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Abstract: Rapid identification of microorganisms with a high sensitivity and selectivity is of great
interest in many fields, primarily in clinical diagnosis, environmental monitoring, and the food
industry. For over the past decades, a surface-enhanced Raman scattering (SERS)-based detection
platform has been extensively used for bacterial detection, and the effort has been extended to
clinical, environmental, and food samples. In contrast to other approaches, such as enzyme-linked
immunosorbent assays and polymerase chain reaction, SERS exhibits outstanding advantages of rapid
detection, being culture-free, low cost, high sensitivity, and lack of water interference. This review
aims to cover the development of SERS-based methods for bacterial detection with an emphasis
on the source of the signal, techniques used to improve the limit of detection and specificity, and
the application of SERS in high-throughput settings and complex samples. The challenges and
advancements with the implementation of artificial intelligence (AI) are also discussed.
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1. Introduction

Bacteria are widespread and mostly nonpathogenic. However, pathogenic bacteria
can cause various infectious diseases such as Escherichia coli (urinary tract infection (UTI),
sepsis), Salmonella (food poisoning), Neisseria gonorrhoeae (sexually transmitted infection),
Neisseria meningitidis (meningitis), Staphylococcus aureus (boils, cellulitis, abscesses, wound
infections, toxic shock syndrome, pneumonia, sepsis, and food poisoning), and Streptococcus
spp. (pneumonia, meningitis, ear infections, and pharyngitis) are a major clinical concern.
To prevent complications and transmission, an early and sensitive detection strategy is
pivotal [1]. Conventional tests such as Gram staining, culture-based methods, and bio-
chemical assays are inexpensive, but the limitations involved are time-consuming detection
procedures, expertise, and often limited sensitivity. Pre-enrichment of bacteria from a
sample using a non-selective or selective broth culture for over 12 h is a strategy to increase
bacterial load to facilitate detectable levels. For selective isolation and differentiation of
associated Gram-positive (G+) and Gram-negative (G−) bacteria, a variety of chromogenic
and fluorogenic culture media have been developed; however, these methods also suffer
from longer detection times with generally limited sensitivity for discretion of bacterial
strains. Techniques based on the advances in molecular biotechnology are also employed
for rapid, real-time, sensitive, and specific pathogen detection, such as nucleic acid amplifi-
cation tests and real-time polymerase chain reaction (RT-PCR) [2]. Recent methods for rapid
detection of bacteria include immunological assays such as enzyme-linked immunosorbent
assays (ELISAs); nucleic acid-based methods such as polymerase chain reaction (PCR),
RT-PCR, loop-mediated isothermal amplification (LAMP); mass spectrometry-based matrix-
assisted laser desorption ionization-time-of-flight MALDITOF; and analytical devices such
as biosensors, most of which require expertise and have expensive, bulky equipment even
though they provide accurate results, limiting their practical adoption [3].
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In 1928, C.V. Raman and K.S. Krishnan observed Raman scattering, where the inelastic
scattering called stokes and anti-stokes was caused by the interaction of molecular vibration
and incident light. The spectral peaks were sensitive to different vibrational modes of
the molecular bonds. Hence, it gives unique “fingerprint” Raman peaks of the molecule,
which can be used to determine the molecules [4,5]. There are several distinct forms of
Raman spectroscopy, such as stimulated Raman, resonance Raman, transmission Raman,
polarized Raman, and surface-enhanced Raman spectroscopy (SERS). The studies on the
Raman effect underwent drastic developments since the 1970s with the accidental obser-
vation of enhanced scattering from a roughened metal surface due to the electromagnetic
and chemical enhancements revealed later, that is, SERS [5]. SERS helped to overcome
relatively poor sensitivity caused by the weak Raman scattering cross-section, which re-
stricted the use of Raman spectroscopy for trace analysis [6,7]. Figure 1 provides a simple
comparison between the normal Raman scattering and SERS scattering. The molecules
adsorbed on proper nanostructures can induce enhancement as high as 14 to 15 orders
of magnitude in comparison to normal Raman, making the technique sensitive enough
to detect even a single molecule at low concentrations [8–13]. Typically, SERS employs
specific metal nanoparticles, such as silver (Ag) and gold (Au), due to their plasmonic
properties, which significantly boost sensitivity. This makes SERS a powerful platform for
the rapid and sensitive detection of bacteria [14,15]. Other substrates used for SERS apart
from metallic nanostructures are (1) 2D materials such as graphene/graphene oxide [16]
and transition metal dichalcogenides (TMD) [17], (2) semiconductor nanostructures such as
titanium dioxide [18], (3) composite materials such as metal-polymer composites [19], and
(4) biological materials such as cellulose-based materials [20]. In 1998, the first SERS spectra
of bacteria such as Escherichia coli were reported with spectra features attributed to the cell
wall adsorbed on colloidal nano-silver particles [21]. Since then, the application of SERS in
bacterial studies has expanded across various fields, including medical, environmental, and
industrial microbiology, microbial systems biology, biological warfare countermeasures,
and bioprocess monitoring [8]. These studies demonstrate that SERS can detect as few
as a single bacterial cell or spore, making it a valuable point-of-care tool [21]. Over the
past decades, SERS-based bacterial detection has primarily focused on understanding the
origins and characteristics of the SERS signal of bacteria [22–24], creating substrates with
high sensitivity and specificity to enhance bacterial detection [25–28], integrating SERS
with conventional sample processing methods to improve detection efficiency [22], and ap-
plying SERS techniques to detect bacteria in complex, real-world samples [29]. The review
outlines the development of SERS-based methods for microorganisms, focusing on the
origins of bacterial SERS signals, techniques for improving sensitivity and specificity, and
the application of SERS in high-throughput settings and complex samples. Additionally, it
emphasizes advancements in the field facilitated by artificial intelligence.
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2. Overview of Bacterial SERS Detection and Analytes
2.1. Different SERS Detection Methods: Label-Free and Label-Based

Traditional plate culture-based methods, while accurate, require at least 18 h to con-
firm the bacterial presence, leading to delays in treatment, especially in cases of antibiotic
resistance, as well as in prevention and management. In contrast, SERS has demonstrated
extraordinary potential for bacterial detection due to its high enhancement and specificity.
SERS-based techniques offer both label-free (direct) and label-based (indirect) detection
strategies [30]. Label-free detection is a straightforward and accessible method that gener-
ates spectra based on the entire bacterial cell without using any additional Raman-active
labels or reporters. The process involves directly loading the bacterial sample onto a SERS-
active substrate (Figure 2). This method is advantageous because it is simpler and less
time-consuming, providing direct detection of the sample without the need for complex
preparation steps. However, it may have lower sensitivity and specificity compared to
label-based methods, and the spectra can be more complex to interpret due to the pres-
ence of signals from various bacterial components. Label-based detection involves the
use of Raman-active labels or reporters that are attached to or interact with bacterial cells.
These labels enhance the Raman signal, allowing for highly sensitive and specific detec-
tion. The method typically involves preparing SERS substrates with metal nanoparticles
functionalized with Raman-active molecules and targeting agents such as antibodies [31]
or aptamers [32] that specifically bind to bacteria. This approach enhances sensitivity and
specificity, making it possible to detect even low concentrations of bacteria. It also allows
for multiplexing, where different Raman-active labels can be used simultaneously to detect
multiple bacterial species or strains in a single sample. However, label-based detection
is more complex and time-consuming due to the additional steps of functionalizing the
substrates and preparing the labels. Both detection methods can benefit from additional
performance enhancements through sample concentration techniques. Methods such as
filtration, magnetic separation, and centrifugation are commonly employed to concentrate
the bacterial sample, increasing the number of bacterial cells available for detection, thereby
improving the detection sensitivity. Furthermore, surface modifications of conjugation
molecules such as antibodies, aptamers, and peptides [33] to specifically capture target
bacteria have been incorporated in detection to improve the specificity of the detection [34].
In summary, focusing on label-free SERS for bacterial detection offers numerous advan-
tages, including simplified workflows, immediate results, and potential cost savings by
eliminating the need for labeling agents. These methods also contribute to advancing our
understanding of bacterial physiology and behavior, offering detailed chemical insights
into structural components and metabolic activities. Embracing label-free SERS aligns with
the goals of enhancing diagnostic accuracy and sensitivity, making significant strides in
biosensing and microbiological research. Table 1 summarized different bacterial detections
by SERS.Biosensors 2024, 14, x FOR PEER REVIEW 4 of 29 

 

 
Figure 2. Illustrates the difference between Label-free and Label-based SERS. Created with BioRen-
der.com (accessed on 19 July 2024). 

Table 1. Summary of data on general SERS detection strategies for different bacteria. 

Bacteria 
Strains 

Detection 
Method Substrates Limit of Detection Condition of Detection 

Escherichia coli 

Label-free detec-
tion 

Silver nanoparticles 

Down to single cell Liquid (Lab test) [35–37]  
4.3 × 103 cells/mL Liquid (Lab test) [38]  
2.5 × 102 cell/mL  Liquid (Lab test) [39] 
- Liquid (Lab test) [23,40–46]  

Planar monolithic porous poly-
mer layers functionalized with 
gold nanoparticles 

- Solid (Lab test) [47] 

magnetite–gold magnetic nano-
particles 

102 CFU/mL Liquid (in apple juice) [48,49] 

Vancomycin-coated long-range 
ordered 3D nanoassembly of 
gold/silver core–shell nanorods 
with edge-on substrate 

- Solid (Lab test) [50]  

A polymer mat covered a layer 
of gold 

- Solid (in blood, urine, water 
or milk) [51] 

Label-based de-
tection 

Iron oxide-gold core–shell na-
noovals; 杏QSY21 as target 

210 CFU/mL Liquid 杏(Lab test) [52]  

Citrate-stabilized gold nano-
sphere and hexadecyltrime-
thylammonium bromide 
(CTAB)-stabilized gold nano-
rod particles 

2.0 × 102 CFU/mL 
Liquid 杏(in water sample) 
[53] 

Pseudomonas Label-free detec-
tion 

Silver nanoparticles 103 CFU/mL Liquid (Lab test) [54] 
Roughened metal shelter 106 CFU/mL Liquid (in diluted blood) [55]  
Au@pNIPAM hydrogel with 
embedded Au nanorods and 
mesostructured Au@TiO2 sub-
strate with a mesoporous TiO2 

3.4 × 107 CFU /mL Liquid (in vivo) [56] 

Figure 2. Illustrates the difference between Label-free and Label-based SERS. Created with BioRender.
com (accessed on 19 July 2024).

BioRender.com
BioRender.com


Biosensors 2024, 14, 375 4 of 30

Table 1. Summary of data on general SERS detection strategies for different bacteria.

Bacteria Strains Detection Method Substrates Limit of Detection Condition of Detection

Escherichia coli

Label-free detection

Silver nanoparticles

Down to single cell Liquid (Lab test)
[35–37]

4.3 × 103 cells/mL Liquid (Lab test) [38]

2.5 × 102 cell/mL Liquid (Lab test) [39]

- Liquid (Lab test)
[23,40–46]

Planar monolithic porous
polymer layers
functionalized with gold
nanoparticles

- Solid (Lab test) [47]

magnetite–gold magnetic
nanoparticles 102 CFU/mL

Liquid (in apple juice)
[48,49]

Vancomycin-coated
long-range ordered 3D
nanoassembly of gold/silver
core–shell nanorods with
edge-on substrate

- Solid (Lab test) [50]

A polymer mat covered a
layer of gold - Solid (in blood, urine,

water or milk) [51]

Label-based detection

Iron oxide-gold core–shell
nanoovals;
QSY21 as target

210 CFU/mL Liquid
(Lab test) [52]

Citrate-stabilized gold
nanosphere and hexade-
cyltrimethylammonium
bromide (CTAB)-stabilized
gold nanorod particles

2.0 × 102 CFU/mL
Liquid
(in water sample) [53]

Pseudomonas

Label-free detection

Silver nanoparticles 103 CFU/mL Liquid (Lab test) [54]

Roughened metal shelter 106 CFU/mL
Liquid (in diluted
blood) [55]

Au@pNIPAM hydrogel with
embedded Au nanorods and
mesostructured Au@TiO2
substrate with a mesoporous
TiO2 thin film over a
submonolayer of
Au nanospheres

3.4 × 107 CFU /mL Liquid (in vivo) [56]

Label-based detection Silver nanorod array;
pyocyanin as the biomarker

5 ppb;
2.38 × 10−8 mol/L

Solid (in clinical
sputum samples:
wounds and urine
specimens) [57]

Staphylococcus Label-free detection

Silver nanoparticles Down to single-cell Liquid (Lab test) [35,36]

Silver nanoparticles - Liquid (in diluted
blood) [58]

Silicon wafer decorated with
silver nanoparticles 102 cells/mL

Solid (in human
blood) [59]
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Table 1. Cont.

Bacteria Strains Detection Method Substrates Limit of Detection Condition of Detection

Staphylococcus Label-based detection

Au-coated magnetic
nanoparticles core/shell
nanocomposites; DTNB
as target

10 cells/mL Liquid (Lab test) [60]

GA-modified
Au@Rubpy/L-GO SERS tags - Liquid (Lab test) [61]

Gold nanoparticle-on-wire;
DNAs as target 10 pmol/L Liquid (Lab test) [62]

Salmonella Label-free detection

Vancomycin-coated
silver nanorod 100 CFU/mL Solid (in fresh

produce) [63]

Silver nanoparticles - Liquid (Lab test) [43]

Silver nanorod
array substrates Down to single cell Solid (Lab test) [64]

Au@Ag core/shell
nanoparticles 15 CFU/mL Liquid (Lab test) [65]

Ag nanocrystals into
Ag nanospheres 10 CFU/mL Liquid (Lab test) [66]

Salmonella Label-based detection Silver nanoparticles;
O-antigen as target - Liquid

(Lab test) [67]

Shewanella

Label-free detection

Biofilms cultivated on
gold-coated glass slides,
gold nanoislands

- Liquid (Lab test) [68]

Tip-coated multimode fiber,
liquid core photonic
crystal fiber

106 cells/mL Liquid (Lab test) [69]

Ag or Au colloidal particles
onto a rigid, ceramic filter - Liquid (Lab test) [70]

Label-based detection

Gold nanoislands; the
intracellular bioreduction of
two stable valence forms
of chromate

Down to single cell Liquid (Lab test) [71]

Bacillus

Label-free detection

Rough silver (colloidal) film - Liquid (Lab test) [72]

Thin gold layer on an
electrochemically roughened
nanoscopic silver substrate

- Solid (in human
blood) [73]

Label-based detection

AuNPs/PVP/Au; dipicolinic
acid as a biomarker ~106 (SERS EF) Liquid (Lab test) [74]

Fe3O4–Au core–shell
nanoparticles - Liquid (Lab test) [74]

Other bacteria

Helicobacter pylori Label-free detection Silver nanoparticles ~1011 (SERS EF) Solid (Lab test) [75]

Listeria
monocytogenes Label-free detection silver nanoparticles Down to single cell Liquid (Lab test) [35]

Klebsiella Label-free detection Vancomycin-coated silver
nanorod Bacterial strain level Solid (Lab test) [75,76]

Citrobacter Label-free detection Vancomycin-coated silver
nanorod Bacterial strain level Solid (Lab test) [75,76]

Proteus Label-free detection silver nanoparticles Bacterial strain level Liquid (Lab test) [9,77]
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Table 1. Cont.

Bacteria Strains Detection Method Substrates Limit of Detection Condition of Detection

Arthrobacter Label-free detection silver nanoparticles - Liquid (in soil and
groundwater) [78]

Sphingomonas Label-free detection silver nanoparticles - Liquid (in soil and
groundwater) [78]

Shigella sonnei Label-free detection silver nanoparticles - Liquid (Lab test) [45]

Mycobacterium
smegmatis Label-free detection Silver on anodic aluminum

oxide nanoparticle arrays - Solid (Lab test) [29]

Erwinia amylovara Label-free detection silver nanoparticles - Liquid (Lab test) [45]

Stenotrophomonas
maltophilia Label-based detection Gold nanoparticle-on-wire;

DNAs as target 10 pmol/L Liquid (Lab test) [61]

Vibrio vulnificus Label-based detection Gold nanoparticle-on-wire;
DNAs as target 10 pmol/L Liquid (Lab test) [61]

2.2. Target Analytes for SERS Bacterial Detection

Bacteria and their environment form an ecosystem, and the presence of bacteria in a
sample is detectable either using chemical components intrinsic to bacterial cells or chem-
icals produced during the bacteria’s reproduction or interaction with the environment,
which we call target analytes. The key features of target analytes for bacterial detection
include specificity to the bacterial species or strain, surface accessibility for direct interac-
tion with SERS substrates, and strong Raman activity for generating distinct signals. High
binding affinity between analytes and SERS substrates or conjugation molecules, such as
antibodies or aptamers, ensures effective capture and signal enhancement. Reproducibility
of Raman signals across different samples is crucial for reliable identification and quantifica-
tion, while minimal interference from other sample components reduces background noise
and improves accuracy. Additionally, detecting target analytes at low concentrations is
essential for high sensitivity, particularly in applications like early-stage infection detection
or contamination monitoring. These features collectively contribute to the effectiveness
and accuracy of SERS-based bacterial detection methods.

A diverse array of biomolecules and cellular components that contribute to distinctive
signals crucial for identifying and characterizing bacteria are available for bacterial SERS
detection. Key among these are bacterial biomarkers, which encompass chemicals pro-
duced by bacterial activities. Lipopolysaccharides (LPS), notably found in Gram-negative
bacteria, are pivotal analytes in SERS [79,80]. Lipid A, core oligosaccharide, and O-specific
polysaccharide chains are the components of LPS that are targeted for their immunogenic
and pathogenic properties, providing valuable insights into bacterial identity and virulence.
Bacterial metabolites also play a vital role in SERS detection [81]. These metabolites include
small molecules such as amino acids, sugars, and organic acids, which reflect bacterial
metabolic activity. Their detections not only inform on bacterial viability and physiological
state but also aid in understanding microbial behavior under various conditions.

Peptidoglycan, a major constituent of the bacterial cell wall composed of sugars and
amino acids, is prominently targeted in SERS due to its abundance and structural signifi-
cance in maintaining cell integrity [82]. Proteins within bacterial cells, including structural
proteins, enzymes, and membrane-associated proteins, serve as significant analytes [83].
Specific protein markers can differentiate between bacterial species or strains, providing
crucial insights into bacterial physiology and function. Outer membrane proteins, exposed
on the surface of bacterial membranes, are particularly valuable targets for understand-
ing bacterial interactions with their environment and host cells, contributing to insights
into bacterial behavior and pathogenicity. Moreover, nucleic acids such as DNA and
RNA are targeted in SERS to identify bacterial genetic material [84]. Amplifying specific
sequences or regions of bacterial DNA/RNA enhances the specificity and accuracy of
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SERS-based detection methods, enabling precise genetic identification and characterization
of bacterial strains.

Overall, these analytes collectively bolster the robustness and versatility of SERS in
identifying and studying bacterial cells across diverse applications in medical diagnos-
tics, environmental monitoring, and microbiological research. Their targeted detection
provides essential information for addressing challenges ranging from infection control to
environmental protection and biotechnological advancements.

3. Label-Free Bacterial SERS Detection
3.1. SERS-Based Bacterial Gene Probe

The genetic material, DNA or RNA, of bacteria exhibits unique sequences specific to
different bacterial species, serotypes, and strains, making it essential for PCR-based diagnos-
tics. In Surface-Enhanced Raman Scattering (SERS), however, the nucleotide bases within
DNA/RNA structures are structurally similar across bacterial types, leading to highly
comparable SERS spectra. Minor variations in sequencing and length of DNA/RNA can
induce subtle spectral changes, which are exploited to distinguish between different genetic
targets. To enhance specificity, hybridization techniques are employed in DNA/RNA-based
detection. This involves the precise pairing of complementary nucleic acid strands, facili-
tated by designed probes that match specific genetic sequences. Such methods are crucial
for identifying pathogens, genetic mutations, or specific genes in biological samples with
high sensitivity. Notably, in SERS, the small size of DNA/RNA molecules, measured in
nanometers, allows them to efficiently interact with SERS hotspots, resulting in significantly
amplified SERS signals compared to whole-cell detection methods. This capability under-
scores the potential of hybridization-based SERS assays in advancing molecular diagnostics
and research applications [56,84,85].

The use of SERS for DNA detection dates to 1994, marked by the pioneering devel-
opment of DNA gene probes that bind via hybridization to target DNA sequences [86].
Over the years, various SERS-based assays have evolved to detect bacterial genomes. Tech-
niques such as the use of magnetic nanoparticles (MNPs) for DNA separation have been
instrumental [87]. Recent research reported the detection of bacterial DNA using SERS.
After the target DNA was bound, a short synthetic ssDNA that has been dye-modified
and hybridized was used as the label. Specifically, three distinct PCR products tagged
with three different dyes were simultaneously detected to display SERS’s multiplexing
power. A separation-free SERS assay, which increases the SERS signal in the presence of
target DNA [88], was also effective. After being amplified by PCR, specific Staphylococcus
epidermidis bacterial DNA was found using SERS.

Multiplexed DNA detection of bacteria through a gold particle-on-wire system [61]
was demonstrated. The system has an Au nanowire, on which the probe DNA is im-
mobilized. Once the target DNA is hybridized to probe DNA, another Au nanoparticle-
linked reporter probe, which is also complementary to the target DNA, is then hybridized.
Hence, with the SERS, the seven isolates could be identified from the PCR products
with a potential for multiplexing detection (2 isolates of Enterococcus faecium, 2 isolates
of Staphylococcus aureus, 2 isolates of Stenotrophomonas maltophilia, and 1 isolate of Vibrio
vulnificus). As a result, we can now identify rapidly without using PCR on direct samples
with the development of SERS.

3.2. Biomarker-Based Detection

The cell envelope that shares structural and chemical similarities with most bacterial
species has been suggested as a source of bacterial Raman signal [89–92]. Therefore, with-
out secondary labeling, it is difficult with Raman spectroscopy to classify closely related
species, particularly from a mixture of bacteria. Hence, cells must be rinsed repeatedly and
resuspended in water to eliminate any possible matrix or buffer residues. This process
may induce cell rupture because of a disrupted osmotic balance, and the reproducibility
of the assay may be impaired due to an unreliable sample constitution. These factors
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make it difficult to detect entire bacterial cells with Raman spectroscopy for clinical di-
agnosis [93]. Therefore, another approach involves indirectly detecting the bacteria by
identifying the biomarkers that are released by the organism in the matrix fluids. These
bacterial biomarkers can be shed during an infection in the host or be present in the cell
wall. They can be in various forms, such as enterotoxins/endotoxins, cell surface markers
such as LPS, teichoic acid, surface proteins, metabolites, and genetic markers. Silver film
over nanospheres (AgFON) substrates were used to obtain the SERS spectra of a biomarker
for spores of bacillus called calcium dipicolinate (CaDPA) and obtained a limit of detection
(LOD) of 2.6 × 103 spores of Bacillus [94]. Additionally, AuNPs were used to acquire the
DPA SERS spectra that were recovered from Bacillus spores [72] and silver colloids [95].
Pyocyanin (PCN) can be used as a major biomarker for the detection of Pseudomonas aerug-
inosa [75]. Pyocyanin, a secondary metabolite produced by Pseudomonas aeruginosa, can
be quantified up to five orders of magnitude with a limit of quantification of 1 ng/mL.
SERS of PCN were obtained using Ag NR substrates with a very low limit of detection,
2.38 × 10−8 mol/L in both aqueous solutions and spiked clinical sputum samples. It has
also been used to dynamically monitor the excretion of PCN by Pseudomonas aeruginosa
during its growth. The presence of PCN in 15 clinical sputum samples was detected by
SERS, which indicates Pseudomonas aeruginosa infection, with 95.6% sensitivity and 93.3%
specificity. The endotoxin detection method for PCN offers the benefits of quick detection,
effective interference rejection, and in-place, real-time detection. The endotoxin detection
limit was as low as 6.125 ng/mL, and the whole detection time was reduced to roughly
100 s [96]. In Gram-negative bacteria, lipopolysaccharides exhibit distinctive SERS spectral
peaks, which are released during infection, and could be further analyzed by PCA. In the
study, LPSs from E. coli, S. typhimurium, S. minnesota, V. cholerae, Rhizobium species R. CE3,
and R. NGR, Neisseria meningitidis, produced unique spectra [97]. It has been demonstrated
that the detection of bacterial endotoxin lipopolysaccharides can achieve a limit of detection
(LOD) as low as 0.0003 endotoxin units (EU)/mL and 1 colony-forming unit (CFU)/mL
using signal processing-based enhancement technique with a processing time less than one
minute [85]. Figure 3 shows the process of SERS spectra collection.

Biosensors 2024, 14, x FOR PEER REVIEW 9 of 29 
 

 
Figure 3. The workflow of SERS spectra collection. Created with BioRender.com (accessed on 19 
July 2024). 

3.3. Bacterial Whole Cell Detection 
The vibrational spectroscopic technique of spontaneous Raman is used to identify 

the bacteria based on the Raman scattering spectra for cellular components, which enables 
rapid analysis of the samples. The spontaneous Raman technique is inherently weak 
compared to the elastic/Rayleigh scattering. Though the method requires a higher 
concentration of bacteria to be detected, the samples can be processed without any 
manipulations. The technique finds applications where sensitivity is not crucial but 
provides real-time analysis, whereas SERS enhances the signals and provides a 
susceptible platform for detection. Spontaneous Raman finds applications for bacterial 
identification directly from cultures on agar, such as Mueller–Hinton agar plates for 
Staphylococcus strains. They studied using 277 strains, which were cultured for 24 h and 
subjected to a 785 nm laser; the data were analyzed using PCA, LDA, and SVM, showing 
high accuracy. Therefore, the study enables the spontaneous Raman technique to be used 
as a diagnostic technique [100]. Due to the inherent weakness of spontaneous Raman 
signals from bacterial species and the low signal-to-noise ratio, it is difficult to identify 
species accurately, but the current advancements in machine learning enable precise 
detection [101,102]. Clinical samples have lower concentrations of bacteria and mixed 
species populations, which requires SERS as it helps overcome the weak Raman 
scattering. Machine learning techniques have shown higher accuracy in detecting spectra 
of resistant and sensitive strains of Staphylococcus aureus, with 89.1% accuracy with 
spontaneous Raman [101,103]. However, there are a few issues with spontaneous Raman; 
the number of Raman signals is only 10−8 of the incident photon, which is a weak signal. 
The stronger fluorescence from the background can hinder the sample spectrum, and the 
longer exposure to the laser can affect the sample. Hence, SERS helps to overcome the 
shortcomings of acquisition time and provides higher sensitivity to the Raman scattering. 

Most studies provided evidence that bacteria�s SERS signals originate from their 
outer envelopes [104]. However, studies investigated the bacterium Acidithiobacillus 
ferrooxidans and reported that the SERS spectra displayed physical and chemical 
variations, which are even caused by different growth media [105]. The origins and 
contributions of the bacterial SERS signals were investigated to distinguish the cell 
membrane components of several bacteria. For example, hierarchy cluster analysis can 
distinguish the three strains of Escherichia coli and one strain of Staphylococcus epidermidis 
[106]. SERS could even identify the significant component of cell surface domains of 
Shewanella oneidensis MR1, which has the redox heme protein [104]. The features observed 
in bacterial SERS spectra depict the bacterial surface, with a few from the sample 
preparation stages having metabolic activity or molecular species detached from the 
bacterial surface [107]. Depending on the sample preparation with the colloids, the 

Figure 3. The workflow of SERS spectra collection. Created with BioRender.com (accessed on 19
July 2024).

Flavivirus-caused life-threatening diseases can also be identified using the biomarker
non-structural protein–1 (NS-1), the antigen found in the febrile stage from serum samples.
A bioconjugated gold nanoparticle-based SERS probe was used for the accurate detection
of mosquito-borne flaviviruses [98]. Mouse IgG monoclonal antiflaviviral antibodies conju-
gated to the AuNPs-based SERS probe can be used as a sensitive fingerprinting detection
tool for Dengue virus and West Nile virus. A detection limit of as low as 10 PFU/mL of
Dengue virus and West Nile virus can be achieved, which is comparable with the sensitivity

BioRender.com
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of quantitative PCR-based assays. Au substrates are used for SERS detection, followed by
classification with SVM and compared for accuracy, specificity, and sensitivity [99].

3.3. Bacterial Whole Cell Detection

The vibrational spectroscopic technique of spontaneous Raman is used to identify the
bacteria based on the Raman scattering spectra for cellular components, which enables rapid
analysis of the samples. The spontaneous Raman technique is inherently weak compared
to the elastic/Rayleigh scattering. Though the method requires a higher concentration of
bacteria to be detected, the samples can be processed without any manipulations. The
technique finds applications where sensitivity is not crucial but provides real-time analysis,
whereas SERS enhances the signals and provides a susceptible platform for detection.
Spontaneous Raman finds applications for bacterial identification directly from cultures
on agar, such as Mueller–Hinton agar plates for Staphylococcus strains. They studied
using 277 strains, which were cultured for 24 h and subjected to a 785 nm laser; the data
were analyzed using PCA, LDA, and SVM, showing high accuracy. Therefore, the study
enables the spontaneous Raman technique to be used as a diagnostic technique [100].
Due to the inherent weakness of spontaneous Raman signals from bacterial species and
the low signal-to-noise ratio, it is difficult to identify species accurately, but the current
advancements in machine learning enable precise detection [101,102]. Clinical samples
have lower concentrations of bacteria and mixed species populations, which requires SERS
as it helps overcome the weak Raman scattering. Machine learning techniques have shown
higher accuracy in detecting spectra of resistant and sensitive strains of Staphylococcus
aureus, with 89.1% accuracy with spontaneous Raman [101,103]. However, there are a
few issues with spontaneous Raman; the number of Raman signals is only 10−8 of the
incident photon, which is a weak signal. The stronger fluorescence from the background
can hinder the sample spectrum, and the longer exposure to the laser can affect the sample.
Hence, SERS helps to overcome the shortcomings of acquisition time and provides higher
sensitivity to the Raman scattering.

Most studies provided evidence that bacteria’s SERS signals originate from their outer
envelopes [104]. However, studies investigated the bacterium Acidithiobacillus ferrooxidans
and reported that the SERS spectra displayed physical and chemical variations, which
are even caused by different growth media [105]. The origins and contributions of the
bacterial SERS signals were investigated to distinguish the cell membrane components of
several bacteria. For example, hierarchy cluster analysis can distinguish the three strains of
Escherichia coli and one strain of Staphylococcus epidermidis [106]. SERS could even identify
the significant component of cell surface domains of Shewanella oneidensis MR1, which has
the redox heme protein [104]. The features observed in bacterial SERS spectra depict the
bacterial surface, with a few from the sample preparation stages having metabolic activity
or molecular species detached from the bacterial surface [107]. Depending on the sample
preparation with the colloids, the analysis of silver-treated bacteria showed intense and
highly specific SERS spectra associated with many signals of flavin adenine dinucleotide
(FAD), DNA, carboxylates, and phosphates. Silver-treated bacteria have shown that their
SERS spectra were dominated by FAD, which is in the cell plasma membrane [88]. A higher
lipid content of unsaturated fatty acids in the outer membranes of marine bacteria could
also be identified by a comparative SERS study of psychrophiles, arctic marine bacteria,
and common mesophilic bacteria [42].

If the bacterial SERS spectra originate mainly from the cell outer envelope, signif-
icant differences between Gram-positive (G+) and Gram-negative (G−) bacteria would
be observed because the major distinction between these two kinds of bacteria lies in
the external structure of their cell [78,108]. G− bacteria have an outer membrane and an
additional periplasmic space within the outer membrane, which are both absent in the
G+ bacteria. The G+ bacterial cell wall depicts multiple layers, having the peptidoglycan
along with the teichoic and lipoteichoic acids and complex polysaccharides (Figure 4).
These structural differences [108] would introduce spectral differences between G+ and G−
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bacteria [109]. The SERS spectra of Staphylococcus aureus (G+), Klebsiella pneumoniae (G−),
and Mycobacterium smegmatis were successfully differentiated based on these bacteria’s
outer structural differences. Figure 4 displays the cellular structure differences between G+
and G− bacteria and the SERS spectra of LPS for Gram-negative Klebsiella pneumoniae and
LTA for Gram-positive Staphylococcus aureus.
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Identifying unique SERS spectra depends on the Raman wave shift, where each peak
is assigned to a corresponding structural element of the identified molecules. The list of
chemical substances that could potentially contribute to SERS spectra is mainly from the
outer structure of the bacterial cell, such as the outer membrane and cell wall. However,
some of the inner cell components, such as DNA, RNA, proteins, and some metabolic
products, such as the oxidized form of nicotinamide adenine dinucleotide phosphate
(NADP+), nicotinamide adenine dinucleotide (NAD+), and adenosine triphosphate (ATP),
may leak out of the bacterial cell to the substrate and then yield SERS responses. Chemical
structures from both Gram-positive and Gram-negative bacteria are summarized in Table 2.
SERS peaks from these components reported in the literature are summarized in Table 3,
along with their possible assignments, which would provide some insights for assigning
peaks and understanding the origins of SERS peaks.

BioRender.com
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Table 2. The chemical structures of bacterial cells that may contribute to the SERS of bacteria.

Structure Chemical Constituents Gram

Cell wall

Peptidoglycan [110] Alternating polymers of NAM (N-Acetylglucosamine)
and NAG (N-acetylmuramic acid) +/−

Teichoic Acid [111] Polyribitol phosphate or glycerol phosphate is
cross-linked to peptidoglycan. +

Lipoteichoic Acid [112] Lipid-linked teichoic acid. +

Periplasmic Space [112] proteases, phosphatases, lipases, nucleases, and
carbohydrate-degrading enzymes −

Outer Membrane [112] Phospholipids with saturated fatty acids. −
Proteins [112] Porins and lipoproteins transport proteins. −

Lipopolysaccharide [112] Lipid A and core polysaccharide −
Other external structures

Capsule [113] Polysaccharides (disaccharides and trisaccharides)
and polypeptides. +/−

Pili [113] Pilin and adhesins. +/−
Flagellum [113] Motor proteins, flagellin. +/−

Biomarker Proteins [114,115]
For example, M proteins of streptococci and O antigen.

Staphyloxanthin for Staphylococcus sp.
Pyocyanin for Pseudomonas sp.

+/−
+
−

Other internal structures

Metabolic products [108] ATP, NAD, and NADP+ +/−
Proteins [9] Metabolic proteins +/−

DNA or RNA [9] Nucleotides +/−
+/−: Peptidoglycan layer is present in both Gram-positive and Gram-negative bacteria; however, it is much
thicker in Gram-positive bacterial cells.

Table 3. SERS peaks from the components that contribute to the SERS of bacteria.

Chemicals Peak Position
(cm−1)

Tentative Peak
Assignments Chemicals Peak

Position (cm−1)
Tentative Peak
Assignments

Cell wall Other external structures

Peptidoglycan
(NAG) [110]

SERS
(514.5 nm)

699 N/A Capsule N/A

815 N/A Pili N/A

964 N/A

Flagellum [113]
Raman

(532 nm)

903 N/A

1059 N/A
945 Skeletal CCN

deformation1236 N/A

1279 N/A 1003 Phe

1374 N/A 1246 Helix

1394 N/A 1320 N/A

1536 N/A 1453 CH2 rocking

1638 N/A 1662 Amide I
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Table 3. Cont.

Chemicals Peak Position
(cm−1)

Tentative Peak
Assignments Chemicals Peak

Position (cm−1)
Tentative Peak
Assignments

Teichoic acid [111]
Raman

(532 nm)

964 POH bending Other internal structures

1250 PO- bending

Cell plasma
SERS [108]
(514.5 nm)

735 N/A

1212 CN bending 1330 N/A

1322 CHOH bending 780 N/A

1452 CH 1050 N/A

1646 Amid II 1125 N/A

Lipoteichoic acid
[111,112] Similar to teichoic acid

1230 N/A

1435 N/A

Periplasmic space
[112] N/A

Metabolic products
(4-ATP) [108]

SERS
(632.8 nm)

1089 NH2 rocking

1176 CH bending

Outer membrane
proteins (Porins

and OmpA) [112]
Raman

(514.5 nm)

1553 Trp 1211 CN bending

1579 Trp 1286 CH stretching

1602 Phe
1492

CC stretching and
CH bending1613 Tyr

1669 Amide
1593

CC stretching and
NH2 bend.1734 N/A

Lipopolysaccharide
[112] Raman
(514.5 nm)

1612 N/A

Internal proteins
[9]

SERS-gold
(830 nm)

1250 Amide III

1652 N/A 1322 Adenine, guanine,
and Tyr

1726 N/A 1003 C(CC) aromatic
ring (Phe)

N/A Not available

1081 V(PO) in
oligonucleotides

DNA/RNA [9]
SERS-gold
(830 nm)

546 CO and POC
bending

795
V(PO2) and v(CC)

ring breathing

816 CO and POC

853 1,4 glysosidic link

4. Enhancing SERS Detection Performance
4.1. Different Types of SERS Substrates with Enhanced Sensitivity

As a valid and reliable detection platform, SERS-based biosensors need to be sensitive
due to the low concentration of pathogenic bacteria in clinical and food samples. The SERS
detection sensitivity of bacteria is mainly determined by SERS-active substrates. Different
types of substrates have been fabricated to facilitate sensitive detection of bacteria, including
silver metal deposits [22], silver colloid [9,26,53,116], gold colloid solutions [117], electro-
chemically roughened metal surfaces [118], silver film over nanosphere (AgFON) [119], silver
nanorod (AgNR) array substrates [63,120], silver nanocrystal-assembled silver nanospheres
(AgNSs) [65,120], silver-coated silicon nanowire arrays [119,121], and an array of Ag
nanoparticles embedded in anodic aluminum oxide (AAO) nanochannel substrates [122].
These nanostructures have been proven to have an enhancement factor (EF) from 107 to
1010 for small molecules [123,124].
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For the detection of bacteria, one key factor is the enormous size of the bacterium
(usually has a diameter of 0.5 µm and length of 1 µm) compared to the nanostructure
(tens to one hundred nm), which limits the contact and the distance between bacterium
and nanostructures [125]. The SERS principle indicates that the enhancement factor of
SERS active substrates can be increased by reducing the distance between bacteria and
nanostructures [126]. The distance can be minimized by physical force and chemical bonds.
For example, the antibiotic vancomycin was used to entrap bacteria as it can bind nonspecif-
ically to the cell wall [119,127]. The microscopic images of antibiotic-modified substrates
with bacteria showed a distorted cell edge, depicting the closer bond to the substrate and
enhancing the SERS effect 1000 times on lessening the distance [120]. The substrates are
chemically assembled using a method of production that uses electrohydrodynamic flow to
generate chemical cross-linking between colloidal gold nanospheres, resulting in optically
uniform SERS substrates. The produced substrates display SERS signals across an area of
100 × 100 µm2 with a relative standard deviation of 10.4%. Molecular signal amplification
is required in molecular diagnostics when the target molecule is identified due to the low
signal-to-noise ratio. The effectiveness of the Au nanostar dimer structures as a substrate
for SERS for the ultrasensitive and label-free detection of the pyocyanin molecule has been
established with a detection limit of 335 pM [128]. The bioscaffold with integrated array mi-
crochamber nanostructures was prepared; the quantitative test method was applied for the
in-situ detection of endotoxin released in the mixture of P. aeruginosa and bacteriostats [95].
A label-free and high-speed detection of Staphylococcus aureus, Klebsiella pneumoniae, and
Mycobacterium smegmatis bacteria using silver on anodic aluminum oxide nanoparticle
arrays as SERS substrates was reported, which would represent a novel approach for
microbial diagnostics and biosensing [129].

4.2. Bacterial Concentration Methods

Combining SERS with pre-concentration can aid in sensitivity, which can capture as
many microbes as possible in a fixed surface area with a large sample volume, such as
magnetic field, capillary action, and optical tweezers [78]. For instance, magnetic-plasmonic
nanoparticles were fabricated and used to enrich bacteria by applying an external magnetic
field. Based on this strategy, Escherichia coli K12, Pseudomonas aeruginosa, and Acinetobacter
calcoaceticus were detected with an LOD of 2 × 105 CFU/mL [73]. A simple two-step
filtration method that concentrates the bacteria up to 1000-fold before SERS measurements
can also be used with a recovery rate of 79.1% [120]. A liquid core photonic crystal fiber
(LCPCF), which is filled with the bacterial solution due to capillary force, exhibited a
limit of detection at 106 cells/mL of live bacterial cells of Shewanella oneidensis MR-1 was
achieved in an aqueous solution [46]. The detection of spores plays a pivotal role in early
detection, as the combined optical trapping of bacteria using optical tweezers with SERS
could capture and measure the single bacterial spore. Strain discrimination of Bacillus
stearothermophilus spores was also achieved [21]. A label-free SERS detection platform for
Bacillus anthracis spores using aptamer as capture, 104 CFU/mL spores spiked in orange
juice were successfully detected and discriminated between spores of Bacillus anthracis and
Bacillus mycoides within 40 min [130].

One of the most common methods to separate and concentrate bacteria from com-
plicated samples is immunomagnetic separation (IMS), which captures the bacteria from
the sample matrix using an antibody-antigen reaction and separates the complex with
magnetic force [121]. This strategy often includes magnetic nanoparticles that have been
linked to antibodies or aptamers, which are specific to the bacteria. After the magnetic
nanoparticles capture the bacteria, the applied magnetic field will separate them from
the sample matrix [31]. To simultaneously detect multiple bacteria using a SERS aptasen-
sor, the aptamer for Salmonella typhimurium and the antibodies of Staphylococcus aureus
and Escherichia coli O157:H7 were immobilized on the surface of gold, silver, and silver
core–shell nanoparticles, and then Raman dye molecules were marked on them. The
mixture was filtered to detect the Raman signal. The results showed that the multiple
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bacteria in the mixture could be distinguished simultaneously with a detection limit of
100 CFU/mL. Therefore, the studies have shown the high sensitivity exhibited by different
substrates [131].

4.3. Microfluidic SERS-Based Detection

Microfluidics integrates engineering, physics, chemistry, biochemistry, nanotechnol-
ogy, and biotechnology to precisely control and manipulate the behavior of fluids that
are geometrically constrained to a small scale, typically submillimeter. Since bacteria are
often detected within solution, and the SERS-active substrates are generally in a small
scale, it is natural to combine microfluidics with SERS to develop such lab-on-chip de-
vices for bacterial detection. A microfluidics chip coupled with SERS to rapidly detect
and differentiate methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus
(MRSA) from clinical isolates obtained from the United States and China. SERS was used
to effectively identify and distinguish between 21 MSSA isolates and 37 MRSA isolates
that were isolated from infected individuals, and the results were verified by using PCR
and multilocus sequence typing (MLST) [75,132]. A SERS microfluidic device to quickly
distinguish nine strains of Escherichia coli was developed [40], and a nanobiosensor chip
for detecting Escherichia coli bacteria down to the concentration level of a single bacterium
has been reported [133]. The chips used are highly enhanced plasmonic nanosculptured
thin films of silver on a silicon platform, which enhances the Raman bands of adsorbed
4-aminothiophenol molecules. T-4 bacteriophages were immobilized on the previously
mentioned chip for the specific capture of target Escherichia coli bacteria.

SERS in conjunction with microfluidic devices having micro/nano-filter membranes
or integrated microchannels functionalized with vertically aligned Au/Ag-coated carbon
nanotubes, were used to detect viruses [134]. Plasmonic Au-NPs help to further improve
the Raman spectra. These tools may be able to effectively capture viruses from a variety of
bodily fluids/secretions, such as saliva, nasopharyngeal secretions, tears, etc. Thus, they
can raise the viral titer and make it possible to correctly identify viruses based on their own
Raman signatures. It will enable quick screening of COVID-19 in both symptomatic and
asymptomatic cases [135].

Clinical Raman spectroscopy translation was proven to be greatly enhanced by the
combination of microfluidics and bioprinting platforms with SERS. As complex and effec-
tive as mixing, microfluidic systems make separation, parallelization, and multiplexing
possible. Hence, they can lessen the quantity of sample preparation processes needed,
lower the volume of samples and reagents needed, enhance sample uniformity, and boost
throughput. Additionally, the development of label-free SERS substrates and data process-
ing algorithms can enhance spectral signal and interpretability, which is critical for wide
pathogen screening assays, and the creation of microfluidic and bioprinting platforms is
achieved for speedy clinical sample processing [136]. Biosensors can serve as the corner-
stone of quick point-of-care devices with the potential to improve patient care when they
are coupled with cutting-edge microfluidic technologies.

4.4. Differentiation of Spectra Using Chemometric Analysis

A SERS-based bacterial detection platform must have the capacity to differentiate
bacteria between species, strains, and even serotypes, which is due to the variety of bacterial
pathogens present in real samples. Such differentiation can be based on the SERS response
of the bacterial whole cell, DNA, or even biomarkers [137]. The strains Mycobacterium indicus
pranii (MIP) and Mycobacterium intracellulare are two examples of those that have the same
16S rRNA sequence. MIP is significant since it has strong anticancer action and is utilized
as an adjuvant for protection against leprosy and tuberculosis (TB). The opportunistic
pathogen M. intracellulare, on the other hand, causes severe respiratory infections in AIDS
patients. Given that these two bacterial species coexist in immunocompromised people, it
is crucial to distinguish between them. Using multivariate statistical techniques like Raman
and resonance Raman spectroscopy, it is possible to clearly discriminate between these
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two closely related bacterial strains. To demonstrate that MIP is biochemically different
from M. intracellulare, differences in the mycolic acid profile and carotenoid pigments were
found. Both MIP and M. intracellulare generated carotenoids; however, the latter produced
more of them, according to resonance Raman tests [138].

To examine the metabolic processes of bacterial persister cells, coupled single-cell
Raman imaging spectroscopy with deuterium oxide labeling was performed. Deuterium
is taken up by metabolically active cells, which produce unique Raman bands as a direct
indication of metabolic activity. The metabolic activity of Mycobacterium smegmatis, a rapidly
proliferating model for Mycobacterium TB, using this imaging technique discovered that
M. smegmatis persister cells exhibit specific metabolic activities and active cell development
when the antibiotic rifampicin is present. Hence, the mechanism of persistence varies
depending on the kind of bacteria and antibiotics utilized [139]. Utilizing Ag-coated silicon
nanopillar SERS substrates, the biomarker of Mycobacterium tuberculosis, the SERS spectra of
three primary types of mycolic acid (MA)—alpha MA, methoxy MA, and keto-MA—that
together make up the entire amount of MA found in mycobacteria were effectively detected.
The MA generated from three separate sources underwent label-free characterization.
The SERS spectra of different types of MA from delipidated, undilapidated, and gamma-
irradiated MA can differentiate between pathogenic and non-pathogenic forms. Hence,
tuberculosis (TB) could be potentially directly detected from sputum samples [140]. How-
ever, in the presence of multiple bacteria in a sample, such as different serotypes and strains,
the SERS signal of bacteria can be used to differentiate them among species, strains, and
serotypes when the chemometric analysis is applied. Such chemometric analysis is proven
to be limited when a mixture of different bacteria is present. In the presence of multiple
bacteria, spectral features exhibited will depict an individual bacterium as it reports the
vibrational modes of chemical bonds. Using mathematical modeling methods can reveal
the individual spectra of the bacteria by differentiating [41]. However, such separation
of the spectra can only be achieved under the circumstances that (1) the SERS responses
of the individual bacteria retain the same intensity level and (2) the concentrations of the
individual bacteria are close. If one of the two conditions is not satisfied, it will result in
one bacterium SERS signal dominating the mixture spectra and masking the SERS signal of
the others, which makes differentiation impossible.

Immune-conjugated nanoparticles are the central component of immune SERS, which
are unique to the target bacterium. The immune molecules are also labeled with reporters
called Raman reporter molecules, exhibiting a strong and specific Raman spectrum. Hence,
by identifying Raman reporter molecules, bacteria can be distinguished. Using antibodies,
Escherichia coli [31,141] and Staphylococcus aureus [142,143] were successfully detected, and
multiplexing was achieved as well [144]. Aptamer can also be used in conjunction with
SERS for specific bacterial detection and differentiation. Multiplexing detection of bacteria
using aptamers, such as [130] the anti-Salmonella typhimurium aptamers, anti-Staphylococcus
aureus, and anti-Escherichia coli O157:H7 antibodies, were functionalized onto the Ag–Au
core–shell nanoparticles labeled with unique Raman reporter molecules. Specific detection
and differentiation between species (Escherichia coli O157:H7 vs. Salmonella typhimurium)
and strains (Escherichia coli O157:H7 vs. Escherichia coli K12) were achieved as low as 102

and 103 CFU/mL under 45 min of total detection time. Therefore, secondary confirmation
is mainly based on the target bacteria’s immunological properties and immune molecules,
with the use of antibodies and aptamers.

SERS signal of bacteria originates from the cell wall and proteins [88], which causes
visualization of differences in the spectra to be very difficult due to the similar chemical
structures of different bacterial cell walls [127]. Thus, chemometric analysis is commonly
used to enhance pattern recognition and facilitate species classification. It can also aid
the model calibration of the SERS spectra of bacteria with a variety of statistical formats,
including principal component analysis (PCA), hierarchical cluster analysis (HCA), par-
tial least square discriminant analysis (PLS-DA), partial least square regression (PLS),
discriminant function analysis (DFA), linear discriminant analysis (LDA), and support
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vector machine (SVM). On the contrary, a supervised method such as PLS-DA can also
be used, where previous knowledge of the classes of the bacteria is used to yield sharper
discrimination [120,145]. PLS-DA projects the data to a new set of coordinates, providing a
positive/negative prediction by using a linear combination of the predictor variables. It is
frequently used to differentiate bacteria based on well-known traits, such as Gram stain
results, that is, Gram-positive versus G-. Other methods can also be used, and based on
the study goals and the nature of the data, the appropriate chemometric methods can be
chosen. Several publications have used PCA, HCA, LDA, etc., with many different bacteria
up to 8 species, and such differentiations are easily possible as the structural variation
of species is notable [9,35,76,146–148]. For example, 27 different bacteria isolated from
12 species were analyzed using SERS spectra recorded from vancomycin-functionalized
(VAN) AgNR substrates. Researchers also explored the discrimination at subspecies levels
up to four serotypes of Salmonella [120] and 14 strains of Arthrobacter [149]. The biofilm
formation can also be identified as early as 3 h after inoculation with partial least squares
regression. Thus, it can be further developed for quorum sensing using SERS substrates
and machine learning and integrated into microfluidics [150].

Gram-positive Staphylococcus aureus and Enterococcus sp., as well as Gram-negative
Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, and
Enterobacter cloacae, were used to identify the many microbes responsible for urinary
tract infections. After growth on the culture medium, a fiber Raman probe and a Raman
spectrometer (830 nm) were used for Raman measurements. Colonies were removed from
the agar surface and put on an aluminum foil. After preprocessing, PCA and Mahalanobis
distance (PCA/MD) discriminating techniques were used on the spectra. The mean Raman
spectra of several bacterial species display comparable bands, and strong bands associated
with carotenoids served as a good way to identify S. aureus. PCA/MD, which could distin-
guish Gram-positive bacteria with 100% sensitivity and specificity [151]. The O-antigen,
or bacterial fingerprint, establishes the specificity of the bacterial serotype. Molecular
moieties in complex systems, like infections, can be identified from one another using
molecular fingerprints detected in vibrational spectra. In addition, the excellent sensitivity
and specificity attained by SERS make the benefits of vibrational Raman scattering ex-
ceptional. The primary spectroscopic distinctions between the O-antigens of E. coli O16
and S. typhimurium are provided by distinctive fundamental vibrational modes connected
to the monosaccharide N-acetylglucosamine and deformations of the O-antigen chains.
The indirect detection of Escherichia coli O16 and Salmonella typhimurium by extract-
ing, purifying, and characterizing the O-antigen using silver nanoparticles has also been
reported [66]. Fungal strains such as the human cryptococcosis can also be detected, such
as the human cryptococcosis, which is most frequently brought on by the two species of
Cryptococcus neoformans and Cryptococcus gattii. The identification of Cryptococcal infections
is challenging due to the lengthy detection cycle of Cryptococcus in clinical specimens. The
study directly differentiated between C. neoformans and C. gattii in clinical specimens using
SERS and spectrum analysis using positively charged silver nanoparticles (AgNPs) as a
substrate. The AgNPs self-assembled on the fungal cell wall’s surface through electrostatic
aggregation. Using PCA, the innovative SERS detection approach can clearly discriminate
between the Cryptococcus species [152]. Table 4 summarizes the literature on the analysis
used for differentiating bacteria based on their SERS spectra.
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Table 4. A literature summary on using chemometric analysis to differentiate bacteria based on SERS technique.

Chemometric Methods SERS Substrates Bacterial Samples Number of Bacteria Results and Conclusions

DFA-HCA; PCA [9] Silver colloid

Clinical bacterial isolates from patients with
UTI (Escherichia coli; Klebsiella oxytoca; Klebsiella

pneumoniae; Citrobacter freundii; and
Enterococcus spp. and Proteus mirabilis)

6 species, 5 strains
Discriminate between distinct

species and discriminate Escherichia
coli on strain level.

PCA, HCA, and DFA based on
the “barcoding method” [146]

Au-nanoparticle-covered
SiO2 substrate

Bacillus thuringiensis; Bacillus cereus; Bacillus
anthracis; Bacillus licheniformis; Mycobacterium

smegmatis; Mycobacterium fortuitum; Escherichia
coli; Salmonella typhimurium

8 species Species and strain separation

PCA, HCA, and PLS-DA [145] AgNR Mycoplasma pneumonia and clinical throat swab 1 specie, 3 strains

The throat swab samples spiked
with M. pneumonia, and actual

clinical throat swab samples were
correctly classified.

PCA [35] Internal deposition of silver
nanoparticles

Staphylococcus epidermidis and Escherichia coli
O157:H7 2 species

Differentiate Staphylococcus.
epidermidis, Escherichia coli O157:H7,

and their 1:1 ratio mixer

PCA [147] Au, ion-doped SiO2 sol–gel
Kembolar pneumonia, Escherichia coli,

Pseudomonas aeruginosa, Enterococcus faecalis,
and Staphylococcus aureus

4 species, 2 strains
Discriminate SERS spectra of

different bacteria and the culture
media in which they are grown.

PCA and SVM [40] Silver colloid incorporates a
microfluidic device Escherichia coli 9 strains Classification between strains with a

high correct rate

PCA [153] Silver nanoparticles Enterococcus faecalis; Streptococcus pyogenes;
Acinetobacter baumannii; Klebsiella pneumoniae 4 species Discrimination between G+ and

G-bacterial genera

PCA, LDA, and HCA [149] Roughened gold-coated
glass slides Arthrobacter strains 14 strains

Distinct molecular differences on
the surface of fourteen closely

related Arthrobacter strains; liquid
and solid cultures are distinguished

PCA [73]
Magnetic–plasmonic Fe3O4–Au

core–shell nanoparticles
(Au-MNPs)

Acinetobacter calcoaceticus, Escherichia coli K12,
and Pseudomonas aeruginosa 3 species Discriminate between species
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Table 4. Cont.

Chemometric Methods SERS Substrates Bacterial Samples Number of Bacteria Results and Conclusions

PCA and HCA [76] Gold nanoparticles (GNPs)

Salmonella typhimurium ATCC 50013, Salmonella
O7HZ10, Shigella boydii CMCC51514, Shigella

sonnei CMCC51529, Shigella dysenteriae
CMCC51252, Citrobacter freundii ATCC43864,

and Enterobacter sakazakii 154

6 species, 2 strains Discriminate between species and
serotypes

PCA [63] AgNR

Generic Escherichia coli; Escherichia coli O157:H7;
Staphylococcus aureus; Salmonella typhimurium

1925-1 poultry isolate, and Escherichia coli
DH 5a

3 species, 3 serotypes

Distinguish between distinct species,
differentiate pure cell samples from

mixed cell samples, and classify
different bacterial strains.

PCA and PLS-DA [120] VAN AgNR

Salmonella enterica serotype Anatum, Salmonella
enterica serotype Cubana, Salmonella enterica

serotype Stanley, Salmonella Enteritidis,
Escherichia coli O157:H7, and

Staphylococcus epidermidis

3 species, 4 serotypes
Differentiate between species and

serotypes in mung bean
sprout samples

PCA and machine learning
algorithm—RamanNet [79] AgNR

E. coli, S. typhmirium, S. minnesota, S. mileloti,
P. aeruginosa, M. catarrhalis,

H. pylori GU2, F. tularensis LVS, E. coli 0128B12,
E. coli 011B4, E. coli J5, and E. coli H100

6 species, 7 strains
Discriminate between distinct
species and discriminate on

strain level

PCA [96] AgNR
E. coli, S. typhimurium, S. minnesota, V. cholerae,

Rhizobium species R. CE3, and R. NGR, as well as
Neisseria meningitidis

6 species
SERS spectra can be used to

differentiate between the different
enteric LPS
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4.5. AI/ML-Enabled SERS Detection

In order to create links between spectral data and genetic variations, machine-learning
approaches might potentially be used. For instance, they might be used to track the genetic
change and evolution of bacteria and viruses or to research the real-time interactions
between diseases and medications (antivirals or antibiotics). The creation of novel antivirals
and antibiotics, as well as a better knowledge of the interactions between cells and drugs, is
aided by comparing the spectrum variations in the Raman bands for proteins, nucleic acids,
lipids, carbohydrates, and cholesterol. Finally, even in the absence of pharmacological
additives, machine learning may be utilized to forecast drug susceptibility and the lowest
inhibitory concentration [136]. The advancements in artificial intelligence combined with
SERS have enabled the development of rapid detection. The principal component analysis
(PCA) method has limitations due to the overlapped spectra and the presence of multiple
bacteria in different kinds of media; hence, with machine learning tools, it shows better
class separability and higher accuracy. The deep neural network called DualWKNet could
differentiate E. coli and S. epidermidis from different media like water, artificial urine, ground
beef solution, milk, and nutrient broth with a high accuracy of 98%. The DualWKNet,
with a lesser number of convolutional layers but a larger kernel size, could consider the
spectral features and differentiate the species with higher accuracy than PCA and logistic
regression [154]. Identification of MRSA and MSSA spectra could not be classified with
the naked eye, but peak intensity ratio differences and classification algorithms such as
k-nearest neighbors (k-NN), support vector machine (SVM), decision tree (DT), and naïve
Bayes (NB) can be used for differentiation [99]. With antimicrobial resistance being a rising
concern with the label-free SERS spectra of MRSA and MSSA appearing similar and the
AgNR exhibiting a higher signal-to-noise ratio. Hence, to differentiate with the use of a
stack autoencoder (SAE)-based deep neural network, where the SERS peak difference was
from the peptidoglycan layer. The performance of SAE-DNN was also compared with
other classifiers like SVM and KNN, which show higher accuracy from raw data without
preprocessing. This can also be used for rapid clinical detection of AMR [155].

A convolutional neural network (CNN) [156] trained on datasets of SERS was used
to identify clinical samples, enabling better treatment outcomes. It fastens the process
for accurate detection without conventional culture techniques. The training reference
dataset was of 30 bacterial species and yeast; the binary CNN could differentiate between
MRSA and MSSA with an accuracy of 89.1 ± 0.1%. The clinical samples were also used
to refine the detection accuracy, which, in turn, increased the accuracy by 99.0 ± 1.9%
for 50 samples [157]. A novel CNN, RamanNet, for the sole classification of SERS, has
been developed for endotoxin detection. The algorithm was trained with spectral data of
11 bacterial LPS and has an accuracy rate of 100%. It is a densely connected form of neural
layer network, using the triplet loss feature, which helps in reducing the dimensionality
of data [80]. Bacterial identification using CNN and Siamese networks was compared;
Siamese networks are made of a pair of CNN, and various other machine learning tools
like PCA-LDA, PCA-SVM, PLS-DA, and PCA-RF were compared. The networks were
assessed on their sensitivity and other parameters like predictability and time for training.
Siamese model showed the highest level of sensitivity for bacterial detection [158]. The
16 different sequence types of Klebsiella pneumoniae could be differentiated by SVM, which
was in correlation with multilocus sequence typing [47]. The carbapenem-sensitive and
resistant strains of K. pneumoniae could also be differentiated by using CNN [159].

The SERS spectral recognition feature is another novel machine learning approach
like facial recognition, wherein it matches the database. The characteristic peak similarity
(CaPSim) method was used for spectra from three different substrates of AgNR, AuNP,
and Au NS, considering the variability of data. Hence, it has shown high accuracy in
the detection of chemicals [160]. Clinical translation is slowed by various factors such
as issues with spectral enhancement consistency, difficulty in interpretation of spectrum,
inadequate specificity, sensitivity, and an inefficient procedure from patient sample col-
lection to spectral capture. To overcome these shortcomings, new capture and affinity
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agents, such as aptamers and polymers, and artificial intelligence will indicate the specific
pathogens presence or absence. The creation of a database of the standardized spectrum can
help to increase reproducibility and find applications in microbiological laboratories [156].
Therefore, the advent of machine learning has enabled the clinical translation of the SERS
technique for culture-free detection of microbes and complex samples.

Reproducibility of SERS

One of the significant concerns related to the practicability of SERS has been the re-
producibility of the data for various reasons, such as the different instruments in use. The
instruments can show variability in results due to the equipment’s power, acquisition time,
and calibration with standards. The samples need to be prepared using a similar protocol of
incubation and centrifugation to reduce variability. The substrate fabrication can affect the
variability; therefore, the uniformity of the monolayers needs to be maintained [101,102].
The AI-based data analysis can help as a database to reduce variability, such as RamanNet,
which has been developed solely for SERS. RamanNet has been used with five different
instruments to analyze the results, showing high accuracy (unpublished). It helps evade
the critical issue of data reproducibility by measuring various bacterial biomarkers and
reducing variability [79]. Therefore, with AI, SERS can mitigate the problem of repro-
ducibility to a certain extent to be applied in clinical diagnostics. In general, SERS-based
detection of bacteria has improved in the past decade. In the future, this sensitive method
will be promising for detecting single bacteria in the real-world matrix by constructing
SERS substrates with high activity or combining different techniques.

4.6. Detection of Microbes in Complex Samples

For the SERS-based detection platform to have a major impact in the field of detection
of bacteria, the developed biosensors must detect bacteria in real samples, such as food
samples [149] and clinical samples [127]. Studies of the detection of bacteria using SERS
in real food samples are limited due to the complicated nature of the food matrix, which
contains molecules like target pathogenic bacteria [65]. To solve the problem, a separation
and detection method of many pathogens in food matrices by silica-coated magnetic probes
(MNPs@SiO2) [121]. A sandwich assay was used to capture the target microorganisms
directly from a food matrix, and these probes were functionalized with pathogen antibodies.
Subsequently, AuNPs in combination with Raman reporter are also functionalized with
particular antibodies. These probes with specific pathogen antibodies can capture the
target bacteria directly from a food matrix, and the sandwich assay was formed using
AuNPs with a Raman reporter functionalized with corresponding antibodies. With this
assay, Salmonella enterica serovar Typhimurium and Staphylococcus aureus were detected
in spinach solution and peanut butter as low as 103 CFU/mL. These species are found
to have infective doses varying from 10 to 108, wherein the sensitivity of the assay can
be increased by filtration of the sample before analysis. A label-free SERS-based bacteria
detection in real food samples was reported [120] with VAN AgNR substrates used to
directly detect pathogenic bacteria from mung bean sprout samples after a simple two-step
filtration procedure. With this method, 100 CFU/mL of bacteria were identified from
mung bean sprout samples, and differentiation between bacterial species and serotypes
was achieved. One of the most dangerous pathogenic bacteria associated with foodborne
illnesses is Escherichia coli O157:H7. SERS-based lateral flow immunoassay (LFIA) is a
rapid detection biosensor for the sensitive and quantitative measurement of E. coli O157:H7
in biological samples. High-performance tags for the LFIA system based on SERS were
created using a new monodispersed gold-shell silica-core (SiO2/Au) nanosphere (NP),
with exceptional stability and great SERS activity. On the test lines, the SiO2/Au SERS
tags that were modified with two layers of Raman reporter molecules and monoclonal
antibodies successfully attach to E. coli O157:H7 and form sandwich immune complexes.
Observing the test lines Raman intensities, E. coli O157:H7 was quickly and quantitatively
identified. Such applications can be utilized in the detection of biological samples like tap
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water, milk, human urine, and lettuce extract of biological samples like tap water, milk,
human urine, lettuce extract, and beef [161]. The foodborne pathogens can be detected
by SERS on AgNR substrates by organisms such as Salmonella, Staphylococcus aureus, and
Escherichia coli O157:H7. A silver colloidal nanoparticle suspension along with the cells
could be detected at 785 nm. The assay exhibited a rapid and very sensitive detection,
followed by spectral data reduction of PCA and HCA to distinguish between species [162].
A particular single-stranded DNA aptamer is utilized to specifically capture and label
Salmonella enteritidis. The modification with an extra adenine and fluorescein (FAM) was
employed as an indicator for the presence/absence of Salmonella enteritidis. The aptamer
signals were obtained by further filtering of gold nanoparticles, and they were then utilized
to build a SERS mapping showing the presence and absence of target bacterial strains
with possible quantitative capacity. This study shows the filtration-based SERS platform’s
capacity to detect Salmonella enteritidis in a range of aqueous matrices, including distilled
water and the water used to rinse fresh produce, with good selectivity and sensitivity [163].

Besides food and environmental samples, human/animal body fluid samples are one
of the most important complexes, especially for clinical diagnostics. AgNR substrate-based
SERS are used for the detection and differentiation of Mycoplasma pneumoniae in culture
and in spiked and true clinical throat swab samples [145]. High sensitivity and specificity
were reported with the assay, and a lower detection limit exceeded standard PCR. The use
of vancomycin coated with anodic aluminum oxide substrates to directly detect bacteria
in human blood samples has also been reported [127]. The bacteria capture property of
vancomycin eliminates interference from human blood, thus producing a successful detec-
tion. A similar strategy was used to selectively capture bacteria from blood samples with
vancomycin-coated silver–gold bimetallic SERS substrates [71]. Escherichia coli, Salmonella
enterica, and Staphylococcus epidermidis are successfully detected in blood samples with SERS.
For precise and speedy, label-free electrochemical detection of harmful food-borne bacteria
like Salmonella enterica, a biosensor employing reduced graphene oxide-carbon nanotubes
(rGO-CNT) nanocomposite has been developed. The nanocomposite was then cast onto the
glassy carbon electrode and then further altered using DNA aptamers that had undergone
amination. The resulting ssDNA/rGO-CNT/GCE aptasensor was then employed using
the differential pulse voltammetry (DPV) approach to identify bacteria. With a limit of
detection of 101 CFU/mL under ideal experimental circumstances, the aptasensor could de-
tect S. typhimurium throughout a large linear dynamic range from 101 to 108 CFU/mL [164].
Due to the quick onset and high fatality rates of bacterial meningitis, prompt identification
of germs present in the cerebral spinal fluid (CSF) and subsequent efficient treatment
are essential. A new quantitative assay to identify the three microorganisms that cause
bacterial meningitis, combining SERS and lambda exonuclease, was reported. A processive
enzyme called I-exonuclease breaks down one strand of double-stranded DNA that has a
terminal 5-phosphate group. The novel assay format entails the simultaneous hybridization
of two complementary DNA probes, one of which contains a SERS active dye, to a target
sequence, followed by the digestion of double-stranded DNA with I-exonuclease and
the detection of the digestion by SERS of the resultant material. In a multiplexed assay,
three meningitis pathogens were effectively detected with predicted detection limits in
the pico-molar range, providing quick results. This is the first paper to demonstrate that
the quantification of each pathogen is achievable by combining partial least squares (PLS)
regression with the distinctive spectral characteristics of the SERS signals [165].

Urinary tract infections (UTIs) are a major concern as over 60% of women develop a
UTI during their lifetime, and it can cause nosocomial infections. The conventional culture
method requires 24 h to obtain results using Raman-based methods to identify bacteria by
single bacterial cell analysis and in suspension using dielectrophoretic forces. There was no
hindrance caused by the antibiotics or any growth-inhibitory substances. The detection
method in suspension requires the sample to be placed in the chip with four gold electrodes
and can be identified from the established database. The detection of vancomycin-resistant
and sensitive strains of enterococci using Raman-based methods can be identified rapidly
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based on the molecular changes caused by the drug action that affect the Raman spectra.
Changes are seen just after 30 min when the drug concentration is above the minimum
inhibitory concentration. The method could differentiate and identify Enterococcus faecalis
strains as sensitive or resistant and can be applied to real-world samples [166]. The direct
detection of UTI-related pathogens is performed without sample pretreatment (Escherichia
coli CFT 073, Pseudomonas aeruginosa PAO1, and Proteus mirabilis PRM1) using SERS chips,
which capture negatively charged bacteria [167]. Hence, as a diagnostic tool for UTI, Raman
spectroscopy should be able to (1) determine whether urine sample results are positive or
negative based on the bacterial burden for UTI, (2) identify the microorganism responsible
for the positive samples, and (3) determine the antibiotic or antibiogram sensitivity of the
implicated microorganisms. SERS could be further developed as a point-of-care device to
detect UTIs [168].

5. Challenges and Opportunities

Due to technical limitations, the SERS-based detection of bacteria has faced increased
challenges and opportunities. Earlier Ag NPs were used as the SERS substrates for detecting
bacteria, which is easily affected by the external environment, thus resulting in weak
reproducibility. As a result, common bacteria can be detected at the strain level and
identified only at this period, such as Escherichia coli, Pseudomonas, Staphylococcus, and
Salmonella. The differences in the SERS spectra of the bacteria were small, and the volume
ratio of analyte to silver colloidal particles must be within a narrow range of values [110].
To broaden the species of bacteria detected by SERS, a variety of specific SERS-active
substrates have been fabricated. Endotoxins, such as LPS, act as pollutants and affect
Au NP. The investigation was contrasted with LPS-coated surfaces, coatings with tiny
molecules (lipoic or citric acid), which show high binding, and bulk molecules (branched
polyethylenimine-BPEI and polyethylene glycol-PEG), which demonstrated substantial
repulsion to inhibit LPS binding [169].

Despite its excellent sensitivity, a problem for bacteria detection by SERS is how to
achieve the higher detection sensitivity. Different pre-treatment strategies were combined
with SERS, which improved the detection sensitivity. A facile synthesis of Au-coated mag-
netic nanoparticles as SERS substrate for the indirect detection of Staphylococcus aureus by de-
tecting the reporter molecule, which showed an excellent detection limit of 10 cells/mL [59].
Rapid and sensitive detection of Salmonella showed a better calibration curve obtained
in the range of 15 to 1.5 × 106 CFU/mL [64] using the Au@Ag core/shell nanoparticles
as SERS substrate. The most attractive aspect of bacterial detection is sensing bacteria
in the real-world matrix. The magnetite-gold nanoparticles were used for Escherichia coli
detection in apple juice [48], which shows an effective way of pre-concentration, separation,
and detection of low levels of target pathogen (102 CFU/mL) from liquid food matrix.
Two different nanostructures, the Au@pNIPAM hydrogel with embedded Au nanorods
and the mesostructured Au@TiO2 substrate with a mesoporous TiO2 thin film over a sub-
monolayer of Au nanospheres, were used to detect Pseudomonas aeruginosa in vivo [55].
Escherichia coli and Staphylococcus aureus were detected in different fluids, such as blood,
urine, water, or milk, using a polymer mat covering a layer of gold as a SERS substrate [50].

Label-free assays make it simple to prepare samples and provide quantitative real-time
measurements, but they are susceptible to matrix effects and non-specific bindings. While
the multistep methods for labeled assays make them slightly more difficult, the inclusion
of numerous binding events boosts specificity, and amplification tags improve sensitivity.
When combined, labeled assays seem to have a stronger chance of being translated into the
clinic, especially when working with real samples. There are also challenges in integrating
these components into a fully automated, standalone platform that can be used by end
users without technical skills and a generalized integrated system that can handle a greater
variety of clinical samples, including urine, blood, and saliva for various infectious viruses
or bacteria [170].



Biosensors 2024, 14, 375 23 of 30

Several analytes found in real-world samples, including bodily fluids, contaminants
found in soil, and explosives, are disseminated in liquid, solid, or air phases. The develop-
ment of a platform that can accurately and specifically identify these analytes in each of
these stages is still a difficult task. The single-cell era of microbiology research has been
made feasible by the union of Raman-activated cell sorting (RACS) and single-cell Raman
spectra (SCRS) with distinctive fingerprint properties. Systems for Raman-activated Cell
Sorting (RACS) are important tools for identifying the genotypes and phenotypes of certain
bacteria [171].

The creation of sensitive and quick methods for viral detection has become crucial
during the COVID-19 pandemic. A SARS-aptasensor based on colloidal solutions, which are
rapid and specific to quantitatively determine the SARS-CoV-2 virus and distinguish it from
other respiratory viruses, is one such method. For the separation of a truly straightforward
and secure biofluid-like saliva from a current or past infection by SARS-CoV-2, an alternate
Raman technique was recommended. The COVID-19 patient signal could be distinguished
using the Raman-based classification model with accuracy, precision, sensitivity, and
specificity of greater than 95% [172].

6. Conclusions

This review highlights the recent developments in microbial detection using SERS
over the last decade, highlighting how these assays perform better in complicated samples
in terms of sensitivity and specificity. These studies demonstrate that SERS-based detection
methods could rapidly detect low concentrations of bacteria with high sensitivity as well
as specificity. The differentiation between bacterial species, strains, and serotypes could
be successfully achieved among various bacteria, either through chemometric analysis
of the bacterial SERS signal or by using secondary confirmation. The synergistic use
of microfluidics utilizes the advantages of SERS and subsequently develops numerous
lab-on-chip devices. Although these exciting research results dramatically advanced the
field compared with just a decade ago, the research on the practical use of SERS for
real-world samples is limited. Perhaps the greatest barriers to a widely accepted SERS
platform in the industry are the relatively prohibitive cost of SERS-active substrates, the
complexity posed by the various biological and environmental samples, and the presence
of multiple organisms in a sample. Nowadays, SERS is recognized as a valuable option for
biological and chemical analytics, and with AI, it will be utilized as a powerful and reliable
detection platform.
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