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Abstract: Due to rapid industrialization, novel water-quality monitoring techniques for the detection
of highly toxic and hazardous heavy metal ions are essential. Herein, a hybrid noble nanoparti-
cle/DNAzyme electrochemical biosensor is proposed for the simultaneous and label-free detection of
Pb2+ and Cr3+ in aqueous solutions. The sensor is based on the combination of a two-dimensional
naked-platinum nanoparticle film and DNAzymes, whose double-helix configuration disassembles
into smaller fragments in the presence of target-specific heavy metal ions. The electrochemical
behavior of the fabricated sensor was investigated with non-faradaic electrochemical impedance
spectroscopy (EIS), resulting in the successful detection of Pb2+ and Cr3+ well below their maximum
permitted levels in tap water. So far, there has been no report on the successful detection of heavy
metal ions utilizing the non-faradaic electrochemical impedance spectroscopy technique based on
advanced nanomaterials paired with DNAzymes. This is also one of the few reports on the successful
detection of chromium (III) via a sensor incorporating DNAzymes.

Keywords: heavy metal; biosensor; non-faradaic; impedance; EIS; DNAzymes; chromium; lead;
nanoparticles; lab on chip

1. Introduction

In the past decades, extensive industrialization has significantly impacted the environ-
ment globally, particularly in terms of the pollution of natural resources [1]. Industries such
as pulp and paper, textile, cement, oil, leather, paint, and food, among others, normally
produce large quantities of sludge and effluents [2], resulting in the generation of hazardous
byproducts, such as heavy metals. As a consequence, such byproducts can easily transfer
to air, water, and soil [3]. In particular, the contamination of aquatic systems is considered
to be a major global issue due to the substantial volumes of wastewater produced by these
industries [4].

Heavy metal ions pose a significant threat to water quality, as they are highly toxic,
resistant to degradation, and prone to bioaccumulation and biomagnification within the
food chain. The most commonly found heavy metals in waste water include chromium
and lead, which cause risks for both human health and the environment [5]. The existence
of such ions in aquatic ecosystems, even in trace amounts, can directly or indirectly impact
living systems [6]. For instance, lead (Pb2+) is one of the most common and hazardous
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pollutants, and excess levels can lead to organ disorders, carcinogenicity, and genotoxic-
ity [7]. Chromium is also characterized as a potentially toxic metal, mainly occurring in
water in two oxidation states, Cr(III) and Cr(VI), primarily with the hexavalent compounds
having toxic effects on humans, animals, plants, and microorganisms. In particular for hu-
man health, occupational exposure may damage the eyes, blood, respiratory and immune
system [8]. In addition, Cr(III) is non-biodegradable, mutagenic, and genotoxic [9].

It is, therefore, of great significance to develop novel water-quality monitoring tech-
niques, at both large and small scales, which enable selective detection of these water
pollutants with sufficiently low limits [10]. Up to now, the most commonly used techniques
to detect heavy metal ions in water include highly sensitive spectroscopic techniques like
atomic absorption spectroscopy (AAS) [11], inductively coupled plasma optical emission
spectrometry (ICP-OES) [12], inductively coupled plasma mass spectrometry (ICP-MS) [13],
and atomic fluorescence spectroscopy (AFS) [14].

However, these approaches are frequently time-consuming, costly, demand advanced
equipment and highly trained staff, and are not appropriate for on-site detection. In
addition, these methods are only suitable for quantitative analysis and need to be coupled
with other chromatographic techniques to conduct metal ion speciation. On the contrary,
electrochemical techniques are more cost-effective, user-friendly, reliable, and applicable
for in situ monitoring of contaminated samples [15]. Among existing electrochemical
biosensing techniques, electrochemical impedance spectroscopy (EIS) is a well-established
method to investigate properties of materials and electrode reactions. Since electrochemical
processes form the foundation of numerous research fields, including energy conversion
and storage, corrosion studies, as well as biosensors, this method is considered to be broadly
applicable because it can provide deep insight into the electrochemical phenomena at an
electrified interface. This is due to the fact that an electrochemical process occurring at
the interface between an electrode and an electrolyte can be deconstructed into a series of
intricate stages—such as mass transport, charge–transfer processes, and adsorption—in
a single measurement. Based on the response of the electrochemical system, the use of
transient techniques, such as EIS, facilitates the analysis of time-dependent mechanisms at
specific frequencies [16].

EIS can function in two modes, namely faradaic and non-faradaic. The key distinction
between the two lies in the use of a redox species in the faradaic mode. In faradaic EIS,
the redox couple undergoes alternating oxidation and reduction via electron transfer to
the metal electrode. Consequently, faradaic EIS necessitates the inclusion of a redox-active
species and specific DC bias conditions to prevent depletion. It is worth noting that the
redox species can damage biomolecules [17,18], resulting in the enhancement of biomolec-
ular agglomeration, thus leading to less sensitive detection [19]. Conversely, non-faradaic
EIS does not demand any extra reagent, allowing for real-time measurement and highly
sensitive detection, and is therefore more suitable for point-of-care applications [20]. In ad-
dition, the non-faradaic mode of operation offers detection without the need of a reference
electrode—which is required in faradaic mode—and hence, is amenable to miniaturization.
The existing literature has a very limited number of research studies focused on HMI detec-
tion based on non-faradaic EIS biosensors. One study is an impedimetric sensor comprised
of L-cysteine self-assembled on top of an interdigitated gold electrode for the detection of
lead ions (Pb(II)) in tap water [21]. Another is an impedimetric sensor for the detection of
Hg(II) in tap water, comprised of titanium dioxide (TiO2) microstructures deposited over
interdigitated gold electrodes (Au-IDEs) [22]. However, these publications rely solely on
capacitive changes at the electrode/electrolyte interface, while completely disregarding
the resistive part of the impedimetric measurements, which furnishes crucial information
about the entirety of the non-faradaic system. Additionally, the developed sensors were
capable of successfully detecting only one type of HMI.

Emerging sensing technologies for HMI also utilize compact sensors and advanced
nanomaterials along with specific biorecognition molecules, designed to create nanosensors
with cost-effective fabrication, portability, and easy operation. Various nanomaterials,
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including gold nanoparticles [23], nanoporous alumina [24], and ZnO nanowires [25],
have previously been employed as sensing layers to enhance the efficiency of non-faradaic
impedimetric sensors. Functional biomaterials, including DNAzymes—enzymatic, single-
stranded (ss), synthetic DNA sequences—are frequently employed in biosensing platforms
for the highly sensitive and selective detection of heavy metal ions [26]. This is due to their
ability to cleave and eventually break down when specific metal ions bind to designated
sites within their DNA sequence. DNAzyme sensors for HMI detection operate with
either fluorescent, colorimetric, or electrochemical signal readout as the sensing signal [27].
DNAzymes—when employed for HMI detection—are frequently paired with nanoma-
terials, with common applications involving the utilization of nanomaterials as optical
quenchers [28], as optical enhancers due to surface plasmon resonance properties [29],
quantum dots as signal reporters for chemiluminescence resonance energy transfer [30], or
as suitable bases for DNA immobilization [31]. Nevertheless, to the authors’ knowledge, the
detection of HMIs based on the combination of advanced nanomaterials and DNAzymes
has not been previously recorded with the use of non-faradaic EIS.

In this study, a non-faradaic biosensor employing platinum (Pt) nanoparticles (NPs)
and DNAzymes was developed for the simultaneous and label-free detection of HMI
targets, namely lead (Pb2+) and chromium (Cr3+). The two-dimensional (2D) platinum
(Pt) NP film is deposited in between interdigitated electrodes (IDEs) creating nano-gapped
electrodes, on top of which target-selective DNAzymes are immobilized by employing
thiol-functional groups. As previously reported by this group [32–34], DNAzymes are
utilized not only because of their catalytic activity in the presence of HMIs, but also
because they offer enhanced device conductivity by acting as inter-nanoparticle bridges and
collapse selectively in the presence of the target substance. The sensor successfully detected
concentrations of Pb2+ and Cr3+ that fell significantly below their permissible levels in tap
water. Results discussed herein, expand our previously published work on the development
of hybrid NP/DNAzymes biosensors for HMI detection [32–34] by comparing between
biosensors employing either resistive or non-faradaic EIS measurements. It is worth noting
that EIS is one of the most established techniques in the field of biochemical sensing, since
it can provide extensive understanding of the interactions taking place at the devices’
electrode–electrolyte interface. Non-faradaic EIS biosensors significantly outperformed
their resistive counterparts by achieving lower limits of detection and a higher overall yield.
Furthermore, this is the sole report on the development of a non-faradaic impedimetric
electrochemical biosensor functionalized with DNAzymes. In addition, the biosensor
discussed herein is the only report on an impedimetric sensor (faradaic or non-faradaic)
that has been further optimized by incorporating a 2D NP layer that serves a dual purpose:
on the one hand the NP layer increases the number of available DNAzyme-binding sites
on the biosensor’s surface (increased roughness, hence increased surface to volume ratio),
while on the other, it enhances the biosensor’s impedimetric-response via the introduction
of resistive charge–transport pathways through the NP layer. This constitutes a distinctive
sensing mechanism [32–34] that is investigated via EIS for the first time in the current study.

All things considered, the proposed biosensor stands out as a promising device for
cost-effective, highly sensitive and selective detection of multiple HMIs, as it provides rapid
response, involves a straightforward fabrication process, and eliminates the need for the
additional reference electrode required in faradaic EIS. The combination of double stranded
(ds) DNA’s electrical properties [35] and the NP layer is a distinctive feature of a unique
sensing scheme within the field of electrochemical biosensors. It is also noteworthy that,
to the best of the authors’ knowledge, this is one of the few reports where the successful
detection of Cr3+ using DNAzymes is discussed, regardless of the sensing technique. In
order to evaluate the sensor’s specificity, different non-target HMIs were tested with the
non-faradaic sensor, while real samples were also examined. Our current results render
the developed biosensor appropriate for potential integration into portable and remote
environmental monitoring systems, as well as water treatment and remediation platforms
in the future.
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2. Materials and Methods

The biosensors were fabricated on top of silicon substrates with a 300 nm thick thermal
SiO2 oxide layer, following the typical procedure described in previous publications by
this group [32–34,36]. In short, via conventional optical lithography, followed by e-gun
metallization, gold interdigitated electrodes (IDEs) with a 10 µm electrode gap distance
were patterned on top of the substrates, while a titanium layer (10 nm in thickness) was
employed as an intermediate adhesion layer between the gold and SiO2, leading to a
combined thickness of 40 nm for the IDEs after lift-off. Upon the completion of electrode
fabrication, naked Pt NPs were deposited using DC magnetron sputtering, a physical
vapor deposition technique that provides control over the conductivity/resistance of the
fabricated devices [32]. The nanoparticles are synthesized at room temperature, showing
good size dispersion in the range of 2–12 nm (mean diameter ~5 nm) [37]. The device’s
resistance is monitored in situ and is mainly dependent on two factors: the size of the
nanoparticles, which can be controlled by adjusting the distance of the platinum sputtering
target and the deposition-substrate, and the NP surface coverage and density—affected
by the deposition time. In this case, the required NP surface coverage is slightly below
the percolation threshold, which is optimal for device sensitivity, aligning with previous
findings reported by this group [32–34].

All reagents were purchased from Merck (Merch SA, Darmstadt, Germany), while all
buffers were prepared utilizing deionized (DI) water obtained from a Millipore MilliQ sys-
tem, possessing a resistivity of 18.2 MΩ cm at 25 ◦C. Oligonucleotides were purchased from
Integrated DNA Technologies, BVBA (Leuven, Belgium) and their sequences for the detec-
tion of and Pb2+ and Cr3+ were, respectively, as follows: Gr5 catalytic strand: GTTCGC-
CATCTGAAGTAGCGCCGCCGTATAGTGACT and Ce13d catalytic strand: GTTCGC-
CATAGGTCAAAGGTGGGTGCGAGTTTTTACTCGTTATAGTGACT. DNA hybridization
was achieved with a common substrate strand, whose sequence was AGTCACTATrAG-
GAAGATGGCGAAC. The catalytic strands contained a 5′ thiol C6 linker, with the aim
of achieving immobilization on the active area of the sensors (meaning the IDEs sur-
face area). The materials and reagents listed below were also employed for the sur-
face’s functionalization and DNAzymes’ immobilization: phosphate buffered saline (PBS)
of pH = 7.4; phosphate buffer 1 M, pH = 8, 0.001% tween20; MOPS buffer (3 (Nmor-
pholino)propanesulfonic acid) (50 mMMOPS/25 mM NaCl, pH = 7.5) and MES buffer
(2-(N-morpholino)ethanesulfonic acid) (50 mM MES/25 mM NaCl/0.8 mM phosphate
buffer, pH = 6); and 6-mercapto-1-hexanol (MCH).

Every preparation step was carried out at ambient temperature. The biochemical
protocols used for surface functionalization and DNAzymes’ immobilization were identical
to our previous publication of HMI detection via resistive biosensors [32]. To be more
specific, thiol-modified DNA sequences have been employed, since it was concluded that
the thiol-modified immobilization technique exhibited a better overall performance. In
particular, the thiol-based devices showed higher sensitivity and also proved to be more
cost-effective due to their simple and fast fabrication process.

The immobilization process for thiol-modified DNAzymes can be seen in the schematic
representation of Figure 1. In short, the ssDNA substrate probes had to be initially immo-
bilized on the sensors’ surface via drop-casting on the IDEs. Next, MCH was employed
in order to convey a blocking effect, so as to remove any non-specifically bound catalytic
strands from the surface in order to act as an interaction barrier between single DNA
strands. The final step of the process involved the hybridization of the DNAzyme se-
quences with the immobilized substrate strands. After the successful formation of the ds
DNAzymes on the biosensor’s surface, the device could be immediately used for heavy
metal ion detection and recognition while exposed to room temperature and humidity and
without any special requirements. The device could also be stored in humid conditions at a
temperature between 4 and 5 ◦C. Stored biosensors maintained their ability to successfully
detect both heavy metal ion targets even after being stored in such conditions for more
than a month.
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Figure 1. Schematic representation of the immobilization process for thiol-modified DNAzymes.
(i) Si/SiO2 substrates have been patterned with Au interdigitated electrodes and have been used for
the (ii) Pt NPs deposition step via the magnetron sputtering technique. (iii) The ssDNA substrate
probes were immobilized on the sensors’ surface via drop-casting. MCH was employed (iv) in order
to convey a blocking effect with a dual role; remove any non-specifically bound catalytic strands from
the surface and act as an interaction barrier between single DNA strands. The final step of the process
(v) involved the hybridization of the DNAzyme sequences with the immobilized substrate strands.

The devices were characterized by optical microscopy measurements and field emis-
sion scanning electron microscopy (FE-SEM) (Figure 2) for every step of the immobilization
process. The instrument used for the scanning electron microscopy was the Nova NanoSEM
230 (FEI Company, Hillsboro, Oregon) with a spot size of 3.0, accelerating voltage of 15 kV,
tilting angle 0◦, and working distance 5.4 mm. Optical microscopy displayed no notable
variances between every biomolecular deposition/step, while SEM proved that electron
charging on the sensors’ surface increased with each additional layer, which hindered
further detailed SEM imaging. All DNA strands employed in this study, both substrate
and enzymatic/catalytic, were marked with fluorescent tags, as detailed in [33], in order to
verify every functionalization step via fluorescence microscopy. A more detailed schematic
of the device’s hybrid DNAzyme–nanoparticle arrangement can be seen in Figure 3.

In order to validate the immobilization of the DNAzymes layer on the sensor’s sur-
face, X-ray photoelectron spectroscopy (XPS) analysis was employed. XPS analysis was
performed as discussed in previous work by this group [32], with a MAX200 system. XPS
spectra for a Si/SiO2 sample, a Si/SiO2/Pt NPs sample, and a Si/SiO2/Pt NPs sample
modified with thiol DNAzymes, can be seen in Figure 4. From the XPS spectra, it is evident
that the successful immobilization of the thiol-modified DNAzymes on top of the Pt NP
layer results in P and N2 peaks that are characteristic of DNA presence. As is to be expected,
P and N2 peaks did not occur in the case of the reference samples. Assuming, as a first
approximation to the analysis of the data, that all the detected elements are uniformly
distributed (both laterally and in depth) in the XPS analyzed volume of the surface region,
we can then use the measured peak areas of characteristic peaks, one for each element, to
obtain average atomic ratios between various elements normalized to 1 for Si in all samples.
The peaks used in quantification were Si2s and Si2p, O1s, N1s, C1s, and Pt4f doublet.
Appropriate relative sensitivity factors (RSF) were used from the database of the Surface
Science Laboratory of the University of Patras, adjusted to the spectrometer operating
conditions. The obtained quantification results under the assumption of spatial unifor-
mity (average atomic ratios) for the analyzed samples are as follows: for the Si/SiO2/Pt
NPs/DNAzymes sample: Si:O:N:Pt:P:C = 1:2.31:0.22:1.11:0.03:0.72, for the Si/SiO2/Pt NPs
sample: Si:O:Pt = 1:1.74:1.45, and for the Si/SiO2 sample: Si:O = 1:2.00.
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the IDEs, where the inter-finger spacing is equal to 10 µm.

Biosensors 2024, 14, x FOR PEER REVIEW 6 of 21 
 

  

Figure 2. (a) Optical image of the interdigitated electrodes of a single sensor, with an inter-finger 
spacing of 10 µm. (b) SEM image of a single sensor on the margin of the gold electrode. Platinum 
nanoparticles having a mean diameter of 5 nm have been deposited via DC magnetron sputtering. 
(c) SEM overview image of a sensor prior to NP deposition. The inset shows the magnified picture 
of the IDEs, where the inter-finger spacing is equal to 10 µm. 

 
Figure 3. (a) Cross section (schematic) of the sensing device where the platinum (Pt) nanoparticle 
layer deposited on the electrodes (IDEs) can be seen. (b) Schematic representation of the thiol-mod-
ified DNAzyme functionalization distributed on top of the two-dimensional platinum (Pt) nanopar-
ticle (NP) film. The Pt NP film offers a wide range of inter-nanoparticle gaps (noted as “d”) that can 
be under 1 nm and well over 2 nm. 

In order to validate the immobilization of the DNAzymes layer on the sensor’s sur-
face, X-ray photoelectron spectroscopy (XPS) analysis was employed. XPS analysis was 
performed as discussed in previous work by this group [32], with a MAX200 system. XPS 
spectra for a Si/SiO2 sample, a Si/SiO2/Pt NPs sample, and a Si/SiO2/Pt NPs sample modi-
fied with thiol DNAzymes, can be seen in Figure 4. From the XPS spectra, it is evident that 
the successful immobilization of the thiol-modified DNAzymes on top of the Pt NP layer 
results in P and N2 peaks that are characteristic of DNA presence. As is to be expected, P 
and N2 peaks did not occur in the case of the reference samples. Assuming, as a first ap-
proximation to the analysis of the data, that all the detected elements are uniformly dis-
tributed (both laterally and in depth) in the XPS analyzed volume of the surface region, 
we can then use the measured peak areas of characteristic peaks, one for each element, to 
obtain average atomic ratios between various elements normalized to 1 for Si in all sam-
ples. The peaks used in quantification were Si2s and Si2p, O1s, N1s, C1s, and Pt4f doublet. 
Appropriate relative sensitivity factors (RSF) were used from the database of the Surface 
Science Laboratory of the University of Patras, adjusted to the spectrometer operating con-
ditions. The obtained quantification results under the assumption of spatial uniformity 
(average atomic ratios) for the analyzed samples are as follows: for the Si/SiO2/Pt 

Figure 3. (a) Cross section (schematic) of the sensing device where the platinum (Pt) nanoparticle layer
deposited on the electrodes (IDEs) can be seen. (b) Schematic representation of the thiol-modified
DNAzyme functionalization distributed on top of the two-dimensional platinum (Pt) nanoparticle
(NP) film. The Pt NP film offers a wide range of inter-nanoparticle gaps (noted as “d”) that can be
under 1 nm and well over 2 nm.

EIS measurements were conducted utilizing an Agilent 4284A precision LCR meter
(Hewlett-Packard, Palo Alto, CA, USA) connected to the IDEs. The analyzer was connected
to a Gateway G6-350 PC and controlled via LabVIEW Software (GPIB) (2011 version). All
measurements were carried out within a custom-made electrochemical cell and recorded
between a frequency range of 100 to 1,000,000 Hz with a modulation voltage of 50 mV. In
order to verify that any change in the measured impedance could be solely attributed to
target detection (HMI), 50 µL of buffer (suitable for each ion) was added on top of the IDEs
(the active surface of the sensors) so that the system would reach an equilibrium state. This
was further corroborated by the drop-casting of 5 µL of buffer solution before the addition
of any HMI target, in order to ensure that the steady-state was not distorted. Increasing
concentrations of HMIs dissolved in the appropriate analyte–MOPS buffer (for Pb2+) and
MES buffer (for Cr3+) were drop-casted on top of the IDEs.
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3. Results and Discussion
3.1. Detection of Heavy Metal Ions via EIS

EIS exhibits significant potential for the development of affordable, compact, and
user-friendly portable devices for point-of-care applications, notably in the fields of medical
diagnosis and environmental monitoring. This is due to the fact that it can relate the
changes in electrical impedance to the reaction with the analyte of interest by producing an
electrical signal proportional to the analyte concentration at the surface of the biosensing
elements [38].

Since EIS, as a form of transfer function measurement, is frequently employed when
examining linear time-invariant systems, the electrochemical impedance is a frequency
dependent complex number, which can be expressed by the following formula:

|Z| =
√

Zr
2 + Zi

2, (1)

where Zr represents the real part and Zi signifies the imaginary part of impedance [16].
Given that the impedance is a complex value, the current can differ not only in terms of
the amplitude, but it can also show a phase shift φ compared to the voltage–time function.
Hence, one way of illustrating the results of an impedance measurement is by using a
Bode plot, which plots log|Z| as a function of φ (or f ) [39]. Herein, we demonstrate the
Bode plots of total impedance and phase angle at a range of frequencies, as can be seen in
Figure 5.
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Figure 5. EIS responses of the devices at different concentrations of the two HMIs. The Bode plots of
sensors functionalized with Pb-specific DNAzyme upon exposure to increasing concentrations of
Pb2+ are presented for the entire frequency range in (a) and between 500 and 1800 Hz (b), while those
functionalized with Cr-specific DNAzyme upon exposure to increasing concentrations of Cr3+ are
presented for the entire frequency range in (c) and between 500 and 700 Hz in (d).

In Figure 5, it is evident that exposure to the analyte leads to a substantial rise in
the overall system impedance. In electrochemical impedance spectroscopy, where the
electrolyte solution plays a crucial role in the system under investigation, usually four com-
ponents are employed to characterize the impedimetric response: ohmic resistance, capac-
itance, constant-phase element, and Warburg impedance [39]. In a typical non-faradaic
electrochemical system, the absence of a redox label excludes the parameters related to
electron transfer and Warburg impedance that become infinite. Equivalent circuits utilizing
ideal or distributed impedance elements arranged in series and/or in parallel, are usu-
ally employed in order to approximate the experimental impedance data. Our proposed
equivalent circuit (Figure 6) consists of the ohmic resistance of the bulk electrolyte R1,
which is in series with the dielectric capacitance of the solution C1 that depends on the
permittivity of the solution (ε) and geometric characteristics of the nano-gapped electrodes
in contact with the droplet (e.g., width and separation between the electrodes, droplet
contact angle θ, etc.) [40]. These first two elements of the circuit are connected in series with
the parallel combination of the double-layer capacitance C2 and the resistance R2 through
the DNAzyme chains between the NP film. It is worth noting that in contrast to most publi-
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cations related to non-faradaic or faradaic EIS, the model proposed in the current paper
accounts for the existence of the NP layer; in fact, the presence of the Pt NP layer gives rise
to the R2 component. Through numerical simulations (Figure 7), the parameters obtained
from the compact model (Table 1) have proved to be self-consistent with the experimental
data, confirming the validity and applicability of this model for similar biosensing systems
(i.e., NP-modified biosensors and non-faradaic EIS measurements). To be more precise, in
order to compute the passive elements Ri and Ci we first calculated the total resistance of
the equivalent circuit of Figure 4, as shown in (2):

Ztotal =
jω(R1R2C1) + R2

(jω)2(R1R2C1C2) + jω(R1C1 + R2C2 + C1R2) + 1
(2)

Using MATLAB’s optimization toolkit (version R2019a), specifically the fminsearch func-
tion, an unconstrained nonlinear minimization solver, we defined the objective function
shown in (3) to minimize it:

Objective Function = |log(magdata(ω))− log(magsim(ω))|2 (3)

Here, magdata represents the experimental data, while magsim is the magnitude response
(computed using the bode function) of the total impedance at the corresponding frequencies
of the experimental data.
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Table 1. Parameters obtained from the equivalent circuit-model of the biosensor.

Pb2+ Addition R1 (Ohm) C1 (10−10 Farad) R2 (Ohm) C2 (10−11 Farad) R2 Value

0 (buffer) 819,714.289 1.058 1,332,126.638 7.048 0.960
100 nM 819,714.289 1.058 1,719,696.480 5.567 0.942
200 nM 819,714.289 1.058 1,903,953.434 5.080 0.934
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Figure 7. Fitting between experimental and the simulation data, according to the equivalent cir-
cuit model of Figure 3. Continuous and dashed lines represent experimental and simulated
data, respectively.

At frequencies above 10 kHz, the impedance is solely attributed to the constant
electrolyte resistance, regardless of any surface alterations or the presence of the targeted
analyte. This corresponds to the flat, horizontal line observed in all of the Bode plots. At
lower frequencies (f < 102 HZ), the capacitive characteristics of the system prevail. At
intermediate frequencies, both capacitance and resistance impact the impedance [40]. In
contrast to the majority of published work based on impedimetric detection, herein changes
in the as-measured conductance are not due to a changing charge–transfer resistance to
the metal electrode, but can be understood in the context of counter-ion conduction on
the DNA backbone, as well as due to the “conductive” bridging of distinctive NPs or NP
clusters by hybridized DNAzymes [41]. This is why we report the impedance percentage
difference before and after exposure to the analyte at 500 Hz; it is in this intermediate
frequency that the largest changes in impedance have been recorded. As a consequence,
the significant increase in total device impedance in the presence of the targeted analyte
can be attributed to two phenomena happening simultaneously, one concerning the R
component, and the other the C part. It is also worth noting that the increased sensitivity
in the 500 Hz regime is also certified by the simulation data, as extracted by the proposed
equivalent-circuit model.

In Figure 8, the response of the proposed biosensors towards Pb2+ and Cr3+ for thiol-
modified catalytic strands can be seen. The mean base resistance or R0 (R0: initial device
resistance) of the sensors used in these experiments varied between 700 and 2000 kΩ with
a standard deviation of 7.3%. For the detection of each distinctive HMI concentration,
10 different DNAzyme biosensors were used in total in order to calibrate the biosensors,
while the standard deviation of these precision measurements was between 0.25% and
1.9%. The results correspond to a relative change in impedance (∆Z/Z%) at a frequency
equal to 500 Hz; in particular, there was an increase in the measured impedance of the
device as shown in the Bode plots of Figure 5, as a result of the cleavage of the substrate
strand of the DNAzymes. The sensors had a limit of detection (LoD) of 0.4 nM and 1 nM
for Pb2+ and Cr3+, respectively. For Cr3+, a linear response range was obtained from 5
to 200 nM, while for Pb2+ two distinctive linear regions can be established: the first one
from 400 pM to 10 nM and the second one from 50 nM to 200 nM. The cross-sensitivity
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and selectivity of the biosensors was also tested during dedicated control experiments,
by adding a buffer solution containing a non-specific HMI to the respective DNAzyme-
functionalized biosensor before the introduction of the target-specific HMI, as can be also
seen in Figure 8. 
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Figure 8. Impedimetric biosensor calibration-curves obtained at 500 Hz for the two HMIS: (a) Pb2+ and
(c) Cr3+. Enlarged graphs for these curves are presented in (b,d) for the two metal ions, respectively.
Biosensor response and control experiments are represented by black squares and red closed discs for
either Pb2+ or Cr3+ and cyan diamonds for Cd2+.

As to be expected, the results are improved compared to our previous work on heavy
metal ion detection with the resistive biosensing technology [32], due to the contribution
of the C component in device performance. In order to compare the two measurement
techniques (i.e., non-faradaic EIS and resistive measurements) an additional experimental
set has been performed for resistive biosensors, under the same unified conditions. The
resistive biosensors were measured by following the characterization process described at
length in [32,34]; the sensors’ resistance was monitored in situ by a Keithley 2400 Multime-
ter under a 1 V DC bias. Every sample was positioned on top of a printed circuit board
(PCB) with the ability to measure up to eight sensors simultaneously in a homemade elec-
trochemical cell, thanks to a custom-made multiplexer switch board which was connected
to the Keithley instrument. The overall system was controlled via a custom-made LabVIEW
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application with the dynamic response of the biosensors appearing on the PC screen. The
primary steps of measurement were the same as in the EIS setup, meaning that an initial
stabilizing amount of buffer (suitable for each ion) was added on top of the IDEs before
any HMI addition; the HMI detection was reported as an increase in the sensor’s resistance.
The sensors’ response was similar to the one previously presented in [32], as can be seen in
Figure 9.
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Figure 9. Resistive biosensor calibration curves obtained at 500 Hz for the two HMIS: (a) Pb2+ and
(c) Cr3+. Enlarged graphs for these curves are presented in (b,d) for the two metal ions, respectively.
Biosensor response and control experiments are represented by black squares and red closed discs for
either Pb2+ or Cr3+, respectively, and cyan diamonds for Cd2+.

The results show the relative increase in resistance (∆R/R0%), corresponding to the
dissociation of the substrate DNAzyme into two smaller fragments when exposed to target
HMI. The resistive sensors had a limit of detection (LOD) of 0.8 nM and 10 nM for Pb2+ and
Cr3+, respectively, which is considerably higher compared to the LOD achieved via non-
faradaic detection. Apart from outperforming the resistive biosensors in terms of sensitivity,
the impedimetric biosensors also exhibited higher yield; 71% of fabricated impedimetric
sensors were measured successfully compared to 42% of resistive biosensors. It is also
worth noting that initial device resistance (R0) in the case of resistive biosensors has to be
in the range of 500–950 kΩ for the successful operation of the device. Device resistance
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is connected to NP deposition time, hence NP surface coverage; in the case of resistive
biosensors, specific NP surface coverage is necessary for successful inter-nanoparticle
bridging, hence device operation. In contrast, the impedimetric sensors feature a wider
R0 range that is between 700 kΩ and 2000 kΩ; as a consequence, there is no need for in
situ monitoring of device, hence the NP fabrication process is accelerated, resulting in
significantly faster and easy fabrication. The precision measurements had comparable
standard deviation values; the value for the resistive biosensing technology was reported
in the range of 0.2% to 1.5%. The linearity of the response calibration curves is also similar
for both measurement methods, while the control experiments proved that both types
of biosensors are characterized by good cross-sensitivity and selectivity. The one aspect
lacking in the impedimetric detection method is the more complex measurement setup
and data analysis required to acquire information; on the contrary, resistive biosensing
technology relies on simpler instrumentation and instant experimental results (response
time between 7 and 18 s), which do not demand any further data processing. A comparison
between the two distinct measurement regimes, namely non-faradaic EIS and resistance, is
showcased as Table 2.

Table 2. Comparison between the two different measurement regimes of the reported biosensors,
namely non-faradaic impedimetric and resistive sensors.

Properties Non-Faradaic EIS Resistance Measurements

Analytes Pb2+ and Cr3+

Fabrication/reagents/materials Same for both detection schemes
Limit of detection (LOD) 0.4 nM for Pb2+ and 1 nM for Cr3+ 0.8 nM for Pb2+ and 10 nM for Cr3+

Standard deviation values 0.4–1.9% 0.2–1.5%
Yield 71% 42%

Linearity Similar
Cross-sensitivity and selectivity Similar

Measurement setup and data-analysis Complex Simple
Limit of detection (LOD) for real samples 1 nM for Pb2+ and 5 nM for Cr3+ 10 nM for Pb2+ and 40 nM for Cr3+

Storage stability data for both types of biosensors were also collected (Figure 10), in
accordance with previously reported results of our group [34]. By storing the biosensors
in a temperature of 4 ◦C, stability could be achieved over a period of 6 weeks. On the
contrary, sensors stored at room temperature proved to have deteriorated sensing abilities
over time, losing their overall sensitivity in 4 weeks. Three days was calculated to be the
maximum time capacity a sensor could be stored at room temperature without showing
any performance deterioration. It is also evident from the graph that both impedimetric
and resistive sensors exhibit almost identical storage abilities since they are based on the
same fabrication scheme.

Finally, the proposed biosensors exhibit prospects of reusability when following a
specific process, described at length in [34]; the devices need to be washed with the
respective buffer solution before the remaining immobilized DNA strands, previously
fractured by the HMI addition, can once again be hybridized according to the steps of
Section 2. However, during the DNAzymes’ cleavage, small fragments of the substrate
strands remain attached to the surface; since the complete removal of those fragments is
required, a process which involves breaking the covalent bond on the sensor’s surface, the
overall regeneration of the biosensing system is not cost-effective [32].
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Figure 10. Effect of storage conditions on the performance of the (a) impedimetric and (b) resistive
biosensors. Two storage conditions were assessed: one at 4 ◦C and the other at room temperature,
over a period of up to 6 weeks post-fabrication. The vertical axis displays the reduced signal from
the sensors’ responses, which is normalized to the initial response measured immediately after
fabrication in “week 0” for 5 nM of Pb2+. The error bars indicate the standard deviation derived from
measurements of five distinct sensors at each time interval.

3.2. Heavy Metal Ion Detection in Real Samples

In order to validate the feasibility of the method to identify heavy metal ions in
aqueous solutions, we enhanced the scope of our research compared to our previous
work [32] by assessing the performance of the biosensing platform with real samples,
namely tap water. Control experiments were conducted by adding known concentrations
of the two types of HMIs (with a sample size of five sensors for each HMI concentration).
A linear response of Pb2+ and Cr3+ detection with an LOD as low as 1 nM and 5 nM,
respectively, was achieved (Figure 11). As can be seen, the linear response of the sensors
was slightly distorted, especially in the case of Pb2+. Control experiments in real samples
were also conducted with the use of resistive biosensing. Expanding on our previous work
based on such sensors [32], the detection of Pb2+ and Cr3+ was also achieved (Figure 12),
however, with lower LOD compared to the impedimetric sensors, namely 10 nM and
40 nM, respectively. The sensitivity of the impedimetric detection method is evidently
higher, further highlighting the fact that integrating the capacitance value via the non-
faradaic EIS method results in more sensitive and reliable biosensors.

The sensitivity was, in both cases, lower compared to devices measuring heavy metal
ions in buffer solutions. This can be attributed to the fact that the ionic nature of buffer solu-
tions affects biological processes, including enzyme activities—in our case, the DNAzymes’
cleavage. Generally, biological systems operate in conditions where ion specificity mod-
ulates biomacromolecule interactions [42]. Thus, the DNAzymes’ configuration and in-
teractions are facilitated under the appropriate buffer environments. Hence, the plain
aqueous solutions of real samples can reduce, to some extent, the sensitivity of the biosen-
sors. However, the results exhibit potential for the future integration of these non-faradaic
biosensors for point-of-care applications, such as microfluidic channels that consist of
different target-specific DNAzyme devices, since the biosensors are capable of detecting
the respective HMIs in concentrations well below their maximum permitted levels.
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4. Discussion

The mechanism of charge–transport in nanoparticle films deposited via sputtering,
with a surface coverage slightly below the percolation threshold, has been extensively
addressed in prior publications by this research group [32,33]. In brief, charge–transport
is dominated by quantum mechanical phenomena like tunneling and/or variable range
hopping, while devices operating within this range usually feature a thermally activated
Arrhenius-type conductivity mechanism [34].

On the other hand, the electronic orbital overlap of the DNA bases as well as the
possibility to control DNA sequencing and length (in vastly possible combinations), renders
DNA a highly effective one-dimensional system for charge–transport [43,44]. It has been
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suggested that aqueous environments contribute to enhanced DNA conductivity due to
better base-pair stacking and coupling as well as more stable helix conformation compared
to dry conditions. It has also been proven that ssDNA is more conductive than that of
corresponding dsDNA [42,45], while guanine–cytosine base pairs have been found to
display higher conductance compared to others that act as electric barriers [35].

In previously published results by this group [32–34], hybrid, resistive nanoparticle/
DNAzyme-based biosensors have been thoroughly investigated; herein ds DNAzyme dis-
sociation was investigated via non-faradaic EIS, however, the explanation for the resistance
component of the impedance is still applicable. In particular, the presence of hybridized
DNA chains within the NP film can ultimately alter the sensor’s resistance/conductivity.
This is supported by the fact that dsDNA functions as a conductive link between distinc-
tive nanoparticles or NP aggregates, thus creating new conductive pathways for charge
transport. As a result, DNAzymes utilize metal ions to carry out catalysis [26] (Figure 13),
thus leading to the fracture of the conductive bridges between the NPs and a significant in-
crease in resistance [32–34]. Previously published results by this group have indicated that
thiol-modified DNAzymes are designed in order to bind directly to Pt NPs [46], otherwise
the DNA molecules cannot be attached to the sensor’s surface.
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On the other hand, the present experimental results indicate that the capacitance
value is decreasing with increasing target concentration. This capacitance variation is in
accordance with results observed in the respective literature [47–50], where non-faradaic
capacitive biosensors were developed. To be more specific, the decrease in capacitance in
this work can be attributed to the accumulation of biomolecules within the electrical double
layer (EDL) [51]. As already discussed herein, and in contrast to prior research concerning
impedimetric DNA detection, the design of our proposed biosensor employs an additional
2D network of nanoparticles and DNA chains; while self-assembled ssDNA-layers in most
reported impedimetric biosensors usually serve as an insulator in conjunction with the
electrical double layer [48], in our case, the DNAzyme layer is hybridized prior to any
exposure to the target analytes. DNA-functionalized electrodes generally cause higher non-
faradaic electric transient current than bare electrodes, which corresponds to higher effective
salt concentration in the region near the metal electrode [52]. Upon exposure to target
HMI, the substrate strands are cleaved, leading to their charged fragments accumulating in
the EDL and causing charge perturbation, which results in the system’s overall interface
capacitance decrease.

In a typical non-faradaic electrochemical system, where the absence of a redox label
excludes the parameters related to electron transfer and Warburg impedance, the imaginary
part of impedance is inversely proportional to the electrical double-layer capacitance [49],
while the resistance value is proportional to the Zr component of the system’s impedance. In
alignment with established research in the field of non-faradaic EIS where in-solution DNA
hybridization has been investigated [40,53–55], we reported the expected opposite results,
hence an overall rise of impedance due to the DNAzymes’ cleavage upon exposure to target
HMI. Building upon our previous articles on heavy metal ion detection based on resistance
measurements [32–34], this work allowed for deeper understanding of the electrochemical
processes via the introduction of EIS characterization leading to an overall improved
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biosensor performance. This is reflected on the increased sensitivity offered by the proposed
device, for laboratory and real samples alike, as well as the overall yield and reliability
which were highly improved compared to resistive biosensors, owing to the existence
of the C component. The sensing mechanism for resistive biosensors relies solely on the
collapse of the DNAzyme inter-nanoparticle bridging (resistive component); in contrast,
impedimetric biosensors utilize both resistive and capacitive components, recorded as
an overall rise in impedance. All of the above are validated through the experimental
measurements as well as from the successful fitting of the equivalent circuit model.

5. Conclusions

A novel electrochemical biosensor has been developed for the detection of two distinct
heavy metal ions, namely lead (Pb2+) and chromium (Cr3+). The biosensor relies on a
combination of noble metallic nanoparticles (i.e., platinum) and DNAzymes, attached on the
nanoparticle film through a thiol anchoring group. The device demonstrated the capability
to detect both heavy metal ions at concentrations well below their permissible levels in
tap water. Expanding on our previous publications related to the detection of heavy metal
ions using resistive biosensors, this study has enabled a more profound comprehension
of the device’s electrochemical interactions by incorporating the system’s capacitance via
non-faradaic EIS measurements, while also conducting comparative experiments based on
the two different biosensing detection methods under the same unified conditions.

Table 3 presents a list of reported sensors using various sensing principles for HMI
detection schemes, categorized into general and most commonly used techniques, where
DNAzymes were utilized and biosensors measured via non-faradaic EIS. To the authors’
knowledge, the proposed biosensor is the sole DNAzyme-based biosensor for the detection
of heavy metal ions that was measured with the use of non-faradaic electrochemical
impedance spectroscopy. As a result, it allows for real-time, highly sensitive and label-
free detection since it does not require the use of any redox species or a reference electrode
(like in faradaic measurements). It is also worth noting that the developed biosensor
is characterized by a unique impedimetric sensing mechanism, whether faradaic or
non-faradaic, through the integration of a 2D nanoparticle layer serving a dual role,
i.e., acting as expanded nano-gapped electrodes and as additional binding sites for
DNAzyme immobilization.

Table 3. List of various reported sensors for HMI detection.

Metal Ion/Ions Detection Technique Limit of
Detection References

General detection techniques

Cu2+, Fe3+, Ni2+ and Zn2+ Atomic absorption spectrometry (AAS) 41, 61, 63, and
12 µg/kg Trindade et al. [11]

Al3+, Ca2+, Cd2+, Co2+, Cu2+, Fe2+,
Fe3+, Mg2+, Ni2+, Pb2+, and Sr2+

Inductively coupled plasma optical
emission spectrometry (ICP-OES) 0.03–0.44 µg/L Losev et al. [12]

Trace Cu, Zn, Cd, Hg, Pb, and Bi Inductively coupled plasma mass
spectrometry (ICP-MS)

49, 43, 4.2, 6.1, 13,
and 18 ng/L Wang et al. [13]

Pb2+ Atomic fluorescence spectroscopy 0.004 µg/L Beltrán et al. [14]

Techniques where DNAzymes were used

Hg2+, Ni2+, and Ag+ DNAzymes as optical quenchers 0.11 nM, 7.8 µM,
and 0.25 nM Pavadai et al. [28]

Hg2+ DNAzymes for colorimetric detection 10 pM Chen et al. [29]
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Table 3. Cont.

Metal Ion/Ions Detection Technique Limit of
Detection References

Hg2+
DNAzymes and quantum dots for

chemiluminescent and chemiluminescence
resonance energy transfer

10 nM Freeman et al. [30]

Cu2+ and Hg2+
DNAzyme-functionalized single-walled

carbon nanotubes for electrochemical
impedance detection

0.01 and 5 nM Wang et al. [31]

Pb2+, Cd2+, and Cr3+ DNAzymes based on platinum
nanoparticles for resistive detection

0.8 nM, 1 nm,
and 10 nM Skotadis et al. [32]

Non-faradaic electrochemical impedance spectroscopy (EIS)

Pb2+ L-cysteine on Au-IDE for non-faradaic EIS 45 pM Assaifan et al. [21]

Hg2+ TiO2 microstructures on Au-IDEs for
non-faradaic EIS 60 pM Assaifan et al. [22]

Pb2+ and Cr3+ DNAzymes immobilized on Pt nanoparticles
for non-faradaic EIS 0.4 nM and 1 nM This work

In summary, the suggested biosensor emerges as a promising device for the cost-
effective, label-free, sensitive, and selective detection of various heavy metal ions. This is
also highlighted by its short response time, low power consumption, simple fabrication
process, and experimental set-up. Future work entails the development of a multi-sensing
array capable of simultaneously detecting and screening additional heavy metal ions
(HMIs); this could also encompass a broader range of environmental contaminants. The
ultimate objective of this study is to incorporate these biosensors into a single, disposable,
and cost-effective platform (e.g., a lab-on-chip system), which would be able to facilitate
the multiplexed detection of both—or potentially more—HMIs in a single measurement.
Effortless automation makes it particularly suitable for remote and autonomous environ-
mental monitoring systems or water treatment systems, as we move further into the era
of the Internet of Things (IoT). Future research efforts will also involve further sensor
optimization for higher sensitivity of the device, hence leading to even lower limits of
detection (LoD), in particular for real samples, as well as developing appropriate strategies
for sensor reusability.
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17. Valiūnienė, A.; Petroniene, J.; Morkvenaite-Vilkonciene, I.; Popkirov, G.; Ramanaviciene, A.; Ramanavicius, A. Redox-Probe-Free
Scanning Electrochemical Microscopy Combined with Fast Fourier Transform Electrochemical Impedance Spectroscopy. Phys.
Chem. Chem. Phys. 2019, 21, 9831–9836. [CrossRef]
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