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Abstract: The demand for accurate and efficient immunoassays calls for the development of precise,
high-throughput analysis methods. This paper introduces a novel approach utilizing a weak mea-
surement interface sensor for immunoassays, offering a solution for high throughput analysis. Weak
measurement is a precise quantum measurement method that amplifies the weak value of a system in
the weak interaction through appropriate pre- and post-selection states. To facilitate the simultaneous
analysis of multiple samples, we have developed a chip with six flow channels capable of conducting
six immunoassays concurrently. We can perform real-time immunoassay to determine the binding
characteristics of spike protein and antibody through real-time analysis of the flow channel images
and calculating the relative intensity. The proposed method boasts a simple structure, eliminating the
need for intricate nano processes. The spike protein concentration and relative intensity curve were
fitted using the Log-Log fitting regression equation, and R2 was 0.91. Utilizing a pre-transformation
approach to account for slight variations in detection sensitivity across different flow channels, the
present method achieves an impressive limit of detection(LOD) of 0.85 ng/mL for the SARS-CoV-2
the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein, with a system
standard deviation of 5.61. Furthermore, this method has been successfully verified for monitoring
molecular-specific binding processes and differentiating binding capacities.

Keywords: weak measurement; high throughput immunoassay; optical biosensor; SARS-CoV-2
spike protein

1. Introduction

In recent years, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
has emerged as a significant threat to global public health, leading to the worldwide coron-
avirus disease (COVID-19) pandemic [1,2]. As of 21 June 2023, the global confirmed cases
of SARS-CoV-2 infection stand at 768,187,096, with a death toll of 6,945,714 [3]. Infected
individuals commonly exhibit symptoms such as fever and cough [4]. Importantly, even be-
fore symptom onset, infected individuals can transmit the virus effectively [5]. The primary

Biosensors 2024, 14, 332. https://doi.org/10.3390/bios14070332 https://www.mdpi.com/journal/biosensors

https://doi.org/10.3390/bios14070332
https://doi.org/10.3390/bios14070332
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com
https://orcid.org/0000-0001-9016-8234
https://orcid.org/0000-0003-4082-1594
https://doi.org/10.3390/bios14070332
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com/article/10.3390/bios14070332?type=check_update&version=1


Biosensors 2024, 14, 332 2 of 12

modes of SARS-CoV-2 transmission include droplets, aerosols, and direct contact [6,7]. Nu-
merous measures have been implemented globally to combat SARS-CoV-2 [8,9], effectively
controlling the COVID-19 pandemic. On 5 May 2023, the Director-General of the World
Health Organization officially declared an end to a public health emergency of international
concern triggered by COVID-19 [10]. However, SARS-CoV-2 persists and threatens human
health, making its immunoassay paramount.

The spike protein is a structural protein present on the surface of the SARS-CoV-2
virus. It comprises two subunits, S1 and S2, with the receptor-binding domain (RBD) of the
S1 subunit interacting with the human angiotensin-converting enzyme II(ACE2) receptor,
while the S2 subunit facilitates the fusion of the viral membrane with the host cell mem-
brane, resulting in the transfer of viral genetic material into human cells and subsequent
infection [11,12]. Neutralizing antibodies are a promising therapy for inhibiting SARS-CoV-
2 infection in the human body [13–15]. These antibodies bind to the spike protein, blocking
its interaction with the ACE2 receptor and reducing the virus’s infectivity [16,17]. There-
fore, studying the binding properties between spike proteins and neutralizing antibodies is
crucial. Such investigations can aid in developing and screening potent neutralizing anti-
bodies that effectively inhibit SARS-CoV-2 infection. Overall, these efforts can contribute to
the prevention and treatment of COVID-19.

Optical biosensors exhibit excellent performance in immunoassay [18]. This global
epidemic shows that large-scale application, high-precision immunoassay methods have
significant implications for public health safety. The label-free optical immunoassay meth-
ods using optical biosensors based on various principles such as surface-enhanced Raman
scattering (SERS), total internal reflection (TIR) [19], bio-layer interferometry (BLI) [20],
and surface plasmon resonance (SPR) [21–24]. These optical biosensors find extensive
applications owing to their remarkable sensitivity and immunity to interference. In 1988,
the weak value amplification effect was discovered by Aharonov, Albert, and Vaidman [25].
Weak measurement is a precision measurement method that generates the weak value
amplification effect under weak interaction. Since the turn of the century, weak value am-
plification techniques have progressively found utility in precision measurement [26–28].
In line with this trend, our research group has been actively investigating the application
of weak measurement techniques in label-free biosensing since 2015, yielding remarkable
outcomes [29–31].

This study presents a novel optical approach for conducting high-throughput im-
munoassays targeting viral Spike proteins. Our research builds upon the optical weak
measurement interface-based sensor previously proposed by our team, enabling real-time
monitoring of the immune process across a single, large area [31]. Using SARS-CoV-2 as
a case study, we successfully monitored the binding process between Spike proteins and
antibodies at various concentrations, achieving a limit of detection(LOD) of 0.85 ng/mL.

Our research yielded outstanding results for binding a single Spike protein to an
antibody and enabled simultaneous monitoring of the binding process involving multiple
mutant Spike proteins and antibodies. Moreover, this sensing method boasts a simple
structure, high robustness, low resource consumption, and broad applicability. It holds
great potential for integration with microfluidic systems and other biochip technologies.

2. Materials and Methods
2.1. Materials

Phosphate buffered solution (PBS, powder) and normal human serum were purchased
from Solarbio Science&Technology Company (Beijing, China). PBS at pH 7.3 with a concen-
tration of 0.01 mol/L provides an environment for biomolecular interactions. Dopamine
hydrochloride and Tris (hydroxymethyl) aminomethane were provided by Aladdin (Shang-
hai, China). Prepare a solution of dopamine hydrochloride at a concentration of 1 mg/mL
dissolved in Tris solution at a concentration of 0.01 mol/L and store it away from light. Re-
combinant SARS-CoV-2 Spike Protein RBD-SD1, Recombinant SARS-CoV-2 S Protein RBD
(XBB.1.5, C-6His), Recombinant SARS-CoV-2 S Protein RBD (Omicron, B.1.1.529, C-6His),
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Recombinant 2019-nCoV S Protein RBD (B.1.617.2, C-6His) and Anti-2019-nCoV S1 mAb
(5D9) were purchased from Suzhou Novoprotein Scientific Co., Ltd. (Suzhou, China). No
protein-blocking solution (2%) was purchased from Sangon Biotech (Shanghai, China).

The materials employed in the optical sensing component consisted of a ZF6 glass
prism obtained from Alpha Optics Co., Ltd. (Fuzhou, China), and a resin-based chip
fabricated via 3D printing.

2.2. Methods

The system architecture is presented in Figure 1, illustrating the overall structure.
Initially, the SLD (superluminescent diode) (5 mW, IPSDD0804, Inphenix, Inc., Livermore,
CA, USA) light source emits light through an optical fiber. Subsequently, the light is
collimated by lens A (f = 30 mm, #22-487, Edmund Optics Inc., Barrington, NJ, USA), and
its beam area is amplified using a beam-spreading structure (lens B [f = 50 mm, GCL-
010652BF, Daheng Optics, Beijing, China] and lens C [f = 150 mm, GCL-010605BF, Daheng
Optics, Beijing, China]). To ensure spatial filter uniformity, a 500 µm diameter pinhole
(P500HW, Thorlabs Optronics [Shanghai], Shanghai, China)) is employed as a spatial filter
at the confocal point of the beam spreading structure. The collimated beam, with a diameter
of approximately 50 mm, enters the weak measurement sensing structure.

C

SLD

P1

Prism

D

P2W

A

B

Chip

CMOS

Figure 1. This is the weak measurement-based interfacial sensing structure. A is the collimated
lens, and lens B and C construct the beam-spreading structure. P1 and P2 are polarizers, and W
is a quarter-wave plate. D is the imaging lens. The insert image shows the flow channel layout of
the chip.

The weak measurement sensing structure consists of a pre-selection, coupling prism,
quarter-wave plate (GCL-060802, Daheng Optics, Beijing, China), optical rotator, and post-
selection. Each pre-selection and post-selection incorporates a polarizer (LPVIS100-MP2,
Thorlabs Optronics [Shanghai], Shanghai, China). The polarization axis of the pre-selected
state is inclined at an angle of π/4 relative to the vertical direction. The light passing
through the pre-selected state is coupled to the chip by a prism, utilizing an angle of
incidence larger than the critical angle for total internal reflection. Consequently, the inter-
actions between biomolecules and the detection interface induce a phase difference between
the p-polarized and s-polarized components due to changes in the surface refractive index.
This phase difference is further amplified by the weak measurement structure. Finally, an
imaging lens (f = 100 mm, GCL-010615, Daheng Optics, Beijing, China) images the detection
light onto a CMOS (Complementary Metal Oxide Semiconductor) (ASI533MMPro, Suzhou
ZWO, Suzhou, China).

The flow channel system is comprised of a chip and a syringe pump. The chip is
designed with six grooves, each containing inlets and outlets at both ends, as illustrated in
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Figure 2. The grooves are bonded to the prism surface using adhesive, forming the flow
channel. This flow channel facilitates the flow of the solution through the prism surface. To
initiate the flow of the solution, one end of the flow channel is connected to the solution
while the other is connected to the syringe pump. In this way, the syringe pump allows the
solution to flow through the prism surface by extracting the solution. This chip enabled
simultaneous experiments with five concentration gradients and provided a reference
channel. The design of the reference channel effectively suppressed noise and temperature
drift, which has been thoroughly investigated in our previous work [31]. In this study,
we acknowledged that inconsistencies in sensitivity among the final detection channels
could arise from non-uniformity in the light source and suboptimal optics when imaging
more extensive interfaces. To address this concern, we performed sensitivity calibration
and normalization for each detection channel before conducting formal experiments. This
calibration involved utilizing sodium chloride to alter the refractive index of the PBS buffer.

(a) Chip front (b) Chip back

(c) Flow channels (d) Chip fixed to the prism surface

Figure 2. This is the chip structure. (a) The six grooves of the chip. (b) Chip grooves have corre-
sponding inlets and outlets labeled with the same number. (c) The internal structure of flow channels.
(d) The chip and the prism form flow channels flowing through the surface of the prism.

The experimental procedure can be divided into two main phases: assay surface
functionalization and specific binding. During the surface functionalization process, we
utilized 0.01 M Tris solution with a concentration of 1 g/L dopamine. We allowed it to flow
over the prism surface for 20 min to form a polydopamine layer with excellent adhesion.
Subsequently, the solution to be measured was passed through this layer, leading to the
nonspecific adherence of the spike protein to the polydopamine surface. Then, we complete
the closure of the polydopamine layer using a 2% no-protein blocking solution.
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After 50 min of pass-through buffer, a baseline was conducted. To initiate the specific
binding process, antibodies were passed through the chip at the same rate as the buffer,
ensuring a constant velocity and maintaining relatively stable pressure inside and outside
the channel throughout the binding process. This uniform speed is crucial as pressure
fluctuations can significantly affect the refractive index of the glass, which directly correlates
with the biological process. By maintaining a constant velocity, we minimized the impact
of pressure on the experimental results.

For the experimental groups, we designed five spike protein gradients of 0.625, 1.25,
2.5, 5, and 10 µg/mL as experimental groups. Also, we designed an inactive channel
without fixed antigen and passed only the buffer as a reference in the specific phase. This
experimental setup was realized using the six-channel chip, as depicted in Figure 2. Image
processing using MATLAB (R2019a).

3. Results
3.1. High-Throughput Immunoassay

In the embodiment of the fundamental performance of the sensing method, we have
employed the spike protein of the SARS-CoV-2 virus as the target antigen for detection to
achieve real-time monitoring through multiple concentration gradients.The entire experi-
mental process is shown in the Figure 3
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Figure 3. This is an entire experimental process for the detection of flow channels, starting with
the first stage I, where the refractive index change is artificially introduced by changing the NaCl
solution (5 g/L) dissolved in PBS solution (0.01 mol/L), thus completing the normalization of the
sensitivity of the different detection sites on the detection surface; the second stage II is the stage of
surface functionalization, where the solutions passed in turn are dopamine Tris solution (1 mg/mL),
spike protein (0.625 µg/mL), and no-protein closure solution (2%); the third stage III is the passage
of PBS to form a baseline after which the antibody solution (5 µg/mL) is passed in for specific
binding, and finally changed back to PBS to read out the response value. The bottom of the figure
shows the whole process of molecular binding in the experiment, where the triangle, oval and
Y-shaped graphs represent the spike protein, the polymer (in the no protein blocking solution) and
the antibody, respectively.
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It is evident from the result Figure 4 that the results from the specificity phase demon-
strate a positive correlation between the concentration of the spike protein being tested
and the magnitude of light intensity change. This change varies from low to high across
the five experimental groups. During the transition from the specific binding phase to the
final PBS buffer phase, the change curve exhibits a noticeable decline in light intensity. This
decline can be attributed to the body effect, which arises from the disparity in refractive
indices between the experimental solution and the final stage of the PBS buffer. Conse-
quently, this discrepancy slightly alters the sensor’s response value following solution
changes. We replicated the experiment illustrated in Figure 4 three times and computed
the relative intensities that signify the degree of binding, as illustrated in Figure S1 (refer to
Supplementary Information).

To ascertain the response value for the entire binding process, evaluating the variation
between the PBS buffer before and after the experimental solution is necessary. The curve
within the experimental section effectively portrays the progression of specific binding. We
employed PBS buffer for 20 min in our sensor. Through the implementation of our novel
approach, we achieved a reduced standard deviation δS = 5.61, from the insert image of
Figure 4.

Figure 4. This is the binding process of different concentrations of spike protein. The insert image is
the light intensity change of PBS flowing through the channel.

We used the Log-Log fitting regression equation [32] to fit the standard curve of spike
protein RBD concentration and relative intensity, as shown in Formula (1).

lg(y) = a × lg(x) + b (1)
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The standard curve obtained by fitting is shown in the Figure 5, and R2 is 0.91.
Therefore, the Log-Log fitting regression equation can fit the standard curve of spike
protein RBD concentration and light intensity well.

Figure 5. Fitting curve of relation between spike protein RBD concentration and relative intensity
(The error bar represents the standard deviation of the experiment repeated three times).

According to the function shown in Formula (1), we take three times the standard
deviation (5.61) as the y value and find the corresponding x at this time, which is the lowest
detection limit. Therefore, the LOD is 0.85 ng/mL.

Furthermore, considering the actual assay, we cannot know whether the compo-
nents in the sample will undergo non-specific binding. Therefore, as shown in Figure 6,
two concentrations, i.e., anti-CA125 0.625 µg/mL, 2.5 µg/mL, and BSA 0.625 µg/mL and
10 µg/mL, were added in this work as non-specific validation targets for this sensor scheme,
as the spike protein’s concentration remained at 10 µg/mL. As can be seen in Figure 6, the
change in relative light intensity caused by non-specific binding is only about 100, much
smaller than the relative light intensity caused by several concentrations of spike proteins
demonstrated in Figure 4. This indicates that the amount of non-specific binding is small in
practical applications.

In practical applications, in order to avoid non-specific effects, we set the relative
intensity caused by non-specific binding as 150, so we think that the relative intensity above
150 is caused by specific binding. According to the fitting model, we set y to 150, and
then the corresponding x is the lowest detectable spike protein RBD concentration, so our
detection range is not lower than this concentration, which is 76.4 ng/mL.
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Figure 6. This contains the response curves for the process of molecule passing through the sensing
surface. The molecules are rabbit anti-CA125 at concentrations of 0.625 µg/mL and 2.5 µg/mL and
BSA at concentrations of 0.625 µg/mL and 10 µg/mL.

3.2. Characterization of the Binding of Spike Protein of Mutants to Antibody

Given the continuous mutation of the virus, it is essential to ensure the sensor’s
capability in detecting mutant strains, although this heavily relies on the specific recognition
process facilitated by the antibody. While the RBD segment of the spike protein exhibits
sufficient specificity towards the antibody, the increasing number of mutation sites results
in altered affinity between the mutated spike protein and the original monoclonal antibody.
Therefore, our study selected four viral strains, Original strain, Delta (B.1.617.2), Omicron
(B.1.1.529), and XBB.1.5, each with a concentration of 5 µg/mL, as targets for the assay.
Repeating the modification and specific binding steps described in Section 3.1, we obtained
compelling outcomes, presented in Figure 7a. These results robustly demonstrate the real-
time monitoring ability of our sensor in capturing the kinetic process of specific binding
between viral spike proteins and antibodies. Notably, Figure 7b allows us to discern the
affinity of the original strain monoclonal antibody towards various mutant strain spike
proteins. The affinity ranking is as follows: Original strain > Delta > Omicron > XBB.1.5.
As the SARS-CoV-2 continues to mutate, there has been a gradual decrease in the binding
amount between the spike protein RBD and Anti-2019-nCoV S1 mAb (5D9) of the mutant
strain. This finding suggests that the binding sites of the spike protein may have changed.
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Figure 7. (a) This is the process by which the mutant spike protein binds to the antibody. (b) The
binding amount of RBD and antibody of mutants(the time when the SARS-CoV-2 and variants were
first discovered is labeled in the figure).
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4. Discussion

For the fundamental performance analysis of the sensor, a clear differentiation in
response among different concentrations is observed in the single gradient experiment,
as depicted in Figure 4. Notably, the system demonstrates exceptional detection limits of
0.85 ng/mL.

We compared the ideal detection limit of several commercial kits and optical biosensors
for the detection of SARS-CoV-2, as shown in Table 1.

Table 1. The detection limit of several common commercial kits and optical biosensors

Method Analyte LOD Ref.

BinaxNOW COVID-19 Antigen Self-Test Nucleocapsid protein 140.6 TCID50/mL [33]
2019-nCoV Antigen Detection Kit (Colloidal gold method) Nucleocapsid protein 600 TCID50/mL [34]
Colorimetric biosensor Spike protein 11 ng/mL [35]

Electrochemical Immunosensor Spike protein 299.30 ng/mL (for ACE2),
38.99 ng/mL (for CD147) [36]

Surface Plasmon Resonance biosensor Spike protein 8.34 ng/mL [37]
This work Spike protein 0.85 ng/mL

Commercial kits are convenient to use but do not provide quantitative results. In
contrast, our weak value amplification-based optical biosensor is able to offer competitive
LOD compared to other biosensors, as demonstrated in Table 1.

As can be seen, the optical system only reflects the biophysical processes occurring at
the detection interface, and there is no point in discussing the specificity of the physical
system itself. The main factor limiting the detection limit in practical use is the non-
specificity due to the biochemical sensing scheme rather than the optical system itself.
Therefore, choosing a less non-specific molecular binding scheme is an effective route to
improving the performance of the sensing system, e.g., metal nanoparticles modifying the
antibody for detection, and amino silanes functionalized and modifying the antibody using
an amino silane at the glass interface of the assay are schemes that can effectively reduce the
non-specific leakage introduced by the use of polydopamine membrane adhesion-closure.
Meanwhile, in terms of experimental protocol design, a flow channel introducing a known
irrelevant protein molecule instead of the blank buffer as a reference channel can be chosen
to eliminate the non-specific effects, the non-specific effects of which may need to be further
explored in future research work.

Furthermore, several factors contribute to inter-group variability. The first factor
involves the mechanical fixation of coupling prisms with chips across different experimental
groups. This fixation introduces slight deviations in the discrete optical systems, potentially
impacting the prism angle, position, and, consequently, the channel location difference at
the detection site between experimental groups. As a result, an additional phase response
is introduced, which is unavoidable under laboratory conditions. However, this issue can
likely be addressed in industrial prototypes by integrating high-precision mechanical parts.

Secondly, variations in the overall experimental environment exist between the differ-
ent groups. These variations encompass fluctuations in light intensity emitted by the light
source, noise caused by scattered particles, and dark current noise in the CMOS detector.
Additionally, mechanical errors in the rotation angle of the polarizer and waveplate can
induce phase variations and subsequently affect the intensity values of the response light.

It is worth mentioning that the utilization of a 27 mm × 20 mm equilateral prism
reflecting surface in this approach, alongside the overall dimensions of the six flow
channels measuring approximately 5 mm × 3.5 mm, enhances the feasibility of inte-
grating this method into microfluidic chips utilizing 3D printing, PDMS and any other
foundational technologies.

In the comparative binding capacity experiments Figure 7, our findings indicate that
the original strain of antibody exhibits a relatively strong binding capacity to both the
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original strain and Delta variant. However, we observed a significant decrease in binding
capacity to Omicron and XBB.1.5, which aligns with findings from other studies [38–40].

5. Conclusions

In conclusion, this study has introduced a novel high-throughput immunoassay
method utilizing a weak measurement interface sensor. The achieved concentration resolu-
tion for the SARS-CoV-2 spike protein was an impressive LOD of 0.85 ng/mL. Furthermore,
the experiment successfully demonstrated the discernible variance in detection and binding
capacity of the molecular-specific binding process when applied to different variants of the
virus’s spike protein.

This approach offers a more fundamental platform with remarkable scalability com-
pared to alternative sensing methods. For instance, surface sensitization methods present
increased adsorption sites, while nanoparticle-modified antibodies contribute to extended
response values. Employing surface and biomolecular chemistry approaches makes it
feasible to further enhance the assay’s sensitivity. Integrating microfluidic technologies
opens up possibilities for expanding the number of parallel channels, enabling even
higher throughput.

The simplicity of the sensing methods described in this paper ensures reliability
and establishes a robust foundation for immunoassays. The findings of this research
contribute to the development of advanced immunoassay techniques in the field, offering a
valuable tool for various applications in healthcare and diagnostics. Future investigations
may explore additional optimizations and the potential for broader implementation of
this approach.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios14070332/s1, Figure S1: This is the relative intensity induced
by varying concentrations of spike protein (The error bar represents the standard deviation of the
experiment repeated three times).
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