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Abstract: Opportunistic bacterial pathogens can evade the immune response by residing and repro-
ducing within host immune cells, including macrophages. These intracellular infections provide
reservoirs for pathogens that enhance the progression of infections and inhibit therapeutic strate-
gies. Current sensing strategies for intracellular infections generally use immunosensing of specific
biomarkers on the cell surface or polymerase chain reaction (PCR) of the corresponding nucleic acids,
making detection difficult, time-consuming, and challenging to generalize. Intracellular infections
can induce changes in macrophage glycosylation, providing a potential strategy for signature-based
detection of intracellular infections. We report here the detection of bacterial infection in macrophages
using a boronic acid (BA)-based pH-responsive polymer sensor array engineered to distinguish
mammalian cell phenotypes by their cell surface glycosylation signatures. The sensor was able to
discriminate between different infecting bacteria in minutes, providing a promising tool for diagnostic
and screening applications.

Keywords: intracellular infection; macrophage infection; cell surface phenotypic changes; chemical
nose sensing; synthetic polymeric sensor array

1. Introduction

Macrophages are key innate immune cells that are the first line of defense against
pathogens, responsible for the phagocytic uptake and killing of bacteria [1] and other
pathogens [2,3]. Macrophages also play a major role in the host inflammatory response
to bacterial infections, both in terms of the innate [4] and adaptive immune response [5].
Macrophages recognize and phagocytose bacteria, then ultimately recruit the appropri-
ate machinery such as autophagy to eliminate pathogens [6,7]. Opportunistic bacterial
pathogens have specific mechanisms to invade macrophages and evade host immune
response, including modulating host cell surfaces and releasing proteins to inhibit host
immune factors [8–10]. The bacteria residing within these host cells can then escape, fur-
ther propagating infection [11]. These intracellular reservoirs for pathogens exacerbate
a wide range of chronic and persistent infections that significantly contribute to patient
mortality for diseases including pneumonia [12], chronic osteomyelitis [13], urinary tract
infection [14], and lung infections in patients suffering from cystic fibrosis [15]. Therefore,
rapid detection and diagnosis of intracellular macrophage infections are important for
choosing appropriate and effective treatments [16,17].

The innate immune system has a network of multiprotein complexes that generate
biomarkers for bacterial infection recognition [18–20]. Current intracellular infection de-
tection methods use these protein biomarkers to detect bacterial infection using reverse
transcription-polymerase chain reaction (RT-PCR) [21] or immunoassays [22]. However,
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there is a complex overlap between the irregular expression of multiple biomarkers pre-
sented on macrophages infected by different species of bacteria, resulting in increased
complexity in analysis when using biomarker-based approaches [23]. Moreover, it is
challenging to identify infections from other bacteria species and develop a generalized
diagnostic platform [24].

Array-based sensing offers an alternative to conventional biomarker-based
approaches [25–30]. This "signature"-based approach enables the detection of phenotypic
changes through selective and differential cross-reactive interactions between cells and
sensor elements [31–33]. These differential interactions result in the generation of unique
patterns for each phenotype, which can be further classified for identification. The cross-
reactivity of the sensor system provides a hypothesis-free, rapid, and generalized platform
for the detection of phenotypic differences [34]. Hypothesis-free cross-reactive sensor plat-
forms have been applied in complex biological systems [35–38], including proteins [39–41],
bacteria [42–44], and mammalian cells [45–47].

Cell surface glycosaminoglycans are a prime target for pathogens for initiating infec-
tions. Multiple bacteria have developed different mechanisms for manipulating the cell
surface glycosaminoglycans at various stages of pathogenesis [48]. Intracellular infections
induce widespread alteration of the cell surface glycan composition of immune cells [49,50]
including macrophages [51]. Recently, we developed a fully synthetic polymeric sensor
array that leveraged the pH-responsiveness and glycan interactions of the boronate func-
tional group to successfully discriminate cell states based on the cell surface glycosylation
patterns [52]. We utilized the sensor array to detect changes in the cell surface glycosyla-
tion signatures resulting from the induction of malignant phenotype in cancer cells and
different drug-induced macrophage polarization states [53]. We, therefore, hypothesized
that our pH-responsive synthetic boronic acid-decorated polymer system would be able
to detect and identify intracellular infections of macrophages based on the altered glycan
composition. This poly(oxanorbornene) (PONI)-based polymer, PONI-BA-pyrene, can
reversibly and covalently bind with diols present in glycans [54,55], providing the selective
recognition required for cell-surface signature identification [56]. This polymeric sensor is
pH-responsive driven by the structure and solubility change of boronic acid under different
pH, generating a high-content six-channel fluorescent output using three different pH
values for sensing. We report here the use of PONI-BA-pyrene to detect and identify early
stages of bacteria-induced intracellular infection (Figure 1). Using linear discriminant anal-
ysis (LDA), discrimination was possible between macrophages infected with low bacterial
loads (multiplicity of infection (MOI) 10:1) [57]. The multiplicity of infection is defined here
as the ratio of the number of bacteria infecting each macrophage [58]. This rapid detection
of intracellular infection provides a new strategy for screening intracellular infections for
diagnostic, therapeutic development, and fundamental applications.
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ures inside the cell represents bacteria. 
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sensor array. The sensor is a random co-polymer, where n is the average monomeric repeats in the
polymer, and i, j, and k indicate the ratio of the individual monomeric units in the polymer. The
purple tinge represents the fluorescence response from the pyrene and the red spherical dots are
representative of the boronic acid functional groups in the polymer. The yellow, red dots and the
bluish gray spheres in the cartoon cell represent cell surface glycans. The green cylindrical figures
inside the cell represents bacteria.

2. Materials and Methods
2.1. Materials

All chemicals and solvents were purchased from Sigma-Aldrich (St. Louis, MO,
USA) or Fisher Scientific (Hampton, NH, USA) unless otherwise stated. 1H NMR was
recorded on a Bruker ADVANCE 400 machine (Bruker, Billerica, MA, USA). Absorbance
and fluorescence were measured using a SpectraMax M2 plate reader (Molecular Devices,
San Jose, CA, USA).

2.2. Cell Culture

RAW 264.7 cells were purchased from the American Type Culture Collection (ATCC,
Manassas, VA, USA) and cultured at 37 ◦C under a humidified atmosphere containing 5%
CO2 using standard growth media consisting of high glucose Dulbecco’s Modified Eagle
Medium (DMEM) supplemented with 10% fetal bovine serum (FBS). Under the above
culture conditions, the cells were sub-cultured approximately once every two days.

2.3. Synthesis of PONI-Boronic Acid-Pyrene Polymer

Monomers and polymers were synthesized according to previous reports [59,60].
Detailed synthetic schemes and the corresponding characterization can be found in the
Supporting Information.

2.4. Infection Model

RAW 264.7 cells (250,000 cells/dish) were plated in confocal dishes overnight. The
medium was then replaced with IDRL-12570 red fluorescent protein-expressing methicillin-
resistant Staphylococcus aureus (MRSA)-containing medium at an MOI of 10:1. The cells
were incubated with the medium for 1 h. The cells were then washed and incubated
with gentamicin for 30 min to wash extracellular bacteria [61]. Afterward, the cells were
incubated with fresh medium for 6 h, and then confocal microscopy was performed to
observe the presence of bacteria inside RAW 264.7 cells. Confocal microscopy of RAW
264.7 cells without bacteria treatment was performed as the negative control.

2.5. Trypan Blue Exclusion Test of Cell Viability

RAW 264.7 cells (10,000 cells per well) were seeded into a 96-well plate and left
overnight. The following day, the medium was replaced with bacteria-containing medium
at multiplicities of infection (MOI) of 10:1 or 100:1 and incubated for 1 h. Then, the cells
were washed and treated with gentamicin for 30 min to eliminate extracellular bacteria.
Subsequently, the cells were incubated with fresh medium for 6 h, followed by a PBS wash.
Cells were then treated with 50 µL of trypsin for 10 min to facilitate trypsinization and
transferred to 600 µL microcentrifuge tubes for centrifugation at 3000 rpm for 5 min. The
supernatant was discarded, and the cells were resuspended in fresh medium. An aliquot
of 15 µL cell suspension was mixed with 15 µL of 0.4% trypan blue, and 10 µL of the
mixture was loaded into a disposable Countess chamber slide for counting with a Countess
Automated Cell Counter (Thermo Fisher Scientific, Waltham, MA, USA) [62].

2.6. Sensing Protocol

RAW 264.7 cells (10,000 cells/well) were seeded in a 96-well plate overnight. The
medium was then replaced with bacteria-containing medium at an MOI of 10:1. After
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1 h incubation of cells with the medium, the cells were washed and incubated with gen-
tamicin for 30 min to wash extracellular bacteria. Afterward, the cells were incubated
with fresh medium for 6 h, and then incubated with the polymeric sensor array. After
30 min, fluorescence intensities under 398 nm (pyrene monomer) and 466 nm (pyrene
excimer) were recorded using the microplate reader at 25 ◦C. Finally, six characteristic
fluorescent channels were generated from 3 representative phosphate buffers with different
pH values (pH 5.8—Monomer, pH 5.8—Excimer, pH 7.4—Monomer, pH 7.4—Excimer,
pH 8.2—Monomer, and pH 8.2-Excimer) from a single polymer. The RAW 264.7 cells
without bacteria treatment were used as the negative control.

2.7. Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a machine learning multivariate technique that
identifies a linear combination of features to effectively distinguish between two or more
classes of objects [63]. SYSTAT (version 13, Systat Software, Richmond, CA, USA) was em-
ployed to generate an LDA plot of the normalized fluorescence intensity (I/I0). In SYSTAT,
all variables were utilized in complete mode, with a tolerance set to 0.001. The raw fluores-
cence response patterns were transformed into canonical patterns, maximizing the ratio of
between-class variance to within-class variance based on preassigned grouping [64,65].

2.8. Identification of Unknown Samples

To identify unknown samples, the fluorescence response patterns of each new case
were first converted to canonical scores using the discriminant functions developed from
the training data. Subsequently, the Mahalanobis distance to the centroid of each training
group was calculated, followed by assessing the probability of cells belonging to the nearest
cluster using an appropriate F-distribution for the minimum distance [66].

3. Results and Discussion
3.1. Synthesis and Characterization of PONI-BA-Pyrene

The sensor array was developed based on a fully synthetic dye-conjugated poly-
mer [67]. The polymer used a poly(oxanorborneneimide) (PONI) random copolymer
scaffold for its unique “semi-arthritic” structural properties and ease of modification [68].
The “semi-arthritic” backbone from the PONI polymer provides a good balance between
the rigidity and flexibility required to form a highly responsive sensing system. The use
of phenylboronic acid on the PONI backbone provides a pH-responsive recognition el-
ement that shows a high binding preference to diols present in cell surface glycans [69].
This binding can be transduced by pyrene conjugated to the PONI backbone to provide
two-channel fluorescence: pyrene monomer (398 nm) and pyrene excimer (466 nm). Finally,
six characteristic fluorescent channels were generated from three representative phosphate
buffers with different pH values (pH 5.8—Monomer, pH 5.8—Excimer, pH 7.4—Monomer,
pH 7.4—Excimer, pH 8.2—Monomer, and pH 8.2—Excimer) from a single polymer
(Figure 2a) [70]. These three pH values were chosen to provide acidic, neutral, and basic en-
vironments but ensure the stability of the phosphate buffer. The synthesized polymer PONI-
BA-pyrene was characterized by gel permeation chromatography (GPC) (Figure 2b) with re-
fractive index (RI) as the detector, with an observed molecular weight of 30 kDa and a poly-
dispersity of 1.01. The hydrodynamic diameter of the polymer was checked under different
pH values through dynamic light scattering (DLS) (Malvern Zetasizer Nano ZSP, Malvern
Panalytical Inc., Westborough, MA, USA) with observed diameters of 11.3 ± 1.8 nm
(pH 5.8), 10.4 ± 2.2 nm (pH 7.4), and 7.7 ± 2.1 nm (pH 8.2) (Figure 2c). The results
demonstrated that no substantial aggregation was observed with the change in pH values.
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Figure 2. (a) Fluorescence spectrum of PONI-BA-pyrene sensor at three different pH values.
(b) GPC trace of Boc-protected PONI-BA-pyrene shows the presence of a polymer with Mw = 30 kDa,
Mn = 29.6 kDa, and a polydispersity index of 1.01 using polystyrene as the standard, tetrahydrofuran
(THF) as the eluent with a flow rate of 1 mL/min. (c) The average size of the PONI-BA-pyrene sensor
array in the three representative pH values was confirmed by a representative DLS spectrum (number).

3.2. Evaluation of the Glycan Binding Affinity of the Polymeric Sensor

N-acetylneuraminic acid (Neu5Ac) is the predominant sialic acid found in humans
and is presented as the terminal residue in surface-exposed glycans on mammalian cell
membranes [71,72]. The aim of detecting Neu5Ac was to use it as a model system to
investigate the pH responsiveness and the concentration dependence of the cell surface
glycans that modulate the interactions with our sensor. We established the binding of
40 µg L−1 PONI-BA-pyrene with Neu5Ac under different pH conditions. We chose to
work with the physiologically relevant concentration range of Neu5Ac to demonstrate the
correlation between changes in Neu5Ac concentrations and sensor response [73,74]. The
solutions were incubated for 30 min, and the ratio of the fluorescence intensity of PONI-
BA-pyrene incubated with Neu5Ac to the fluorescence intensity of PONI-BA-pyrene only
(I/I0) was determined (Figure 3a). The characteristic fluorescent response demonstrated
the binding of our sensor with Neu5Ac was pH-responsive, and the polymeric sensor array
generated unique fluorescence signatures after incubation with different concentrations of
Neu5Ac. The fluorescence pattern was analyzed using linear discriminant analysis (LDA)
for dimension reduction (six dimensions to two dimensions) and better quantitation. LDA
was chosen for the data analysis as it is a supervised machine learning-based statistical
analysis tool that can be trained a priori, which becomes particularly useful for predicting
unknown outcomes (Figure 3b, Tables S1 and S2) [75].
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Figure 3. (a) Fluorescence response of PONI-BA-Pyrene after 30 min incubation with different
concentrations of Neu5Ac (n = 8). I/I0 is the fluorescence response of the sensors against the analytes
normalized to control sensor only. The colors in the bar graph represent the different fluorescent
emission channels at different pH values. (b) LDA was used to analyze the fluorescence response,
and the first two canonical scores were plotted with 95% confidence ellipses.

3.3. Validation of the Bacterial Infection Model in Macrophages

RAW264.7 (murine macrophage) cells were used as representative macrophages, and
250,000 cells were plated in confocal dishes overnight. The medium was then replaced
with IDRL-12570 red fluorescent protein-expressing methicillin-resistant Staphylococcus
aureus (MRSA)-containing medium at an MOI of 10:1. The cells were incubated with the
medium for 1 h. The cells were then washed and incubated with gentamicin for 30 min to
wash extracellular bacteria. Afterward, the cells were incubated with fresh media for 6 h
and then confocal microscopy was performed to observe the presence of bacteria inside
RAW 264.7 cells (Figure 4a), and the confocal microscopy of RAW 264.7 without bacteria
treatment was also performed as the negative control (Figure 4b). Quantitation of the MOI
was obtained using a colony counting assay using 10,000 RAW 264.7 cells. After overnight
incubation, the cells were washed and the medium was replaced with the different strains
of bacteria (MRSA, Escherichia coli (E. coli), Bacillus subtilis (B. sub), Klebsiella pneumoniae
(K. pneu)) at MOI 10:1. Colony counting data demonstrated the successful infection of RAW
264.7 cells with the different bacteria (Figure 4c). RAW 264.7 cells infected with B. sub
showed a slightly lower bacterial load which could be attributed to some B. sub suffering
exocytosis by the host macrophage [76]. A membrane integrity assay was performed for
each of the respective bacteria-infected cells using the Trypan blue exclusion assay. The
Trypan blue assay did not show any major difference in the membrane integrity of the
macrophages even at a higher MOI of 100:1 (Figure S1), indicating that the infected cells’
membranes remained intact.
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Figure 4. (a) Confocal microscopy of RFP-expressing MRSA-infected RAW 264.7 cells (MOI = 10:1).
(b) Confocal microscopy of RAW 264.7 without treatment as control cells. (c) Colony counting of
different bacteria-infected RAW 264.7 macrophages. The data shown here are an average of three
replicates. Statistical significance was determined by a two-tailed Student’s t-test. * = p < 0.05,
** = p < 0.01, ns = non-significant.
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3.4. Detection and Discrimination between Different Types of Bacteria-Infected Macrophages

The validated intracellular infection model above (MOI 10:1) was used to assess the
ability of PONI-BA-pyrene to detect intracellular infection. RAW 264.7 cells were infected
with the above-mentioned different bacteria species. Two of the bacteria chosen (MRSA,
B. sub) are Gram-positive and the other two (E. coli and K. pneu) are Gram-negative. The
sensing experiment followed a similar protocol to that of the infection model. In brief,
10,000 RAW 264.7 cells were seeded in a 96-well plate the night before the experiment. The
protocol described above was used to establish the infection the following day.

After the establishment of the infection, the polymeric sensor was then added to
the wells and incubated with the cells for 30 min. The fluorescence was then read out
using a microplate reader (Figure 5a). The sensor array generated distinguishable flu-
orescent signatures for the infected cells with the non-infected along with a substantial
difference in fluorescence signature between different bacteria-infected macrophages. LDA
was performed on fluorescence data to obtain distinct separate clusters with 90% classi-
fication accuracy in cross-validation studies. An overlap was observed between B. sub-
and E. coli- infected cells. The overlap is not surprising, as B. sub and E. coli have the
possibility of employing similar pathways of infection against macrophages (Figure 5b,
Tables 1 and S3) [77–79]. The scores generated from the LDA analysis are shown in the
axes of Figure 5b. These values visualize the contribution of multiple variables in the sens-
ing protocol that leads to our generated result. To investigate the contribution of pyrene
monomer and excimer on the fluorescence response of the sensor toward the infection,
we also used LDA to analyze the fluorescence data from monomeric pyrene or excimer
(Figure S2). The 73% classification from both pyrene monomer and excimer demon-
strated that pyrene monomer and excimer can act simultaneously as recognition sites
(Tables S4 and S5), providing a more sensitive tool for the detection of microenvironmental
changes [80]. In addition, to validate the sensitivity and accuracy of our sensing platform
for identifying macrophages infected by different bacteria, unknown identification was
performed, and a 77% correct unknown identification was obtained (Table S6). Overall, the
results demonstrate the potential of the PONI-BA-pyrene sensing platform for intracellular
infection discrimination.
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Figure 5. Discrimination between different bacteria-infected RAW 264.7 cell lines showing the
sensitivity of the sensor platform to distinguish between the different intracellular infection agents.
(a) Fluorescence intensities of sensor array after 30 min incubation with each cell line, normalizing
against sensor only. Each value is the average of 6 replicates (n = 6). (b) Fluorescence patterns were
analyzed using LDA and the first two canonical scores were plotted with a 95% confidence ellipse.
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Table 1. Percentage of accurate classification of RAW 264.7 macrophages infected by different bacteria
from Jackknifed analysis. The results show an overall 90% correct classification.

Cell Only MRSA B. sub E. coli K. pneu Correct (%)

Cell only 5 0 0 0 1 83

MRSA 0 6 0 0 0 100

B. sub 1 0 5 0 0 83

E. coli 0 0 1 5 0 83

K. pneu 0 0 0 0 6 100

Total 6 6 6 5 7 90

To further evaluate the validity of our sensor system, we proceeded to perform compet-
itive assays for the detection of intracellular infection through cell surface glycan changes.
We utilized WGA conjugated with CF555 dye (5 µg mL−1) to investigate the impact of
intracellular infection on macrophage cell membranes via confocal microscopy. Wheat
germ agglutinin (WGA), a lectin known for its affinity towards sialic acids, is commonly
employed for the specific labeling of cell membranes [81]. WGA binds to specific sugars
among the cell surface glycans and is useful in the diagnosis of glycosylation changes
owing to the changes in the specific carbohydrate [82]. The infection was established,
and the imaging was performed using the same protocol as used during the validation
of the intracellular infection. The obtained micrographs, depicted in Figure S3, revealed
no significant difference between the control and bacteria-infected cells, thereby affirming
the efficacy of our methodology in discerning subtle variations in glycan composition.
Furthermore, we harnessed a sensor array comprising 5 µg mL−1 of CF555 and Alexa Fluor
568-conjugated WGAs each to conduct a comparative sensing experiment on multiple
bacteria-infected macrophages. The WGAs were added to the infected cells and incubated
for 30 min and then the fluorescence was read out using a microplate reader. The results,
as shown in Figure S4, demonstrated a modest discrimination rate of 68% utilizing the
WGA array (Tables S7 and S8). These results underscore the potential of our pH-responsive
polymer sensor array in elucidating intricate alterations in cellular glycan profiles, thereby
offering valuable insights into the dynamics of cellular responses to pathogenic invasion.

4. Conclusions

In summary, the high-content polymeric BA-based sensor was able to perform a rapid
and efficient detection of intracellular bacterial infection of macrophages. The high sensitiv-
ity of the PONI-BA-pyrene sensor towards the alteration of cell surface glycans allowed
for the accurate discrimination of infected and non-infected cells through the difference in
their cell surface glycosylation pattern. Furthermore, the sensor array could distinguish
between the different strains of bacterial infection. We also performed a comparative study
using WGA and demonstrated the superiority of the PONI-BA-pyrene sensor platform in
detecting early signs of intracellular bacterial infection. The unique advantages provided
by this single polymer-based sensor platform enable the development of tools for studying
the effects of bacterial infection on the phenotype of immune cells, providing valuable
information for understanding the mechanism of immune evasion by bacteria. Overall,
our sensor system provides a multi-purpose utility platform for studying and understand-
ing the effects of bacterial infection on cell surfaces and accelerating the diagnosis and
therapeutic discovery for intracellular infection.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios14080360/s1. Figure S1: Membrane integrity assay of RAW
264.7 cells; Figure S2: LDA plot of pyrene monomer and excimer peaks calculated separately;
Figure S3: Confocal mmicroscopy images of RAW 264.7 cells stained with CF555 conjugated WGA;
Figure S4: Fluorescence response and LDA plot of CF555 and AlexaFluor 568 conjugated WGA
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against infected RAW 264.7 cells. Table S1: Normalized fluorescence responses and LDA output for
PONI-BA-pyrene incubating with Neu5Ac; Table S2: Percentage of accurate classification of different
concentrations of Neu5Ac incubating with PONI-BA-pyrene from Jackknifed analysis; Table S3:
Normalized fluorescence responses and LDA output for RAW 264.7 cells infected by different types
of bacteria; Table S4: Percentage of accurate classification of infected RAW 264.7 macrophages using
pyrene monomer fluorescence response from Jackknifed analysis; Table S5: Percentage of accurate
classification of infected RAW 264.7 macrophages using pyrene excimer fluorescence response from
Jackknifed analysis; Table S6: Prediction of RAW 264.7 cells infected by unknown bacteria using
training set from Figure 5 and Table S3; Table S7: Normalized fluorescence responses and LDA output
for RAW 264.7 cells infected by different types of bacteria when treated with CF555 conjugated WGA
and Alexa Fluor 568 conjugated WGA; Table S8: Percentage of accurate classification of RAW 264.7
macrophages infected by different bacteria from Jackknifed analysis.
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