area: 2.64 mm2), counter electrode, and Ag/AgCl reference electrode,
with a total length of 11 mm, was also purchased from BioDevice Technology. All electro-
chemical measurements were performed by dropping 20 µL of the sample onto the printed
electrode, unless otherwise stated. A UV-visible spectrometer (DS-11+) was purchased
from Denovix (Wilmington, DE, USA). A micro-high-speed cooling centrifuge (kitman-24)
was purchased from Tomy Seiko (Tokyo, Japan). An O2-plasma cleaner (PDC210) was
purchased from Yamato Scientific (Tokyo, Japan). Scanning electron microscopy (SEM)
was performed using an S-4800 (Hitachi High-Tech, Tokyo, Japan). X-ray photoelectron
spectroscopy (XPS) analysis was performed by Toray Research Center (Tokyo, Japan) using
a Quantera SXM (Ulvac-PHI). Contact angle analysis was performed using a DMo-602
instrument obtained from Kyowa Interface Science (Saitama, Japan). Electrochemical
Impedance Spectroscopy was performed by Autolab PGSTAT 14N (Metrohm Autolab
Utrecht, Kanaalweg 29G, Utrecht, The Netherlands).

2.3. Electrochemical Analysis of O2-Plasma-Treated Electrodes

The O2-plasma treatment was performed in a 13.56 MHz ratio frequency (RF) plasma
reactor. The SPCE, with a cyclo-olefin polymer (COP) film covering the connector part and
reference electrode, was placed in the reactor. After the reactor was first evacuated to a base
pressure of less than 10−3 Pa, 200 cc O2 gas was introduced. The O2-plasma treatment of the
SPCE was performed at 75 W plasma power for a period of 5 s. The electrode was evaluated
using cyclic voltammetry (CV) with the standard electrochemical mediators: potassium
ferricyanide and hexaammineruthenium(III) chloride, each containing 100 mM of Na2SO4
as the electrolyte,. For the ferricyanide, the sweep rates were 10 to 250 mV/s, and the
sweep range was −400 to 600 mV. For the ruthenium, the sweep rates were 10 to 200 mV/s,
and the sweep range was 700 to −700 mV. Electrochemical impedance spectroscopy (EIS)
was also used to evaluate the kinetic parameters within the frequency range of 100 kHz to
0.1 Hz applied potential, superimposed on a DC potential of 0.1 V, with an AC of 10 mV
peak-to-peak amplitude under 5 mM ferricyanide and 100 mM Na2SO4.

2.4. Surface Analysis of O2-Plasma-Treated Electrodes

The electrode surface was analyzed by SEM, XPS, and contact angle measurement.
SEM was used to observe the electrode surface after the antigen-antibody reaction to
evaluate the AuNPs present on the surface. For this purpose, X-rays (monochromatic
Al K∝ ray) of 200 µm diameter were irradiated on the electrodes, which were stored in
light-shielded vacuum gauges prior to the XPS analysis. The contact angle measurement
was conducted using water drops (2 µL). The drops were placed on the working electrode,
the needle was pulsed back, and the drop shape was immediately captured using the
camera. The obtained images from the electrodes were analyzed using FAMAS software
(ver. 7.2.0 from Kyowa Interface Science Co., Ltd.) to determine the circle fitting.

2.5. Antibody Modification

The electrode surface was modified via physical adsorption and covalent bonding to
compare the response of the sensor to the antibody modification process. For the physical
adsorption, 2 µL of 50 µg/mL antibody in PBS was dropped onto the working electrode
and incubated at 4 ◦C for 1 h to adsorb the antibody. Next, 20 µL of 1% BSA in PBS solution
was dropped onto the entire electrode and incubated at room temperature (RM) for 1 h.
For covalent bonding, 50:50 mM of EDC/NHS solution was dropped onto the working
electrode and incubated for 30 min. Next, 2 µL of 50 ug/mL antibody in PBS was placed
on the electrodes and incubated for 30 min. Finally, 20 µL of 1% BSA in PBS solution was
dropped onto the entire electrode and incubated at RM for 30 min (see Scheme 1). The
prepared electrode was stored at 4 ◦C until use.
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Scheme 1. Schematic illustration of the biosensor fabrication and sensing flow.

2.6. Preparing Secondary Antibody-Modified Gold Nanoparticles

Secondary antibody-modified AuNPs were prepared using a reported method [5].
Then, the 0.9 mL of AuNP solution was mixed with the 0.1 mL of phosphate buffer
(Na2HPO4/NaH2PO4, 50 mM, pH 7.5). 50 µg/mL of Anti-IgA was added to the Au
nanoparticle solution to dissolve the 5 mM of phosphate buffer (pH 7.5) and kept for 10 min
at RM. Hereinafter, this is referred to as the Au conjugate. Then, 0.1 mL of 10% BSA in
PBS buffer and 0.05 mL of 1% PEG in PBS buffer were added to the Au conjugate. The Au
Anti-IgA conjugate was collected by centrifugal operation (4000× g for 20 min at 4 ◦C).
After centrifugation, the Au Anti-IgA conjugate was suspended in 1 mL of preservation
solution (1% BSA, 0.05% PEG 20000, 0.1% NaN3, and 150 mM NaCl in 20 mM Tris-HCl
buffer, pH 8.2) and collected again in the same manner. For the stock solution, the Au
Anti-IgA conjugate was suspended in the preservation solution, and the optical density
was adjusted to OD520 = 6. The Au Anti-IgA conjugate was diluted 3 times with 50 w/v
of trehalose (OD520 = 2) and by dripping 5 µL of this solution in the 96 wells. Then, the
96-well plate was dried in a vacuum condition for 5 min. Dried wells were stored at 4 ◦C
until use.

2.7. Immunosensor Fabrication Using O2-Plasma-Treated SPCE

A sandwich type antigen–antibody (Ab–Ag) reaction occurred directly on the working
electrode (Scheme 1). IgA antigen solutions (100–0 ng/mL) were prepared by dilution in
PBS. A total of 10 µL of the IgA solution was dropped in the prepared 96-well plate and
mixed for 10 s. After 1 min, 2.0 µL of the solution was placed on the working electrode
to incubate for 1 h at RM in the closed box with damped cotton (to maintain humidity to
prevent the sample from drying). After rinsing with PBS and eliminating the PBS solution
with N2 air, the direct redox reaction was performed in 2 M KCl solution (20 µL) covering
the entire electrode at RM. The pre-oxidation and differential pulse voltammetry (DPV)
parameters were as follows: the beginning and end potentials were 800 and 200 mV, the
step potential was 4 mV, pulse amplitude (pulse potential) was 100 mV, pulse period was
200 ms, pulse width was 50 ms, and sampling width was set to 16 ms. All conditions were
optimized in our previous work [25].

3. Results and Discussion
3.1. Comparing the Surface Change by Electrochemical Kinetics Parameters

Figure 1a–d shows the cyclic voltammograms of 5 mM ferricyanide and ruthenium
complex on the bare and O2-plasma-treated electrodes. Among these voltammograms,
the electrochemical reaction is a reversible process because of the peak separations at the
50 mV/s scan rate of 152, 190, 286, and 178 mV. Figure 2a,b shows the relationship between
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the peak current intensity and the square root of the scan rate. The diffusion coefficient for
the reversible process was calculated using the following equation:

Ip,cv = −
(

2.69 × 105
)

n
3
2 ACbulkD

1
2 v

1
2 (1)

where n is the number of electrons in the reaction, A is the electrode area, Cbulk is the
concentration of the electrochemical mediators, and v is the scan rate.
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The electroactive area of the two types of electrochemical mediators (ferricyanide and
ruthenium complex) at both electrodes (bare and plasma) were calculated using Equation (1)
and the diffusion coefficients were determined with results from a previous study. Both
of the diffusion coefficients are 7.75 × 10−6 cm2/s for ferricyanide, and 5.77 × 10−6 cm2/s
for ruthenium complex obtained from [63]. The effective electroactive areas (Abare, Fe,
Aplasma, Fe and Abare,Ru and Aplasma, Ru) were 1.89 mm2, 1.42 mm2, 3.04 mm2 and 3.29 mm2,
as summarized in Figure 2c.
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From the results, it was observed that the electroactivity of the negatively charged
ferricyanides decreased and that the positively charged ruthenium complexes slightly
increased at the O2-plasma-treated electrode. Electrostatic repulsion for the ferricyanide
may occur due to the negative charge of the carboxyl groups generated by the plasma
treatment. For the positively charged ruthenium complex, instead of electrostatic repulsion
not occurring, diffusion to the electrodes could have been promoted. Electrostatic repulsion
occurs between dendrimers and electrochemical mediators on the electrode surface [64],
indicating a close relationship between the surface charge and electrochemical activity.

Next, charge transfer resistance (Rct) and capacitance (Cdl) were evaluated using EIS.
Figure 3a shows the Cole-Cole plots of both electrodes in 5 mM of ferricyanide. The bare
electrode showed a clear semicircle, while the O2-plasma-treated electrode showed partial
disappearance of the semicircle. Based on these results, Cdl and Rct were obtained by
fitting using the equivalent circuit. The plasma treatment did not change Rct, but increased
Cdl (Figure 3b,c). This result supports the aforementioned surface charge change.
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Therefore, the O2-plasma treatment changes the surface charge of the electrode and
alters its electrochemical properties. Surface analysis using XPS suggested that this change
in surface charge was due to the formation of carboxyl groups (Figure 4). Our results
did not show any improvement in the electrode performance owing to the removal of
impurities or binders in the SPCE. On the contrary, electrostatic interactions with reactive
species and an improvement in hydrophilicity were observed due to the generation of the
carboxyl groups. These results depend on the electrode materials and plasma irradiation
conditions, indicating that individual optimization is required.
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We also performed EIS measurements on the electrode after antibody modification.
The results are shown in Figure 3b,c, where Rct increased when the antibody was modified
by physical adsorption, and Cdl increased when it was modified by covalent bonding.
These contrasting results are interesting and may indicate differences in the orientation and
adsorption conditions of the antibody on each electrode. The antibody simply functions
as an insulator because it is physically adsorbed on the bare electrodes and increases
Rct. However, a gap occurs between the antibody and electrode because the antibody is
modified by covalent bonding at the O2-plasma-treated electrode. Consequently, electrode
resistance did not occur; instead, the electric double layer capacitance was altered by the
electric charge of the antibody.

3.2. Sensor Characteristics

Figure 5 shows differential pulse voltammograms of the biosensor using O2-plasma-
treated/covalent bonding (a), O2-plasma-treated electrode/physical adsorption (b), bare
electrode/covalent bonding (c), and bare electrode/physical adsorption (d). Blank signals
(0 ng/mL of IgA) were suppressed when covalent bonding was used (Figure 5a,c). The
peak currents to 100 ng/mL of IgA were almost constant, except in Figure 5c.
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Figure 5. Differential pulse voltammograms of the pre-oxidized AuNPs immobilized on sec-
ondary antibody after sandwich immunoreaction in standard IgA solution (100, 10, 0 ng/mL) for
plasma-treated/covalent bonding (a); plasma-treated electrode/physical adsorption (b); bare elec-
trode/covalent bonding (c); and bare electrode/physical adsorption (d).

The voltammograms also showed an increase in the background current at the O2-
plasma-treated electrode. This may have been due to an increase in the charging current.
In general, the charge current (icharge) is given by Equation (2).

icharge =
E
Rs

e−
t

RsCdl (2)

where E is applied potential, Rs is solution resistance, and t is potential applied time.
In other words, the increase in background current is associated with an increase in

Cdl. In addition, the Faraday current could be detected even when the charge current was
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increased. The results correlated with the relationship between the surface conditions and
sensor sensitivity.

The calibration curves obtained from each voltammogram are shown in Figure 6a–
d. The process of calculating LOD was examined more precisely because of its impor-
tance. LOD is generally defined as three times the variation (3σ) of the blank measure-
ment which is divided by the slope of the linear response range. In the present case,
LOD was calculated assuming a linear response at 0~50 ng/mL. In addition, a weighted
slope was used to account for variations at each concentration. As a result, the weighted
slopes are 0.039 (a), 0.029 (b), 0.014 (c) and 0.022 (d). Y intercepts (blank signal) were
0.010 ± 0.0064 (a), 0.38 ± 0.095 (b), 0.002 ± 0.0026 (c), 0.33 ± 0.0086 (d). The calculated
LODs are also 0.50 ng/mL (a), 9.7 ng/mL (b), 0.56 ng/mL (c) and 1.2 ng/mL (d), as shown
in Figure 6.
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Figure 6. Calibration curves of IgA determination with the reduction peak intensity from pre-
oxidized AuNP on plasma-treated electrode/covalent bonding (a); plasma-treated electrode/physical
adsorption (b); bare electrode/covalent bonding (c); and bare electrode/physical adsorption (d).

Based on these results, we succeeded in increasing the sensitivity and LOD using an
O2-plasma-treated electrode and covalent-bonded antibody.

This is due to the improvement in the surface conditions of the electrode and the
suppression of non-specific adsorption by covalent-bonded antibody. Table S1 lists the
signal values, averages, and standard deviations of each calibration curve typically picked
up in Figure 6a,d that were used in the LOD calculations. This also suggested that physical
adsorption is possible at the O2-plasma-treated electrodes (Figures 5b and 6b). It was
inferred that antibody adsorption is based on unstable electrostatic interaction rather than
hydrophobic interaction, which induced nonspecific adsorption as in the bare electrode. In
this case, the variation of the blank signal is large.
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Figure 6c shows a very effective LOD (0.56 ng/mL) but a very poor slope of 0.014.
This is presumably due to the low amount of carboxyl groups present on the surface,
which prevented the reaction of EDC/NHS, resulting in insufficient modification of the
antibody. We have investigated the selectivity using the same antibodies and antigens as
in the present study. We also investigated real saliva samples [62] and saliva reproduced
samples [5] using a biosensor based on the same principle. The biosensor based on the
AuNP showed sufficient selectivity. Therefore, the blank signals obtained in this study were
attributed to the modification of the surface state by plasma treatment and EDC/NHS.

We observed the electrode surface immediately after reaction with 100 ng/mL of
IgA using SEM and found the presence of AuNP on the electrode (Figure 7). We have
performed elemental analysis of these particles using SEM-EDX in a previous study and
have shown that they are Au [25]. The number of AuNPs were counted: 195 ± 47 for
the O2-plasma-treated electrode and 95 ± 24 for the bare electrode. This suggests that
covalent bonding and O2-plasma treatment can improve the amount and orientation of the
antibodies. However, the linear response range is always constant, as can be seen in Figure 6,
suggesting that the dissociation constant is also the same without the surface condition.
Typically, comparing Figure 6a,d, there is no significant change in the current values
obtained at 100 ng/mL of IgA. This may be due to the reduced reactivity with the negatively
charged molecules, as shown in Figure 2, and therefore also with the negatively charged
gold complexes ([AuCl4]−). This result correlates with Figure S2, which investigated the
sensitivity to particle number by AuNPs directly on the plasma treatment electrode. The
LOD of 190,000 particles on the O2-plasma-treated electrode is well below the 6000 on the
bare electrode that we previously reported [25].
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In general, the SEM showed the amount and orientation of antibody modification,
and the EIS showed the electrochemical activity of the electrode, revealing the effects of
O2-plasma and covalent bonding on the antibody and electrode.

4. Conclusions

We investigated the modification of SPCE using O2-plasma to develop highly sensitive
electrochemical biosensors. XPS analysis and contact angle measurements of the O2-plasma-
treated electrode confirmed the generation of carboxyl groups and improved hydrophilicity.
We also investigated the electrode surface using electrochemical methods such as CV and
EIS. The results of both methods support the XPS and contact angle measurements, and
the electrode surface was successfully modified. Therefore, we modified antibodies with
common covalent bonding reagents, such as EDC/NHS, and four cases were compared:
with and without O2-plasma, and with and without covalent bonding.

The improvement rate with the O2-plasma and covalent bonding was 2.4 times higher
with regard to the LOD and 1.8 times higher with regard to the slope compared to the
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conventional method with the bare electrode and physical adsorption. The SEM images
also suggested that antibody modification using covalent bonding on the plasma-treated
electrode improved the amount of antibody modification. However, the electrochemical
reactivity to the AuNPs was also reduced, limiting the improvement in sensitivity. As a
result, we found a close relationship between the substituents, charge, and hydrophilicity
of the electrode surface and electrochemical activity, which affects sensor sensitivity. Our
findings relate to the relationship between the electrode surface conditions and sensor
sensitivity and suggested that we might identify important factors in a discussion of
antibody modification methods. There are a few simple and effective methods for surface
modification of SPCE, including electrochemical activation, drop casting [65], and plasma
treatment. By comparison, plasma treatment has the advantage of being able to treat many
electrodes in a short time (5 s) and to generate carboxyl groups. It can also remove binders
and dust from the electrode surface.

In the future, we plan to use the biosensors with improved sensitivity to measure
previously undetectable biomarkers and develop the novel biosensors using the unique
surface conditions generated by O2-plasma.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/bios14040165/s1, Figure S1: Contact angle measurement
of O2-plasma-treated electrode. Table S1: Signal values used in the calibration curves. Figure S2:
Differential pulse voltammograms (a) and Calibration curve (b) for AuNP modified on SPCE.
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