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Abstract: Despite extensive research efforts, cancer continues to stand as one of the leading causes of
death on a global scale. To gain profound insights into the intricate mechanisms underlying cancer
onset and progression, it is imperative to possess methodologies that allow the study of cancer cells
at the single-cell level, focusing on critical parameters such as cell morphology, metabolism, and
molecular characteristics. These insights are essential for effectively discerning between healthy
and cancerous cells and comprehending tumoral progression. Recent advancements in microscopy
techniques have significantly advanced the study of cancer cells, with Raman microspectroscopy (RM)
emerging as a particularly powerful tool. Indeed, RM can provide both biochemical and spatial details
at the single-cell level without the need for labels or causing disruptions to cell integrity. Moreover,
RM can be correlated with other microscopy techniques, creating a synergy that offers a spectrum
of complementary insights into cancer cell morphology and biology. This review aims to explore
the correlation between RM and other microscopy techniques such as confocal fluoresce microscopy
(CFM), atomic force microscopy (AFM), digital holography microscopy (DHM), and mass spectrome-
try imaging (MSI). Each of these techniques has their own strengths, providing different perspectives
and parameters about cancer cell features. The correlation between information from these various
analysis methods is a valuable tool for physicians and researchers, aiding in the comprehension of
cancer cell morphology and biology, unraveling mechanisms underlying cancer progression, and
facilitating the development of early diagnosis and/or monitoring cancer progression.

Keywords: cancer; Raman imaging; Raman spectroscopy; correlative imaging; fluorescence
microscopy; atomic force microscopy; quantitative phase imaging; digital holography microscopy;
mass spectroscopy imaging

1. Introduction

Cancer, a multifaceted disease characterized by uncontrolled cell growth, poses a
significant global health challenge. Early diagnosis plays a pivotal role in combating
its overwhelming impact. Detecting cancer at its emerging stage offers a window of
opportunity for successful treatment and improved patient outcomes. Early intervention
not only enhances the effectiveness of therapeutic measures but also diminishes the chances
of cancer spreading to other parts of the body, ultimately improving patient outcomes and
quality of life.

Despite extensive research efforts, cancer remains one of the leading causes of death
globally, exerting a significant burden on individuals and healthcare systems worldwide.
Each year, approximately 20 million new cases of cancer are reported, with roughly half
of these cases, around 10 million, resulting in cancer-related deaths [1]. The complexity
of cancer arises from its heterogeneity, as it encompasses a diverse array of diseases
characterized by abnormal cell growth and proliferation. To gain profound insights into
the intricate mechanisms underlying cancer onset and progression, methodologies that
enable the study of cancer cells at the single-cell level are imperative [2–4]. This level
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of analysis allows researchers to delve deep into the molecular and cellular intricacies
of cancer, uncovering the underlying genetic, epigenetic, and biochemical alterations
driving tumorigenesis. By scrutinizing cancer cells at this microscopic scale, researchers
can elucidate key parameters such as cell morphology, metabolism, and biochemical and
molecular features [5]. Understanding these fundamental aspects of cancer cell biology is
essential for deciphering tumor progression pathways and identifying potential therapeutic
targets. Moreover, the ability to discriminate between healthy and cancerous cells with
high precision is crucial for the development of effective diagnostic tools and targeted
therapies tailored to individual patients’ needs. In this context, microscopy techniques have
played a pivotal role in advancing our understanding of cancer cell biology, allowing the
visualization and analysis of cellular structures and processes at unprecedented resolutions.

Among these microscopy techniques, Raman microspectroscopy has emerged as a
powerful and invaluable tool for studying cancer cells. RM utilizes the principle of Raman
scattering, a phenomenon of non-elastic scattering of light by molecules, discovered by Sir
C.V. Raman and K.S. Krishnan about 100 years ago [6]. They observed, in addition to elastic
scattering known as Rayleigh scattering with a frequency equal to that of the radiation
source, non-elastic scattering with frequencies different from that of the radiation source,
which is known as Raman scattering. This phenomenon was explained in the form of the
interaction of light with molecular vibrational and phonon modes [7]. Since the frequency
shift between the radiation source and Raman scattering is unique for each molecular
bond and its vibration type, Raman scattering is referred to as a molecular fingerprint [8].
Initially, the inherent weakness of Raman scattering signals compared to other optical
scattering and emission phenomena such as Rayleigh scattering and fluorescence rendered
this phenomenon not very practical. However, advancements in laser technology, filters,
and optical detectors, along with the discovery of creative methods to enhance Raman
signals, have led Raman spectroscopy to be recognized as a powerful analytical method for
molecular analysis, surpassing its competitor, infrared spectroscopy [9]. The advantages of
Raman spectroscopy include sample preparation-free, non-invasive, non-contact, label-free
capabilities, and suitability for operation in aqueous environments [10]. Nonetheless, the
inherent weakness of Raman scattering results in only one photon out of 106 to 108 incident
photons undergoing Raman scattering, leading to a weak Raman signal, making detection
challenging in samples with low concentrations [11,12].

The coupling of Raman spectroscopy with optical microscopy, known as Raman
microscopy (RM), allows for the acquisition of both biochemical and spatial details at the
single-cell level without the need for labels or disrupting cell integrity. This capability
provides biochemical information about the metabolic status of cells in their natural state,
enabling the differentiation between healthy and cancer cells [13–17]. Furthermore, by
observing the Raman spectra profiles of different cellular compositions such as nucleic
acids, proteins, lipids, and carbohydrates, the state of healthy/cancer cells can be evaluated
and characterized to gain deeper insight into the processes governing cellular biology,
cancer, and its progression [14,15,18–20]. Additionally, by scanning cells point-by-point,
micron-scale cellular biomolecular distribution maps can be obtained, a technique known as
Raman imaging [21–24]. Raman imaging can provide fundamental information about signal
transduction, spatial distribution of biomolecules and drugs within cells, and temporal
dynamics of intracellular changes [25–27]. Moreover, Raman imaging can provide insightful
information for cellular assessment and examination of cell quality across various cellular
life stages [28–30].

Raman microscopy is built around an optical microscope, making it easily combinable
with other imaging techniques. This characteristic allows for a global and multifaceted view
of the sample under examination. Since the optical microscope provides a detailed image
of the sample’s morphology, Raman microscopy can be used to acquire specific molecular
information within specific regions of the optical image. This combination of optical and
Raman microscopy enables the correlation of the sample’s morphological features with its
chemical properties, providing a more comprehensive and detailed view of the biological
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processes at play [31,32]. Furthermore, the versatility of Raman microscopy allows for
easy integration with other imaging techniques, such as confocal microscopy, atomic force
microscopy, and mass spectrometry, to achieve a complete and multidimensional analysis
of the sample. This ability to combine different imaging techniques enables researchers
to gain a deeper understanding of the biological phenomena under study and to identify
meaningful correlations between various sample characteristics.

In this review, we investigate the correlation of Raman imaging with four methods,
i.e., confocal fluorescence microscopy (CFM), atomic force microscopy (AFM), digital
holography microscopy (DHM), and mass spectroscopy imaging (MSI). Integrating RM
and CFM in correlative studies allows for a comprehensive examination of cancer cells,
encompassing composition analysis, biomarker detection, and cell cycle classification,
thereby providing rapid insights into cancer progression. The AFM method, besides
providing cellular morphology, is capable of measuring cellular biomechanical parameters
at the nanoscale. Due to the distinct adhesion and elasticity of cancer cells compared to
healthy cells, AFM results exhibit a high correlation with biochemical results obtained from
RM. DHM furnishes morphological information and the refractive index of subcellular
components. Because of the distinct metabolism of healthy and cancer cells, organelle
morphology undergoes changes that correlate with RM results. Finally, MSI is a versatile
technique that can offer spatial distribution, relative content, and structural information
of multiple biomolecules in biological tissues. The combination of MSI with RM extends
chemical coverage, thus overcoming individual technique limitations.

The correlation of information from these various analysis methods serves as a valu-
able tool for physicians and researchers, aiding in the comprehension of cancer cell morphol-
ogy and biology, unraveling mechanisms underlying cancer progression, and facilitating
the development of early diagnosis and/or monitoring of cancer progression. Through
interdisciplinary collaboration and technological advancements in microscopy, we can
continue to deepen our understanding of cancer at the cellular level and translate this
knowledge into improved patient outcomes in the fight against cancer.

2. Discussions
2.1. Correlative Raman Microscopy and Confocal Fluorescence Microscopy

Confocal fluorescence microscopy offers high-resolution imaging of specific molecular
targets through fluorescent labeling, enabling visualization of cellular structures and protein
distributions. It is a well-established and extensively utilized tool in biological research,
known for its straightforward application and high-throughput capabilities. Despite these
advantages, it has certain limitations. A significant issue is the potential overlap of dye
spectra, which can complicate or even prevent the simultaneous analysis of multiple target
molecules. Additionally, fluorescent tags can disrupt molecular transport in live cells,
potentially leading to inaccurate observations. Furthermore, the dyes used in fluorescence
microscopy can be cytotoxic, posing a risk of damaging the specimens being studied.
Therefore, an ideal technique should be able to reveal molecular changes within the sample
in a non-destructive manner, without prior knowledge of the protein or compartment to
be analyzed, and without compromising the cell status. Consequently, complementary
approaches, such as Raman imaging, have been proposed for this purpose. When combined
with Raman imaging, these techniques provide a comprehensive view of cancer cells at
the single-cell level. Indeed, CFM can offer morphological and spatial information, while
Raman microscopy (RM) reveals biochemical alterations, providing a chemical fingerprint
of the cell in a more physiological state for the cell. This synergistic approach not only
enhances our understanding of cancer biology at the molecular level but also holds great
promise for improved cancer diagnosis and treatment monitoring. There are several ways
to correlate the two approaches. The most commonly used approach involves analyzing
the same sample sequentially with both techniques or modifying the same microscope
to acquire both imaging modalities. The first example of correlative RM and CFM was
demonstrated in 2003 by Otto et al. [33]. They modified a confocal optical microscope to
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simultaneously provide continuous-wave two-photon-excited fluorescence microscopy and
confocal Raman microscopy. They demonstrated fast image acquisition with fluorescence
imaging of HeLa cells and slower, but more specific and label-free, imaging of selected areas
of interest for subsequent chemical analysis with spontaneous Raman imaging. A few years
later, Popp et al. presented the first characterization of unstained and fluorescence-stained
blood cells using Raman spectroscopy [34]. Initially, blood cells isolated from whole blood
were examined as a model system to identify the key parameters necessary for successfully
combining fluorescence-labeled antibodies with Raman spectroscopy. Basically, they used
fluorescent labeling to isolate some cells from the whole blood and Raman fingerprints
to further define the type of blood cells. To this aim, they used a fluorescent dye with
a maximum absorption at 495 nm, which is about 37 nm away from the Raman laser
excitation wavelength (532 nm), allowing the acquisition of unaltered Raman spectra
of fluorescence-stained blood cells isolated from whole blood without interference from
fluorescence. Since the first papers, several groups conducted groundbreaking studies that
utilized both RM and CFM as powerful tools in investigating cancer cells and discerning
them from healthy ones [25,35,36]. By amalgamating the Raman findings with insights from
fluorescence imaging, Abramczyk and colleagues deepened their understanding of the
analyzed cell samples, including crucial aspects such as cell adhesion and interactions with
the extracellular matrix [35]. These elements play pivotal roles in the study of cancer onset,
progression, and metastasis. Indeed, while RM offers detailed biochemical information
and structural insights, its limitations include lower sensitivity and the need for extensive
data processing. Conversely, CFM excels in sensitivity and specificity with its fluorescent
labeling, but it may suffer from photobleaching and limited depth penetration. Together,
these techniques overcome individual limitations and enhance the overall understanding
of complex biological systems.

Another intriguing study, conducted by Voros et al., applied a correlative approach
to examine the cell cycle of cancer cells and classify them based on their specific mitotic
stages [36]. They utilized fluorescence imaging of cell DNA content as an initial screening
tool to select cells for detailed examination via RM. This work is particularly interesting
as it addresses the challenge of integrating images acquired with different instruments
and how AI can help overcome certain traditional limitations, such as the slowness of the
RM approach. Indeed, the complexity of data analysis, particularly in the reconstruction
of Raman images, is a factor not to be overlooked. Only in recent years, thanks to the
development of sophisticated techniques based on artificial intelligence, has significant
progress been made in co-registration, spectral unmixing, and image fusion. In particular,
Voros et al. developed a neural network for the analysis of complex Raman and fluorescence
data to precisely categorize cells into specific classes based on their mitotic phases. In this
case, the integration of these two techniques allowed the visualization of the morphology
of stained molecules by CFM and correlative label-free imaging, providing information
on the spatial distribution of molecular fingerprints at the subcellular level, striving to
render the approach as rapid as possible and to enhance our understanding of the dynamic
processes involved in cancer cell division and proliferation.

An interesting application of correlative RM and CFM is the study of the uptake
and intracellular localization of nanodevices. Nowadays, nanomedicine is crucial for the
development of innovative and specific treatments for diseases such as cancer. A critical
aspect of preclinical studies is understanding the cellular uptake and intracellular local-
ization of these nanodevices, both in vitro and in vivo. These aspects have traditionally
been analyzed using confocal fluorescence microscopy. However, it is worth noting that
fluorescence labels could potentially alter the size and chemical properties of nanovectors,
thereby impacting the study of their intracellular delivery and properties. The correlation
between RM and CFM has proven particularly valuable in providing a comprehensive un-
derstanding of nanodevice behavior, as demonstrated by Managò et al. [25]. In their study,
they investigated the internalization and cellular localization of diatomite nanoparticles
(DNPs) loaded with small-interfering RNA in a lung adenocarcinoma cell line (H3551).
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The internalization of the nanoparticles was examined using both RM and CFM over a
period of 72 h, revealing a strong correlation between the two techniques. Of particular
interest, CFM enabled rapid imaging, allowing for quick visualization of the cell status.
Conversely, RM being label-free provided insight into the internal composition of the cells,
revealing that DNPs were enclosed in lipid vesicles, as indicated by the co-localization of
DNP Raman bands with lipid Raman signals. This combined approach not only enriches
our understanding of nanodevice interactions within biological systems but also expedites
the development of more effective nanomedicine-based therapies.

Recently, dual-tagging molecules have been demonstrated to be highly useful as they
allow for the simultaneous performance of RM and CFM. Research in this field is very
active, with various examples of newly developed tagging molecules found in the literature.
For instance, Lin et al. developed a molecule called NpCN1, detectable by both CFM and
RM due to the presence of a nitrile tag (Figure 1) [37]. The presence of the nitrile tag is
particularly crucial for its use in RM. Nitrile groups have distinct vibrational frequencies
that make them easily identifiable in RM, providing a clear signal without interference
from the complex biological background. At the same time, these chemical tags exhibit
minimal reactivity or interference with the biological system they are introduced into,
thus preserving the physiological integrity of the system. NpCN1 targets lipid droplets
(LDs), a well-known hallmark of cancer (Figure 1b,c). Using NpCN1, researchers obtained
both biochemical information (such as the composition and state of lipids) and spatial
information (such as the distribution and dynamics of lipid droplets within cells). This
dual information is essential for a comprehensive understanding of lipid metabolism in the
context of cancer and other diseases. The ability to use both methods on the same molecule
streamlines the experimental process and provides complementary data, enhancing the
overall understanding of the biological system under study.
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Figure 1. (a) Chemical structures of the NpCN1 and DC473 molecules. (b) CFM image and (c) Raman
false-color image of 3T3-L1 cells treated with NpCN1, (d) CFM image, and (e) Raman false-color
image of SW480 cells incubated with DC473. Reprinted (adapted) with permission from Ref. [37],
Copyright 2021 MDPI, and from Ref. [38], Copyright 2018 Royal Society of Chemistry.

Another interesting molecule is DC473, which serves a dual function as both a photo-
sensitizer capable of inducing cell death and a tagging molecule detectable by both CFM
and RM (Figure 1). Also, this molecule produces a strong signal in the silent zone of the
Raman spectrum due to the presence of a diphenylacetylene structure [38]. In this study,
DC473 was used to induce cell death in colorectal cancer cells and to study CFM, and RM
was used to study its effect on the cells. DC473 was found to accumulate in LDs, detectable
by both CFM and RM (Figure 1d,e). Moreover, DC473 was also found to be localized in
the nuclei, but this specific subcellular localization was only detectable by RM and not
by CFM (Figure 1e). The correlation between RM and CFM in this case was crucial for
understanding the precise organelle localization of DC473 and elucidating its mechanism
of action as a photosensitizer. Observations made with CFM were validated with RM,
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ensuring that the detected signals accurately represent the presence and state of DC473
within the cells.

To simultaneously acquire both fluorescence and Raman signals in a single measure-
ment, the use of organic fluorescent dyes for specimen staining is generally avoided. This
is due to the fact that their emission bands are significantly broader and more intense than
Raman signals, which can obscure the Raman image. Consequently, only autofluorescence
(typically weak and not very specific) can be employed [39]. In contrast, phosphorescent
probes offer greater compatibility with Raman microscopy because their bands are very
narrow, and their intensity is comparable to the background Raman bands [40]. By design-
ing phosphorescent Raman tags that emit strong signals within the Raman silent region, it
is possible to eliminate spectral interferences, thereby enabling more selective and accurate
Raman imaging [41].

Continued advancements in the development of dual-tagging molecules and the re-
finement of correlative methodologies hold promise for overcoming these obstacles. As we
move forward, the synergistic use of RM and CFM not only offers a deeper understanding
of cancer biology but also paves the way for innovative diagnostic tools and personalized
treatment strategies, marking a significant step towards more effective cancer management
in the future.

2.2. Correlative Raman and Atomic Force Microscopy

AFM uses a nanoscale cantilever probe that interacts with a sample’s surface via
extremely small forces. As the probe scans across the sample, it deflects in response to the
surface topography. This deflection is measured by a laser and translated into a highly
detailed 3D map, reaching nanometer-scale resolution [42,43]. Importantly, AFM not
only provides topographical information but also, by carefully controlling the force of the
probe, it can measure localized mechanical properties like stiffness, elasticity, and adhesion,
revealing variations in these properties across cell structures and tissues [44–46].

The integration of Raman spectroscopy and AFM offers a uniquely detailed perspec-
tive on cancer, revealing the complex interplay between the biochemical changes and
biomechanical alterations that occur as cells undergo malignant transformation. Here is a
deeper dive into how this correlative approach has been leveraged in cancer studies.

2.2.1. Identifying Cancer-Specific Alterations

Raman spectroscopy offers specific insights into altered metabolic pathways within
cancer cells. Increased cholesterol content, a potential marker of cancer progression, can be
detected through characteristic shifts in Raman peaks [47,48]. Further analysis can reveal
variations in epigenetic modifications, like the levels of histone acetylation, using Raman
shifts associated with methyl groups within proteins [49].AFM provides simultaneous
information on the organization of the cell’s cytoskeleton, cell surface roughness, and
overall elasticity—all factors known to deviate in cancer cells. Studies comparing normal
and cancerous urothelial cells revealed differences in cytoskeletal organization, variations
in cell surface roughness, and significantly lower elasticity and higher deformability in
cancer cells [50].

Figure 2a,b show the AFM images of human lung adenocarcinoma epithelial cell
line A549 and non-cancerous human primary small airway epithelial cells (SAECs) [51].
Cancer cells exhibit distinct morphological differences from healthy cells. By calculating
the Young’s modulus (a measure of stiffness) and adhesion force of the two cell lines,
quantitative differences also become apparent, as shown in Figure 2c,d, respectively. As
is evident, the cancer cell line A549 has a lower Young’s modulus and adhesion force
compared to the healthy cell line SAEC. This can be explained by cytoskeletal changes and
extracellular matrix remodeling [52,53]. After a short-term treatment with the anti-cancer
drug doxorubicin (DOX) for 4 h, the biomechanical properties of A549 cells showed an
increase, whereas those of SAECs decreased as shown in Figure 2e,f. This suggests that the
DOX-induced response mechanisms differ between these two cell types. Raman spectral
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changes indicate a decrease in DNA and an increase in protein and lipid concentrations,
which are attributed to DOX-induced cell apoptosis. Furthermore, principal component
analysis (PCA) clearly shows that the SAEC clusters (with and without DOX treatment)
are positioned close to each other, in contrast to the distinct separation between the A549
control and A549-DOX clusters. This suggests that short-term (4-h) DOX exposure has a
less pronounced effect on the spectral changes in SAECs compared to A549 cells.
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Figure 2. AFM images of living (a) human lung adenocarcinoma epithelial cell line A549 (b) non-
cancerous human primary small airway epithelial cells (SAECs). Cells were imaged in culture
media under physiological conditions. Scale bar: 10 mm. Histograms of (c) Young’s modulus and
(d) adhesion force distributions of A549 cells and SAECs. Data are expressed as mean ± SD. Com-
parison of (e) Young’s modulus and (f) adhesion force of A549 cells and SAEC control groups and
doxorubicin (70 nM, 4 h) treated groups. Values represent the mean ± SD (bar) of multiple cells.
* p < 0.05, ** p < 0.01. (g) Average Raman spectra and (h) principal component analysis (PCA) of A549
cells and SAECs for the nucleus area of control and doxorubicin treatment (70 nM, 4 h) groups
(n = 32). Reprinted (adapted) with permission from Ref. [51], Copyright 2013 Royal Society
of Chemistry.

AFM is powerful to study the geometry and spatial distribution of nanoparticles.
Plasmonic nanoparticles have the capability to enhance Raman signals in the form of
surface-enhanced Raman spectroscopy (SERS). Combining the two techniques of Raman
microscopy and AFM can reveal the correlation between the enhanced Raman signals
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originating from cancer biomarkers and the spatial positioning of plasmonic nanoparticles.
This high correlation not only provides more credibility to the results of Raman spectroscopy
but also enables to provide precise quantitative results of limit of detection (LoD) and
Raman enhancement factor (EF) [54–56].

2.2.2. Subcellular Analysis at High Resolution

Correlative Raman–AFM enables the spatial mapping of subcellular structures in un-
precedented detail. Raman spectral signatures can differentiate organelles like the nucleus,
mitochondria, and the endoplasmic reticulum, as well as visualize lipid droplets [1,15].
AFM imaging complements this with high-resolution topographical maps of the organelles
while simultaneously probing their membrane properties [57,58]. Figure 3 shows the
correlation between Raman and fluorescence images with adhesion and stiffness images
obtained from AFM [35]. The accumulation of lipid droplets in the Raman and fluorescence
images (blue regions) aligns very well with the adhesion image. This indicates that the
lipid droplets are the most adhesive organelles in the cell. Since lipid droplet accumulation
and catabolism are intricately linked to energetic metabolism, cell signaling, and are vital
for cancer cell proliferation, resistance to death, and aggressiveness, these findings could
be beneficial for better understanding and timely detection of cancer [59].
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image, (f) stiffness image, and (g) topography image of an air-dried cell. Reprinted (adapted) with
permission from Ref. [35], Copyright 2019 Future Medicine Ltd, London, UK.

Studies show that fatty acid supplementation alters lipid composition and satura-
tion levels within lipid droplets, detectable through AFM and Raman spectroscopy [58].
Moreover, AFM and Raman imaging have been applied to track variations in epigenetic
markers, specifically histone and DNA methylation status within the nucleus of normal
and malignant breast cancer cell lines [49].

The correlative approach can elucidate drug-induced cell death pathways. Raman
spectra demonstrate a reduction in protein and DNA synthesis characteristic of apoptosis
following anticancer treatment [51,60,61]. AFM measurements complement this by reveal-
ing altered cell shape, elasticity, and adhesion forces upon drug exposure [51,57,61]. These
insights can help compare the efficacy of various anticancer agents.

Specialized microfluidic devices have been developed to integrate Raman monitoring
with AFM measurements [61]. This allows researchers to observe how cancer cells respond
to drugs in real-time within a controlled environment, tracking changes in both chemical
composition and biomechanics over the course of treatment.
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Combining Raman microscopy with AFM can lead to nanometer and sub-nanometer
resolutions that are much lower than the diffraction limit. In the method of tip-enhanced
Raman spectroscopy (TERS), a metallic AFM tip is precisely brought into contact with
the cell membrane so that it spatially coincides with the location of the laser excitation
for Raman scattering [62]. Due to the surface plasmon resonance in the metallic tip, the
Raman spectrum of the cell membrane, precisely beneath the tip, is enhanced. In addition
to high resolution, this method also allows for operation with very low laser powers in the
microwatt range, which is another advantage of this technique [63].

2.2.3. Metastasis Studies and Biomarker Discovery

Studies directly comparing cancerous and metastatic cells reveal that metastatic cells
often possess lower adhesion, a rounder morphology, and a softer cytoskeleton—all char-
acteristics measurable using AFM [64,65]. Correlative Raman analysis provides comple-
mentary insights into altered lipid and nucleic acid levels associated with the increased
metastatic potential [50,65].

Raman and AFM can be used to analyze extracellular vesicles (EVs), which are in-
volved in cancer cell communication and metastasis. Size, morphology, and chemical
composition of cancer-derived EVs can be determined [66,67]. Notably, Raman spec-
troscopy and AFM have pinpointed that cancer EVs are enriched with hyaluronic acid
(HA), a potential diagnostic biomarker [66].

2.3. Correlative Raman and Digital Holography Microscopy

As a quantitative phase imaging technique, digital holography microscopy (DHM)
revolutionizes cell study by capturing three-dimensional images of cells with unparalleled
precision and depth [68]. Unlike conventional microscopy, which provides two-dimensional
snapshots, DHM reconstructs holographic images by recording the interference pattern
of light scattered by the specimen. This technique enables researchers to observe cells
in their natural environment without the need for staining or labeling, preserving their
integrity and minimizing artifacts. DHM offers real-time imaging, allowing dynamic
monitoring of cellular processes such as migration, division, and interaction. Its non-
invasive nature makes it ideal for studying live cells, providing valuable insights into
fundamental biological mechanisms [69].

Combining Raman microscopy with DHM enables a comprehensive label-free and
non-destructive method with real-time capabilities. The advantage of this combination
lies in concurrently obtaining biochemical information from Raman spectroscopy along
with morphological information and refractive index of the cell. Studies indicate that cells,
throughout various cellular cycles, exhibit not only different biochemical behaviors but also
varied morphologies [29,70]. While Raman microscopy provides precise information about
the biochemistry governing the cell and cell status, the weak Raman signal necessitates
considerable acquisition time for obtaining Raman images. Conversely, digital holographic
microscopy can capture three-dimensional images of numerous cells simultaneously in
a very short time (less than 1 s). Therefore, the combination of these two methods can
not only provide a deeper understanding of cellular processes but also enhance precision
and operational speed [71]. Additionally, digital holography can serve as a high-speed
primary screening method, while Raman spectroscopy acts as a secondary method with
high accuracy [72].

One of the most crucial cellular stages in studying anti-cancer drugs is apoptosis,
or programmed cell death. Research indicates that the onset of apoptosis may coincide
with significant biochemical changes such as the breakdown of proteins [73]. In addition
to being observable in the Raman spectrum of the cell, these biochemical changes lead
to alterations in cell morphology and mitochondrial network (volume reduction), which
are observable with digital holographic microscopy. This morpho-molecular correlation
not only aids in the better design of anticancer drugs but also provides a more accurate
depiction of the cell’s status [74].
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Different metabolisms governing healthy and cancerous cells lead to biochemical and
morphological differences that can be useful for high-precision differentiation between
healthy and cancerous cells. For example, according to the Warburg effect, cancer cells
exhibit up to 10 times greater glucose uptake compared to their healthy counterparts.
Research shows that glucose taken up by the cell can be stored as fatty acids and cholesterol
esters. Cholesterol esters, due to their ordered and regular structures, are highly sensi-
tive to light polarization. Mangini et al. utilized the combination of Raman microscopy
and polarization-sensitive digital holographic imaging (PSDHI) to demonstrate that lipid
droplets act as reservoirs for cholesterol esters and fatty acids. Figure 4a shows the experi-
mental setup for combined Raman microscopy and PSDHI. Figure 4c shows the false color
Raman image of the carbon-deuterium vibrational band at 2120 cm−1, indicating higher
glucose uptake compared to healthy cells. Furthermore, the results of PSDHI in Figure 4e
indicate that lipid droplets in cancer cells have a higher degree of birefringence with a
good correlation with Raman images. These findings could be highly beneficial for rapidly
distinguishing between healthy and cancerous cells even at speeds close to video rate [26].
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Figure 4. (a) Combined Raman and polarization-sensitive digital holographic imaging (PSDHI)
experimental setup, (b) bright field image of the HepG2 cell, (c) Raman map of the C-D band signal,
and (d) reconstructed false color Raman image using the DNA Raman bands at 2956 cm−1 and
785 cm−1 for the nucleus (blue signal), the protein bands at 2930 cm−1 and 1100 cm−1 for the cytosol
(red signal) and C-D bands at 2120 cm−1 for the lipid droplets (green signal), (e) Phase difference;
and (f) the corresponding phase difference gradient maps retrieved by PSDHI, (g) Merged image of
the Raman map of the C-D band signals and the phase difference map by PSDHI maps, assessing
the co-localization of the C-D signal of the lipid droplets and the state of polarization variation.
Scale bar:10 µm. Reprinted (adapted) with permission from Ref. [26], Copyright 2023 Frontiers in
Bioengineering and Biotechnology.

2.4. Correlative Raman and Mass Spectroscopy Imaging

Mass spectrometry imaging (MSI) is a sensitive, label-free imaging analysis technique
with a wide detection range. MSI is not limited to a specific molecule but can simultaneously
obtain the spatial distribution, relative content, and structural information of multiple
biomolecules in biological tissues or cells. Since a large number of cellular constituents are
Raman-active to some degree, a superposition of spectral information from proteins, lipids,
and nucleic acids is represented in the Raman spectra of biological tissues [75]. Applying
MSI as a correlated method that collects specific molecular information (molecular weight
of the ion divided by its charge, m/z) can visualize the spatial distribution of molecules
with single-molecule detection limits [76].

MSI allows for mapping the distribution of molecules within tissue samples by gen-
erating molecular maps of cancerous tissues; it can identify spatially specific molecular
signatures associated with tumor regions. MSI employs various ionization techniques like
matrix-assisted laser desorption/ionization (MALDI), secondary ion mass spectrometry



Biosensors 2024, 14, 324 11 of 16

(SIMS), and desorption electrospray ionization (DESI) [77]. Figure 5 shows the workflow
for correlative Raman–MALDI imaging. Briefly, in MALDI-MSI, a sample is coated with
a matrix and irradiated with a laser to desorb and ionize molecules, while SIMS uses a
focused ion beam to sputter secondary ions from the sample. DESI creates charged droplets
to interact with the sample and produce ions. These ions are then separated based on their
mass-to-charge ratio and detected. A mass spectrum, containing all the mass signals of
the desorbed compounds, is acquired for each point of the raster. Subsequently, a dataset
comprising an ordered array of mass spectra is generated, with each spectrum representing
the local molecular composition at known x, y coordinates. Ultimately, an image can be
generated for each of the mass signals detected throughout the section. In particular, the
intensities of individual m/z values in each spectrum, corresponding to the molecular
masses of specific compounds, can be extracted to produce images of the areas within the
tissue where that particular molecule was located. This process is akin to digital imaging in
photography, where each image is composed of an ordered array of thousands of pixels [78].

MSI and Raman imaging can be combined to overcome the limitations of one technique
and complement it by the advantages of the other. Molecules that do not ionize efficiently
may produce a strong vibrational signature or vice versa; thus, by combining both methods,
chemical coverage is expanded [77]. Combining Raman imaging and MALDI-MSI offered
enhanced characterization of epithelial differentiation and deeper insights into dysplastic
alterations in larynx carcinoma [79].

Despite all advantages of combined Raman–mass spectroscopy imaging, there are
some difficulties for producing correlated images [76]. Principally, Raman imaging has a
far better resolution compared to MALDI-MSI [79]. To overcome the difference in spatial
resolution, a group has developed correlated Raman imaging and MALDI-MSI to study the
main regions of proliferation in three-dimensional (3D) cell cultures for cancer studies [80].
On the other hand, both techniques have their own data format that makes it difficult
to compare the final images. A group converted Raman imaging datasets collected from
mouse brain tissue and then visualized them with commonly used MSI software tools [81].

Another challenge in correlating these modalities is the difference in sample prepara-
tion protocols. However, recent advancements have demonstrated seamless integration of
Raman imaging and MALDI MSI for various tissue types from a single sample [82]. As
a result, correlating Raman imaging and MSI can complement histology and pathology
because the diagnosis can be supported by objective criteria with the spectral information.
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Figure 5. Experimental workflow for correlative Raman–MALDI imaging. A fresh-frozen tissue
section is cryo-sectioned and thaw-mounted onto a conductive indium tin oxide (ITO) microscopy
slide. This is followed by MALDI matrix application by spraying 1,5-diaminonaphthalene (DAN)
onto the tissue section. The prepared tissue section is first utilized for Raman imaging, and then the
same sample is subjected to MALDI MSI measurement. Reprinted (adapted) with permission from
Ref. [82], Copyright 2023 Elsevier.

3. Summary and Future Perspective

The combined power of Raman microscopy with confocal fluorescence microscopy
(CFM), atomic force microscopy (AFM), digital holography microscopy (DHM), and mass
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spectroscopy imaging (MSI) offers a comprehensive toolkit for cancer researchers, clinicians,
and drug developers. Each of these correlative approaches brings unique strengths to the
table, providing a multidimensional view of cancer biology that transcends the limitations
of individual techniques. Raman microscopy’s ability to non-invasively and label-freely
characterize the biochemical fingerprint of cancer cells has been significantly enhanced
by correlating it with other imaging modalities. CFM provides spatial context and allows
for the study of cellular processes in real-time, while the development of dual-tagging
molecules further strengthens this synergy. Correlative Raman–AFM has emerged as a
powerful tool for analyzing the biomechanical properties of cancer cells, which play a cru-
cial role in tumor progression and metastasis. This combination enables the identification
of cancer-specific alterations in cell stiffness, elasticity, and adhesion and allows for the
detailed study of subcellular structures and drug-induced changes in cell morphology and
biomechanics. DHM’s ability to capture label-free, three-dimensional images of cells in
real-time, coupled with Raman spectroscopy’s biochemical insights, offers a unique plat-
form for studying dynamic cellular processes. This combination enables the identification
of morpho-molecular correlations in cancer cells, providing valuable information for drug
development and the study of cellular cycles. Finally, MSI adds another dimension to
cancer research by offering spatial distribution and relative content information of mul-
tiple biomolecules in biological tissues. The integration of Raman microscopy with MSI
allows for the study of a broader range of molecules and expands the chemical coverage in
cancer analysis.

Despite the numerous advantages, challenges remain in the correlative use of these
techniques. Differences in spatial resolution can make it difficult to correlate features
observed with one modality to those observed with another. For example, Raman mi-
croscopy typically offers higher chemical specificity but lower spatial resolution compared
to fluorescence microscopy. Additionally, sample preparation protocols for each technique
may vary, requiring researchers to develop specialized workflows or compromise on the
quality of information obtained from one modality to optimize for another. For instance,
some techniques require tissue fixation or staining, which can alter the biochemical com-
position of the sample and potentially compromise the information obtained from Raman
spectroscopy. Conversely, other techniques may necessitate the use of specialized buffers
or mounting media that are not optimal for Raman analysis.

Challenges remain in translating these powerful research tools into clinical practice.
The high cost and complexity of some techniques may limit their accessibility in certain
settings. Additionally, the integration of multiple imaging modalities into a cohesive work-
flow can be time-consuming and require significant technical expertise. Furthermore, data
analysis pipelines for correlative microscopy are still under development, and the lack of
standardized data formats can pose challenges for data sharing and collaboration. How-
ever, ongoing efforts to develop cost-effective and user-friendly platforms hold promise
for the widespread adoption of correlative microscopy in cancer diagnosis and treatment
monitoring [83].

The integration of artificial intelligence (AI) into correlative Raman microscopy is
poised to revolutionize cancer research by addressing current limitations and unlocking
new possibilities. AI algorithms, for instance, can analyze vast and complex datasets from
multiple imaging modalities (e.g., Raman, AFM, and DHM), identifying subtle correla-
tions between biochemical changes, such as altered lipid profiles detected by Raman, and
biomechanical properties, like cell stiffness measured by AFM [84]. This could lead to
the discovery of novel cancer biomarkers and therapeutic targets. Moreover, AI-powered
image analysis tools can automate the detection and classification of cancer cells based on
their unique Raman spectral signatures, potentially improving the accuracy and efficiency
of cancer diagnosis [85]. By harnessing the power of AI, correlative Raman microscopy
can transcend its current limitations and pave the way for a new era of personalized
cancer medicine.
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In conclusion, the correlative use of Raman microscopy with other microscopy tech-
niques represents a paradigm shift in cancer research. It empowers researchers with
unprecedented capabilities to unravel the complex mechanisms underlying cancer, facil-
itating the development of more effective diagnostic tools, personalized therapies, and
ultimately, improved patient outcomes. As technology continues to evolve and our un-
derstanding of cancer deepens, the convergence of these diverse imaging modalities will
undoubtedly play a pivotal role in shaping the future of cancer research and transforming
the way we diagnose and treat this devastating disease.
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Combined Raman and AFM Detection of Changes in HeLa Cervical Cancer Cells Induced by CeO2 nanoparticles-Molecular and
Morphological Perspectives. Analyst 2020, 145, 3983–3995. [CrossRef]
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