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Abstract: In this work, a new surface plasmon resonance (SPR) sensor based on sulphur-doped
titanium dioxide (S-TiO2) nanostructures and molecularly imprinted polymer (MIP) was presented
for thiram (THI) determination in milk samples. Firstly, the S-TiO2 nanomaterial with a high product
yield was prepared by using a facile sol-gel hydrolysis technique with a high product yield. After
that, UV polymerization was carried out for the preparation of the THI-imprinted SPR chip based
on S-TiO2 using a mixture including ethylene glycol dimethacrylate (EGDMA) as the cross-linker,
N,N′-azobisisobutyronitrile (AIBN) as the initiator, and methacryloylamidoglutamicacid (MAGA) as
the monomer. The reliability of the sensor preparation procedure has been successfully proven by
characterization studies of the prepared nanomaterials and SPR chip surfaces through spectroscopic,
microscopic, and electrochemical methods. As a result, the prepared SPR sensor showed linearity
in the range of 1.0 × 10−9–1.0 × 10−7 M with a detection limit (LOD) of 3.3 × 10−10 M in the real
samples, and a sensor technique for THI determination with high sensitivity, repeatability, and
selectivity can be included in the literature.

Keywords: thiram; surface plasmon resonance; molecular imprinting; nanocomposite; milk analysis

1. Introduction

Milk and dairy products are basic foodstuffs for humans. However, they are also risky
products as they can contain residues of chemicals such as veterinary drugs, pesticides,
mycotoxins, heavy metals, and similar substances [1]. In particular, pesticides, widely
used to increase agricultural production and obtain quality products, are among the major
chemicals that can form residues in food. When pesticides are applied by spraying, they
are partly lost through evaporation and dispersion, while the rest remains on the plant
and soil surfaces. Furthermore, the uncontrolled and unintentional use of pesticides can
cause significant damage to nature and the environment [2,3]. Depending on the dose and
duration of exposure, humans may experience acute and chronic poisoning, as well as
carcinogenic, mutagenic, and teratogenic effects [4].

Biosensors 2024, 14, 329. https://doi.org/10.3390/bios14070329 https://www.mdpi.com/journal/biosensors

https://doi.org/10.3390/bios14070329
https://doi.org/10.3390/bios14070329
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com
https://orcid.org/0000-0002-3862-1991
https://orcid.org/0000-0003-2776-808X
https://orcid.org/0000-0001-7424-3425
https://doi.org/10.3390/bios14070329
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com/article/10.3390/bios14070329?type=check_update&version=2


Biosensors 2024, 14, 329 2 of 12

THI is a pesticide with a long history of use in agricultural production. It has been in
use for more than 80 years and is effective in controlling fungal diseases in many crops [5].
While THI is crucial in managing plant diseases, its numerous detrimental effects on
humans are well-documented. This widely used pesticide can cause a range of adverse
effects, including skin diseases, headaches, gastrointestinal problems, and liver damage
due to the release of carbon disulfide [5,6]. Therefore, regular residue analysis in milk
samples is critical to identify potential risks in advance and protect public health. Given
the health problems caused by pesticide residues in foods, there is an increasing need for
new methods that provide faster results and are easily applicable.

Currently, TiO2 is widely used as an efficient and affordable nanocatalyst for analyzing
toxic components in real samples [7,8]. Nonetheless, with a band gap of 3.25 eV, TiO2
can only harness around 3–4% of the UV light spectrum for activation in photocatalytic
studies [9]. The sensor and photocatalytic efficiency of TiO2 can be increased via doping
with certain metals and heteroatoms [10]. A decrease in TiO2

′s band gap can be achieved by
using non-metal atoms such as sulphur or nitrogen. The treatment of heteroatom doping
on TiO2 is an effective method for decreasing band gap values. Sulphur or nitrogen atoms
can occupy vacant titanium or oxygen ion sites in the lattice structure. Consequently, the
decrease in the band gap occurs by mixing sulphur in its 3p state with the valance band [11].
In the literature, the preparations of TiO1−xSx or TiO1−xNx nanostructures are achieved via
the electronegativity differences between sulphur, nitrogen, and oxygen atoms, providing
the shift to the visible light region [12]. In addition, the photocatalytic removal of methylene
blue has been performed by using sulphur-doped titanium dioxide nanostructure [13,14].
In a photocatalytic removal study, the sulphur atom, acting as an anion, replaced the
oxygen lattice in the TiO2 nanostructure. In another study, the incorporation of sulphur
atoms resulted in the replacement of Ti ions in the TiO2 nanostructure [15]. Because there
are several types of sulfur sources, it has been shown that sulfur atoms can exist in multiple
oxidation states, such as S2−, S4+, or S6+ [16].

Molecularly imprinted polymers (MIPs) are specific and selective polymers for creat-
ing an ‘artificial lock’ that fits the ‘key-lock’ model, mostly similar to enzyme-substrate or
antigen-antibody interactions. Obtaining the desired regular, specific, and selective regions
in artificial polymers during the imprinting process forms the basis of molecular recog-
nition [17]. MIPs have been proven to be effective in selectively adsorbing and detecting
numerous target analytes, functioning as synthetic antibodies with specific recognition
capabilities for the analyte. Compared to natural antibodies, MIPs provide numerous
benefits, including high selectivity, straightforward synthesis, affordability, and chemical
stability [18]. To obtain MIPs, three primary steps are involved: the chemical bonding
or physical interaction between the template molecule and the functional monomer; the
polymerization process initiated in the presence of an initiator, porogen, and cross-linker;
and finally, the extraction of the template molecule [19].

SPR is a physical phenomenon that is based on the combination of a light photon with
the electrons of atoms on the surface covered with a thin, nanosized metal or occurs through
the energy transfer between light photons and metal electrons. This technique is based on
the plasmonic fluctuations that occur on metal surfaces as a result of the absorption of a
laser beam. As a result of this absorption, certain changes occur in the band gap of the
sensor material. The changes in the band gap affect the refractive index and cause changes
in the SPR determination. Even the small band gap increases the intensity of the SPR
peak [20]. Because of this, the S-TiO2 material, which has a relatively smaller energy band
gap than the undoped TiO2 material, was synthesized in this study, and more sensitive
results were obtained in SPR sensor applications.

This paper exhibited a new SPR method for thiram analysis based on sulphur-doped
titanium dioxide nanostructures and molecularly imprinted polymers. Firstly, after syn-
thesizing S-TiO2 nanomaterial using a sol-gel hydrolysis technique, a THI-imprinted SPR
sensor based on S-TiO2 was designed using UV polymerization in the presence of THI and
MAGA monomer. The recovery application in milk samples was successfully implemented,
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achieving a high recovery rate. Hence, this THI-imprinted SPR sensor based on S-TiO2,
which was developed for food safety and access to healthy foods, can provide a new
perspective on healthy living in terms of safe food consumption [21,22].

2. Materials and Methods
2.1. Chemicals and Apparatus

THI, ziram (ZIR), thiophanate (THP), ferbam (FER), disulfiram (DIS), titanium (IV)
isopropoxide (TTIP), thiourea, MAGA, EGDMA, 2-hydroxyethylmethacrylate (HEMA),
AIBN, phosphate buffer (PBS), and sodium chloride (NaCl) were purchased by Sigma-
Aldrich Merck Group company (St. Louis, MO, USA).

Transmission electron microscopy (TEM, JEOL 2100 TEM, Tokyo, Japan), a PHI 5000
Versa Probe-type X-ray photoelectron spectroscope (Tokyo, Japan/New York, NY, USA),
a Bruker-Tensor Fourier transform infrared spectrometer (FTIR, Tokyo, Japan), and X-ray
diffraction (XRD, Rikagu Miniflex X-ray diffractometer, Tokyo, Japan) were employed to
characterize the nanostructures of undoped TiO2 and S-TiO2 nanomaterials.

Tapping mode AFM was utilized (Nano Magnetics Instruments, Oxford, UK). SPR
chips were installed on a 2 µm × 2 µm sample holder with a 128 × 128 pixel resolution.
Measurements belonging to six different areas were taken with a scan rate of 2 µm·s−1 in
an atmosphere of air.

The GenOptics SPR system (Calgary, AB, Canada) was utilized for analytical applica-
tions. Finally, the Gamry Reference 600 workstation (USA) was used for the electrochemical
investigations via electrochemical impedance spectroscopy (EIS) and CV.

2.2. Preparation of S-TiO2

The sol-gel hydrolysis of TTIP was carried out for the preparation of the TiO2 nanocata-
lyst. TTIP solution (2.0 mg mL−1) in ethanol was distilled using an ultra-pure water/ethanol
mixture (10.0 mL, 1:1 v/v) under strong stirring conditions. Then, the prepared gel was
transferred into a Teflon autoclave and heated at 70 ◦C for 36 h. The resulting product
(undoped TiO2) was dried at 70 ◦C. The sol-gel hydrolysis procedure described above
was repeated with the addition of thiourea and TTIP solution (2.0 mg mL−1) in ethanol
to complete the production of S-TiO2. The sulphur dopant was equivalent to 0.1 atomic
percent and was introduced by adding the appropriate amount of thiourea. The sample
was tagged as S-TiO2 (0.1 at% sulphur on TiO2). The amount of sulphur was kept low
to avoid agglomeration in harmony with the literature during the doping process and to
obtain the most efficient SPR signals [9].

2.3. SPR Chip Modification Using S-TiO2 and the Development of the THI-Imprinted
S-TiO2/SPR Chip

First, the supplied SPR chips were cleaned in a shaking bath system for 30 min with
acidic piranha solution containing (3:1) H2SO4/H2O2 (25.0 mL v/v). After 30 min, SPR
chips were dried at 25 ◦C under nitrogen gas conditions and were made ready for use.
After the prepared S-TiO2 solution (5.0 mg mL−1) was dropped onto the cleaned SPR chip
surface, the S-TiO2/SPR surface was prepared with the help of gold-sulfur bonding [23].
After preparing the MAGA-THI complex at a 2:1 molar ratio with the addition of PBS
(1.0 mL, pH 6.0) for 30 min, the AIBN (2.5 mg), HEMA (0.5 mL), and EGDMA (1.0 mL)
mixtures were slowly transferred into the MAGA-THI complex solution (0.5 mL). Nitrogen
gas was used to remove impurities from this final solution, taking approximately 15 min.
A homogeneous, monolayer polymerization solution was prepared on the S-TiO2/SPR
surface by dropping the prepared dispersion (50.0 µL) using the spin coating method
onto the SPR chip surface for 15 min. After UV polymerization by UV light for 15 min, a
THI-imprinted SPR chip was developed (MIP/S-TiO2/SPR). In the same way, the non-THI-
imprinted SPR chip was developed without the THI molecule (NIP/S-TiO2/SPR) using the
same procedure described above.
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2.4. THI Removal from MIP/S-TiO2/SPR and the Analysis Process

A total of 1.0 M NaCl (15.0 mL) was used as the desorption agent to eliminate the
electrostatic/hydrogen bond interactions between the MAGA monomer and the THI
analyte molecule and to create nanocavities specific to the THI molecule. For this purpose,
the THI-imprinted SPR chip was kept in a conical flask containing 1.0 M NaCl (15.0 mL)
for 1 min. After 1 min, the SPR chip was dried at 25 ◦C under nitrogen gas conditions.

After the THI-removed SPR chip was placed in the SPR cell, it was placed in PBS
solution (2.0 mL, pH 6.0) between 0–10 min with a 1.0 mL min−1 flow rate to equilibrate.
Afterward, THI adsorption solutions (4.0 mL), each in different concentrations, interacted
with the MIP SPR chip for 10 to 50 min with a 1.0 mL min−1 flow rate until a constant
resonance frequency was reached. After the desorption process was completed by utilizing
1.0 M NaCl solution (2.0 mL) for between 50 to 51 min, the regeneration process was carried
out using PBS solution (2.0 mL, pH 6.0), taking 51 to 60 min.

2.5. Sample Preparation

The milk samples were prepared for analysis according to our previous study. In this
protocol, a milk sample (10.0 mL) was treated with trichloroacetic acid (2.0 mL, 10.0% m/v)
under strong stirring conditions for 30 s and then centrifuged at 5000 rpm for 10 min. Then,
the supernatant was diluted with 0.1 M PBS (pH 6.0) for SPR sensor analysis [24].

3. Results and Discussion
3.1. Characterization of S-TiO2

XRD patterns were first recorded for S-TiO2 and undoped TiO2 (Figure 1A). XRD peaks
at 25.31◦, 38.14◦, 48.07◦, 54.09◦, and 62.51◦ corresponded to the (101), (004), (200), (105), and
(215) planes for S-TiO2 and undoped TiO2 nanomaterials. In addition, the crystallite size of
S-TiO2 nanomaterial was calculated as 5.1 nm using the Scherrer equation [9]. These results
proved that S-TiO2 and undoped TiO2 nanomaterials had similar peak patterns. As shown
in the TEM images (Figure 1B,C), spherical particles sized 5.2–9.7 nm were seen. More
large particle structures were seen in S-TiO2 compared to in the undoped TiO2 structure,
indicating the successful synthesis of the S-TiO2 nanomaterial [9,25]. In addition, Figure 1D
shows the FTIR spectra as well as the Ti-O bending mode and the Ti-OH stretching mode at
485 cm–1 and 1624 cm–1, respectively. Asymmetrical and symmetrical stretches belonging
to the −OH group were observed at 3405 cm–1. The Ti-OH stretching mode at 1624 cm–1

corresponds to the adsorbed H2O on the TiO2 surface.
XPS was performed on the S-TiO2 nanomaterial (Figure S1). The XPS peak at 166.85 eV

revealed an S4+ ion presence. In addition, XPS peaks at 167.94 eV and 169.12 eV confirmed
the presence of S6+ ions [15]. Moreover, the observed XPS peaks at 460.17 eV (Ti 2p3/2),
464.08 eV (Ti 2p1/2), 530.78 eV (O1s), and 285.17 eV (C1s) verified the successful synthesis
of the S-TiO2 nanomaterial [9].

The nitrogen adsorption curve (Figure S2A) was obtained for S-TiO2 and undoped TiO2
nanomaterials. S-TiO2 and undoped TiO2 nanomaterials exhibited a type-IV adsorption
isotherm typical of H3-type hysteresis. Slit pores formed due to the aggregation of S-TiO2
and undoped TiO2 nanomaterials. The values of the surface areas of S-TiO2 and undoped
TiO2 nanomaterials were calculated to be 285.78 m2 g−1 and 224.37 m2 g−1, respectively,
revealing a higher mesopores number in the S-TiO2 nanomaterial.
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Figure 1. (A) XRD patterns of S-TiO2 and undoped TiO2 nanomaterials; TEM images of (B) undoped
TiO2 and (C) S-TiO2 nanomaterials; and (D) a FTIR spectrum of undoped TiO2.

Figure S2B shows the diffuse reflectance spectra of S-TiO2 and the undoped TiO2
nanomaterials. The undoped TiO2 nanomaterial had an absorption peak at about 381 nm
and S-TiO2 nanomaterial had an absorption peak at about 590 nm [26,27]. In addition,
the band gap values of S-TiO2 and the undoped TiO2 nanomaterial were 1.98 and 3.17 eV,
respectively. Hybrid states near the conduction band caused a narrowed band gap in
S-TiO2; this was due to the substitution of titanium ions in the S-TiO2 nanomaterial.

3.2. FTIR and AFM Characterizations of THI-Imprinted Film on S-TiO2/SPR Chips

Figure 2A shows the FTIR spectra of the prepared THI-imprinted SPR chip with HEMA
and MAGA. Before the removal of THI from the SPR surface, FTIR peaks at –OH were seen at
3588 cm−1; the –CH stretching of MAGA was seen at 2918 cm−1; –NH bonding corresponding
to the amide vibration of MAGA was observed at 1440 cm−1; carboxyl-carbonyl stretching
was seen at 1718 cm−1; and –COO– stretching was observed at 1407 cm−1, as shown in
Figure 2A [21,22,28]. Thus, the resultant FTIR peaks confirmed the successful imprinting of
THI on the S-TiO2/SPR chip. Figure 2B,C show the AFM images of the bare SPR chip and
the THI-imprinted film on the S-TiO2/SPR chip, respectively, and the surface thicknesses
were calculated as 2.37 ± 0.07 and 24.31 ± 0.03 nm, respectively, confirming the formation of
THI-imprinted polymers on the SPR chip.
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3.3. Electrochemical Characterizations of Modified Electrodes with S-TiO2 and Undoped TiO2
Nanomaterials

Generally, EIS and CV techniques are the electrochemical methods most commonly
used to examine the electron transfer phenomenon at the electrode-solution interface and
the conductivity properties of the prepared electrode materials (undoped TiO2/GCE and
S-TiO2/GCE). First of all, the observed anodic and cathodic peaks (curve A in Figure S3A)
at +0.300 V and +0.600 V on bare GCE were much clearer and the differences between peak
potentials decreased when the undoped TiO2/GCE was used, owing to the TiO2 nanopar-
ticles’ conductive interfaces and applications as catalyists (curve B of Figure S3A) [29,30].
Finally, the highest peak currents and sensor effects were obtained when S-TiO2/GCE
was used (curve C of Figure S3A). This was because sulphur doping, which caused rapid
electron transfer, reduced the conduction band of TiO2 [31]. Moreover, EIS graphs were
used to prove CV results. The charge transfer resistance (Rct) values were 40 ohms for bare
GCE (curve A of Figure S3B), 30 ohms for undoped TiO2/GCE (curve B of Figure S3B), and
22 ohms for S-TiO2/GCE (curve C of Figure S3B). Thus, these EIS results verify the broad
usage possibilities of the S-TiO2 nanomaterial in sensor applications.

3.4. pH Effect on THI-Imprinted SPR Chips

The pH of the working buffer solution is the primary factor influencing the stability
of sensor signals obtained in SPR sensor applications. The monomer employed in this
investigation, MAGA, has two pKa values (pKa1: 2.10 and pKa2: 4.07). Especially at low
pH values, the carboxylic acid groups of the MAGA monomer are present in the anionic
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phase, and in this case, the electrostatic interactions between the target molecule (THI) and
the monomer were many. On the other hand, because the anionic phase state of the THI
molecule formed at high pH values, the analyte-monomer bond began to decrease, and in
this case, the sensor signals began to decrease accordingly. Thus, pH 6.0 was chosen as the
optimum pH value for future analytical applications (Figure 3A,B) [32].
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Figure 3. (A) SPR sensorgrams for the 10.0 nM THI at different pHs of PBS and (B) the effect of pH on
THI-imprinted S-TiO2/SPR chips (equilibration process between 0 and 10 min; adsorption process
between 10 and 50 min; desorption process between 50 and 51 min; regeneration process between
51 and 60 min).

3.5. Linearity Range of MIP/S-TiO2/SPR Chips

SPR is the refractive index change that occurs when two distinct mediums come
together. Today, the SPR technique is widely utilized since it can take measurements in
real time with great precision and does not require any marking processes. This technique
works by sending a laser beam to a metal surface, some of which is then reflected and part
of which is absorbed by the metal surface [33]. The primary benefit of SPR-based sensors
is their exceptional wavelength sensitivity [34,35]. In this study, SPR signals were linear
within the range of 1.0 to 100.0 nM THI (R2 = 0.9996), and an calibration equation of y
(∆R) = 0.4978x (CTHI, nM) − 0.1326 was obtained, as shown in Figure 4. The limits of the
quantification (LOQ) and LOD values were 1.0 × 10−9 M and 3.3 × 10−10 M, respectively
(see the Supplementary Materials for the equations). Thus, it is possible to say that a sensor
technique with the highest sensitivity, when compared to other THI analysis studies in the
literature, is presented here (Table 1). In addition, since the sol-gel hydrolysis technique
was used during the sensor preparation, an environmentally friendly material synthesis
was achieved with minimal waste generation. Thus, using this sensor, it was shown that it
is possible to analyze pesticides found in frequently consumed dairy products quickly and
reliably, and an important sensor technique has been developed for food safety.
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concentrations from THI-imprinted SPR chip with a pH 6.0 in PBS (from 1.0 nM to 100.0 nM THI)
(equilibration process between 0 and 10 min; adsorption process between 10 and 50 min; desorption
process between 50 and 51 min; regeneration process between 51 and 60 min).

Table 1. The comparison of the MIP/S-TiO2/SPR chip’s performance using the reported methods.

Method Linear Range (M) LOD (M) Ref.

Optical fiber probe based on AuNP 1.0 × 10−7–10.0 × 10−4 5.0 × 10−10 [36]

Ratiometric electrochemical method 1.0 × 10−8–3.0 × 10−6 1.5 × 10−10 [37]

AgNPs/CH/office paper 1.0 × 10−5–1.0 × 10−8 1.0 × 10−7 [38]

AuNPs@ZnCo-MOF SERS 1.0 × 10−7–1.0 × 10−4 1.0 × 10−7 [39]

MXene/AgNs SERS 1.0 × 10−2–1.0 × 10−8 2.1 × 10−8 [40]

Fluorescence-DNA-AgNCs 1.2 × 10−8–2.0 × 10−7 1.0 × 10−8 [41]

MIP/S-TiO2/SPR chip 1.0 × 10−9–1.0 × 10−7 3.3 × 10−10 This study

3.6. Recovery

To prove the validity of the prepared sensor, recovery values (%) were calculated by
using it on real milk samples. Good recovery values prove that the developed sensor oper-
ates with high selectivity and accuracy in real samples. Thus, using the sensor developed
in this study, the analysis of pesticides such as thiram in food samples can be carried out
with high accuracy and selectivity, thus ensuring the consumption of safe foods. For this
purpose, the milk samples prepared for analysis were first divided into four equal parts.
Except for the first part, increasing concentrations (2.00, 4.00, and 6.00 nM) of THI standard
solution were added to the other three parts. These four real samples were analyzed with
the prepared sensor via THI analysis, and the recovery values were calculated. Recovery
values of close to 100.0% prove that the prepared sensor can be used with high reliability
(Table S1).
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3.7. Selectivity, Repeatability, and Reusability of MIP/S-TiO2/SPR Chips

Figure 5A,B are SPR sensorgrams showing the selectivity of the prepared MIP- and
NIP-based SPR sensors in combination with other agents (1000.0 nM ZIR, 1000.0 nM THP,
1000.0 nM FER, and 1000.0 nM DIS). As expected, it was observed that the prepared THI-
imprinted SPR sensor showed high selectivity towards THI in combination with other
agents. In addition, it was observed that according to k and k’ values, the molecular
imprinting process resulted in high selectivity (Table S2).
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Figure 5. Selectivity tests: SPR sensorgrams of (A) MIP/S-TiO2/SPR chips and (B) NIP/S-TiO2/SPR
chips with 10.0 nM THI, 1000.0 nM ZIR, 1000.0 nM THP, 1000.0 nM FER, and 1000.0 nM DIS
(equilibration process between 0 and 10 min; adsorption process between 10 and 50 min; desorption
process between 50 and 51 min; regeneration process between 51 and 60 min).

The SPR sensor prepared for the repeatability test completed five consecutive testing
cycles in combination with 10.0 nM THI, and the relative standard deviation (RSD) of the
observed SPR signals was measured as 0.19%, demonstrating high repeatability (Figure 6).
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Finally, the reusability of the MIP/S-TiO2/SPR chip was investigated through 50 con-
secutive usages of one sensor in combination with 10.0 nM THI, and a 0.87% RSD for the
50 observed SPR signals was calculated. This value indicates the high reusability of the
prepared sensor.

4. Conclusions

This work reported the development and application of a surface plasmon resonance
sensor based on molecularly imprinted polymers and sulfur-doped titanium dioxide on
milk samples. The sulfur-doped titanium dioxide nanomaterial had a significant positive
impact on SPR sensor response such as reusability and repeatability. Moreover, the devel-
oped SPR sensor showed high selectivity and sensitivity in milk samples. For example,
a linearity was in the 1.0 × 10−9–1.0 × 10−7 M range, and an LOD of 3.3 × 10−10 M was
obtained, thus demonstrating an ultra-sensitive sensor design towards THI pesticide. In
conclusion, thanks to this SPR sensor, an important pesticide analysis technique has been
developed for food safety.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bios14070329/s1. Figure S1: Surveyed XPS spectra of the S-TiO2
nanomaterial. Inset: high-resolution spectra for S2p; Figure S2: (A) Nitrogen-adsorbed isotherms of
S-TiO2 and undoped TiO2 nanomaterials and (B) the diffuse reflectance spectra of S-TiO2 and undoped
TiO2 nanomaterials; Figure S3: (A) CV curves and (B) EIS responses of (a) bare GCE, (b) undoped
TiO2/GCE, and (c) S-TiO2/GCE (redox probe: 5.0 mM [Fe(CN)6]3−/4− containing 0.1 M KCl, and
potential scan rate of 100 mV s−1); Table S1: Recovery results of THI (n = 6); Table S2: k and k′ values of
THI-imprinted SPR chips (MIP/S-TiO2/SPR chip and NIP/S-TiO2/SPR chip) (n = 6).
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