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Abstract: Over the past decades, feature-based statistical machine learning and deep neural networks
have been extensively utilized for automatic sleep stage classification (ASSC). Feature-based ap-
proaches offer clear insights into sleep characteristics and require low computational power but often
fail to capture the spatial–temporal context of the data. In contrast, deep neural networks can process
raw sleep signals directly and deliver superior performance. However, their overfitting, inconsistent
accuracy, and computational cost were the primary drawbacks that limited their end-user acceptance.
To address these challenges, we developed a novel neural network model, MLS-Net, which integrates
the strengths of neural networks and feature extraction for automated sleep staging in mice. MLS-Net
leverages temporal and spectral features from multimodal signals, such as EEG, EMG, and eye
movements (EMs), as inputs and incorporates a bidirectional Long Short-Term Memory (bi-LSTM)
to effectively capture the spatial–temporal nonlinear characteristics inherent in sleep signals. Our
studies demonstrate that MLS-Net achieves an overall classification accuracy of 90.4% and REM state
precision of 91.1%, sensitivity of 84.7%, and an F1-Score of 87.5% in mice, outperforming other neural
network and feature-based algorithms in our multimodal dataset.

Keywords: MLS-Net; ASSC; eye movements; multimodal signal

1. Introduction

Sleep and wakefulness are self-regulatory states of the body that are closely associated
with numerous physiological processes. These processes include cognition, learning and
memory, brain homeostasis, and various diseases [1,2]. Sleep disorders, such as sleep
apnea [3], insomnia [4,5], cataplexy, and narcolepsy [6,7], represent one of the serious
problems of modern society. Animal experiments have provided invaluable insights
into the mechanisms underlying sleep regulation and sleep disorders [5,8,9]. Given the
substantial reliance on rodent models in sleep research, developing rodent ASSC capable
of discerning wake–sleep states for rodents would be greatly helpful for the diagnosis of
disease and practice in preclinical sleep research [8]. However, rodent ASSC faces two
major challenges: first, there is an urgent need to explore an appropriate model that can
achieve high performance; second, the impact of multi-modal signal integration on the
performance of automatic scoring algorithms is unclear.

The approaches applied to rodent ASSC can be delineated into two principal modal-
ities [10]. The one is a conventional feature-based statistical machine learning approach,
while the other involves a deep neural network. Feature-based statistical machine learning
feeds the pre-defined feature vectors into vector-based classifiers such as support vector
machine (SVM) [11,12], random forest (RF) [13], linear regression (LR), eXtreme Gradient
Boosting (XGBoost) [14], linear discriminant analysis (LDA) [15], and so on. Deep neural
networks process raw sleep biosignals directly, feeding them into well-designed neural net-
works for feature extraction and stage classification. This approach has gained popularity
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due to its outstanding performance [16]. Despite the widespread application of deep neural
networks, they present significant limitations. First, their generalization capabilities are
often inadequate, particularly when applied to datasets involving animals from different
experimental studies [17]. Second, the inherent complexity of these networks can result
in the unintended capture of noise, which exacerbates overfitting [18,19]. This issue not
only reduces the accuracy of the models but also impedes their practical application in
real-time sleep scoring and sleep intervention [20]. This results in significant variability in
accuracy, with reported performance ranging from 71.0% to 92.2% [21]. In contrast, feature-
based approaches enable users to have clear information about the sleep characteristics
underpinning the scoring process with a low energy cost [21]. However, they typically
analyze each segment of data independently based on the pre-defined features and prior
knowledge, without considering the spatial–temporal context. This limitation prevents
them from extracting deeply concealed nonlinear characteristics from the signals, leading
to less accurate classification [22].

Currently, rodent ASSC primarily relies on EEG and/or EMG signals due to the small
size of rodents [23], which limits the acquisition and application of multi-modal physio-
logical signals. Although alternative studies in humans have demonstrated the benefits of
incorporating multi-modal signals [21] such as electromyogram (EOG), electrocardiogram
(ECG) [24], respiration, snoring [25], and oxygen saturation [26] for improved classifica-
tion performance [20,27], this approach has not been widely adopted in rodent research.
Eye movements (EMs), as a fundamental indicator in distinguishing REM from NREM
sleep [28], have significant potential to enhance the performance of ASSC in rodents, yet
their application remains rare. Moreover, despite the extensive use of rodents like mice in
preclinical sleep studies, there is a notable lack of publicly available multi-modal physiolog-
ical datasets for rodents. Unlike human ASSC, which benefits from numerous open datasets
for model validation, existing mouse sleep datasets, such as AccuSleep [29], UTSN-L [30],
and SPINDLE [17], are limited to EEG/EMG data. The absence of a common multi-modal
dataset contributes to discrepancies in published results across different research teams [23],
highlighting the critical need for establishing an open multi-modal physiological dataset
for mice to accelerate integrative physiology as well as behavioral studies.

To solve these dilemmas, we designed a neural network, MLS-Net, that combines the
strengths of neural networks and feature extraction based on multi-model physiological
signals for automated sleep staging in mice (Figure 1). The core innovation of MLS-Net lies
in: (1) a tailor-designed bi-LSTM’s proven capability in handling sequences and its effec-
tiveness in capturing the spatial–temporal nonlinear characteristics inherent in consecutive
sleep states during sleep; and (2) employs time–domain and frequency–domain expert
features of multimodal signals, especially EMs, as inputs, which provides deterministic
expert knowledge. This design can effectively address the issue of traditional deep neural
networks experiencing a marked decline in classification accuracy for specific sleep stages,
such as the REM stage [17]. Our studies, conducted on a robust dataset, show that MLS-
Net achieves an impressive overall accuracy of 90.4% among other neural networks and
feature-based algorithms. Notably, it excels in REM sleep detection, achieving a precision of
91.1%, a sensitivity of 84.7%, and an F1-Score of 87.5% in mice. These results underscore the
advantages of using multimodal data and advanced neural architectures in sleep research.
The main contributions of this work are summarized as follows:

(1) We propose a novel rodent automatic sleep classifier, MLS-Net, that demonstrates
superior performance compared with other classifiers, achieving an overall accuracy
rate of 90.4%.

(2) Our proposed model is based on a multimodal paradigm that takes multimodal
signals (EEG, EMG, and EMs) as input. The employment of EM signals enhances the
detection of REM sleep, achieving a precision of 91.1%, sensitivity of 84.7%, and an
F1-Score of 87.5% in mice.

(3) We will open-source this multimodal dataset to foster broader research in sleep studies.
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(4) Our system achieves an inference time of 86.1 s for 24 h sleep recordings, which show
strong potential for real-time applications.
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In recent years, deep neural networks, such as convolutional neural networks 
(CNNs) [36,37], recurrent neural networks (RNNs) [38], long short-term memory (LSTM) 
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an attention-based CNN-LSTM approach for sleep–wake detection using acceleration and 
heart rate variability and achieved 94.8% accuracy. However, the difficulty of collecting 
acceleration and heart rate data makes it unsuitable for further application. 

  

Figure 1. The framework of a MLS-Net model using multimodal physiological signals. In MLS-Net
model, the multimodal signals, including EEG, EMG, and EM signals, were collected from sleeping
mice. The feature vectors of time–domain and frequency–domain were fed into bi-LSTM and then
bi-LSTM using the feed-forward multi-layer perceptron (MLP) to compute the output probability of
each sleep stage to identify the target of the signal.

2. Related Works
2.1. Different Approaches for ASSC in Human Dataset

Feature-based statistical machine learning approaches leverage pre-defined features as
input. Classification accuracies vary significantly among the different classifiers reported
in the literature, ranging from 70% to 94% [31]. Sanders et al. [32] proposed that a linear
discriminant analysis (LDA) classifier achieved an average accuracy of 75% in ASSC using
average power and cross-frequency coupling features extracted from EEG. Ra Boostani
et al. [33] carried out a comparative review of several machine learning classification
techniques used in ASSC and found that the RF classifier achieved a higher accuracy of
87.49% in healthy humans compared with KNN, SVM, and linear discriminant analysis
(LDA). Similarly, Rahman et al. [34] reported that SVM (89.9%) and RF (90.2%) performed
consistently better in terms of overall accuracy compared with RUSBoost on the SleepEDF
dataset. Yoon et al. reported the encouraging performance of KNN with an accuracy
of 98.65% using multi-modal signals, which has been adopted for sleep monitoring in a
home-adapted device [35].

In recent years, deep neural networks, such as convolutional neural networks
(CNNs) [36,37], recurrent neural networks (RNNs) [38], long short-term memory (LSTM) [39],
deep belief networks (DBNs), and combinations of different network architectures [40,41],
have been widely used in ASSC due to their capacity to handle large datasets effectively.
For example (Table 1), Pei et al. [16] achieved an accuracy of 83.15% in ASSC using CNN
and the gated recurrent unit (GRU) network on multichannel EEG data from the human
sleep database. Integrating GNN with bidirectional GRU, Einizade et al. [42] reported an
accuracy of 83.8% using multi-modal signals from the Sleep-EDF dataset. Awais et al. [43]
designed a fusion model by integrating a DCNN with a SVM, achieving an accuracy of 93.8%
in neonatal sleep stage classification using facial expression video data. The most impressive
accuracy was reported by Mousavi et al. [44], who proposed an attention-based CNN-LSTM
approach for sleep–wake detection using acceleration and heart rate variability and achieved
94.8% accuracy. However, the difficulty of collecting acceleration and heart rate data makes it
unsuitable for further application.
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Table 1. Summary of different sleep-stage algorithms in human.

Type Classifier Dataset Channels Accuracy Ref.

Machine learning
algorithm

Dendrogram multi-class
SVM 15 subjects EOG, EMG, EEG 88% 2015 [45]

RF Sleep–EDF dataset and CAP
sleep dataset EEG 87.49% 2017 [33]

SVM Sleep-EDF, Sleep-EDFX and
ISRUC-Sleep databases EOG

SVM: 89.9%
2018 [34]RF RF: 90.2%

RUSBoost RUSBoost:88.6%
KNN 10 subjects PSG 98.65% 2022 [35]
SVM; 10 subjects EEG, ECG, PPG, EOG SVM: 70.05% 2023 [46]RF; RF: 70.75%

SleepBoost; CatBoost;
GBoost; RF

20 recordings from Sleep-EDF
dataset EEG, EOG, EMG 86.30% 2024 [47]

Neural network

DNN MIT-BIH database (18 subjects) EEG, ECG 73.70% 2018 [48]

RNN+CNN Montreal Archive of Sleep
Studies (200 subjects) EEG, EOG, EMG. 87.10% 2019 [49]

MLP 30 s segments from 19 EEG 82.53% 2020 [50]

CNN 42 recordings from University
Hospital of Leuven EEG 64% 2020 [51]

CNN+GRUs SHHS (700 subjects) EOG, EMG, EEG 83.15% 2020 [16]

DCNN+SVM
19 Chinese neonates at the

Children’s Hospital of Fudan
University

Vedio, facial
expressions 93.80% 2021 [43]

CNN + LSTM Clinical dataset HRV + acceleration 94.50% 2021 [44]

GNN+bi-GRU
MASS; EOG, EMG, ECG,

EEG
86.70% 2023 [42]SleepEDF dataset 83.80%

Traditional machine
learning and deep

learning techniques.

100 recordings from ISRUC and
197 recordings from
Sleep-EDFx dataset

EEG, EMG, ECG

ISRUC dataset:

2024 [52]80.30%
Sleep-EDF dataset:

81%

Notation: RF: random forest; RUSBoost: random under-sampling boosting; SVM: support vector machine;
CatBoost: categorical boost; RNN: recurrent neural network; CNN: convolutional neural network; MLP: multi-
layer perceptron; LSTM: long short-term memory; DNN: deep neural network; DCNN: deep convolutional
neural network; GRUs: gated recurrent units. ECG: electrocardiogram, EEG: electroencephalogram, EMG:
electromyogram, EOG: electrooculogram, HRV: heart rate variability. PSG: polysomnogram.

2.2. Different Approaches for ASSC in Mice

The use of animal models is critical in preclinical research for circadian rhythm studies,
disease modeling, and sleep monitor equipment development [23,53]. While ASSC has
made significant progress in clinically utilizing multi-modal physiological signals, research
in mice predominantly relies on single-modal signals such as EEG or EMG alone or a
combination of EEG and EMG [23]. Various machine learning algorithms have been
applied to rodent sleep classification, yielding promising results as shown in Table 2. While
the success of these approaches has varied, the most effective methods have achieved
approximately 92% accuracy in categorizing the three states of sleep–wake behavior [54].
For instance, Gross et al. [55] developed an open auto-scorer system based on complex
Boolean logical decisions, achieving an accuracy of 80.24% using EEG and EMG signals
in rats. Brankačk et al. [15] employed a linear discriminant analysis (LDA) classifier to
predict vigilance states from 73 variables extracted from EEG data, attaining an accuracy
of 89% in 10 mice. Rempe et al. [56] applied a hybrid approach combining principal
component analysis (PCA) and a Naive Bayes classifier (NBC) for sleep classification using
EEG and EMG signals. Although they achieved an overall accuracy of 90%, the accuracy
for detecting REM sleep was only 70%. Svetnik et al. [13] compared the performance of the
SVM algorithm with that of a deep neural network in mice, finding that the SVM achieved
a comparable accuracy of 81%, only slightly lower than the 83% accuracy obtained with
the deep neural network. In another study, Fraigne et al. [54] developed a novel ensemble
learning approach, SleepEns, built on the Time Series Ensemble, which achieved 90%
accuracy relative to expert scorers in mice. In contrast to the use of a single classifier, Gao
et al. [12] proposed that employing multiple classifier systems is a more effective approach
to improving the accuracy of automated sleep scoring.

Recent advancements have leveraged neural networks that utilize large amounts of
training data and computational power to generate accurate predictions, eliminating
the need for preliminary feature extraction. Exarchos et al. [57] applied a CNN-based
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method, achieving a mean accuracy of approximately 85–90% for REM sleep detection.
Tezuka et al. [30] developed UTSN-L, which processes single-channel EEG signals using
a CNN combined with a LSTM network to incorporate historical information, reaching
an overall accuracy of 90% in the mouse dataset. Yamabe et al. [58] generated the MC-
SleepNet model using the same stratagem as UTSN-L and obtained 96.6% accuracy on
a large-scale dataset. Pawan K. Jha et al. [59] created SlumberNet, which leverages the
ResNet architecture for sleep scoring using EEG and EMG signals and excels with 97%
overall accuracy. Although those state-of-the-art models achieved impressive accuracy
in intra-lab validation, it also raises the concern of generalizing those models. Three
publications [13,17,60] have described scoring algorithms validated across different
datasets or species. To address the generalization challenges of ASSC in animals, Mi-
ladinović et al. [17] developed SPINDLE, a hybrid deep learning model incorporating
a hidden Markov model (HMM) and CNN architecture. Empirical evidence indicates
that SPINDLE effectively classifies sleep stages with an accuracy range of 93–99% while
exhibiting robustness across diverse laboratory datasets. Similarly, Svetnik et al. [13]
employed a CNN-based approach for sleep–wake scoring in non-human primates and
other animals, achieving test accuracies of 75% for macaques, 83% for mice, 78% for
rats, and 73% for dogs. Furthermore, Kam et al. [60] proposed the WSN, which utilizes
wavelet-transformed images of mouse EEG/EMG signals. Their method achieved an
accuracy of 86%, validated through a leave-one-subject-out (LOSO) approach on their
dataset, as well as validation with an external dataset.

Table 2. Summary of different sleep-stage algorithms in mice.

Type Classifier Dataset Channels Validation Accuracy Ref.

Machine learning
algorithm

Auto-Scorer 6 rats EEG, EMG Intra-lab 80.24% 2009 [55]
LDA 10 mice EEG Intra-lab 89% 2010 [15]

PCA/NBC 12 mice EEG, EMG Intra-lab 90% 2015 [56]

RF

Rhesus macaques,

EEG, EMG and ACT Across-species

Macaques: 66%

2020 [13]Mice, Mice: 81%
Rat, Rat: 77%
Dog Dogs: 64%

SleepEns 28 mice EEG, EMG Intra-lab 90% 2023 [54]

Neural network

HMM + CNN
14 mice and 8 rats EEG, EMG Cross-Lab 93–99% 2019 [17](SPINDLE dataset)

CNN + LSTM
Large-scale dataset
(4200 recordings); EEG, EMG Intra-lab 96.60% 2019 [58]

Small dataset (14 recordings)

CNN

Rhesus macaques,

EEG, EMG and ACT Across-species

Macaques: 75%

2020 [13]Mice, Mice: 83%
Rat, Rat: 78%
Dog Dogs: 73%

CNN 7 mice EEG, EMG Intra-lab 85–90% 2020 [57]

CNN-LSTM 216 recordings (UNST-L
dataset) EEG Intra-lab 90% 2021 [30]

CNN
20 mice from intra-lab; Image dataset from

EEG, EMG Intra and cross-lab
Intra-lab: 86% 2021 [60]AccuSleep dataset Cross-lab: >85%

Residual
5 mice EEG, EMG Intra-lab 97% 2024 [59]Networks

Pre-defined features
and LSTM-MLP

7 mice from intra-lab; EEG, EMG, EMs Intra-lab Intra-lab: 90.4%
Our workAccuSleep dataset cross-lab Cross-lab: 89.9%

Notation: LDA: linear discriminant analysis; PCA: principal component analysis; NBC: naive bayes classifier; RF:
random forest; residual networks: based on a two-dimensional convolutional layer (Conv2D); ACT: locomotor
activity; HMM: hidden Markov model.

2.3. Comparisons of MLS-Net with Prior Studies

In general, the poor generalization and suitability of feature-based statistical machine
learning approaches result in inconsistent performance in ASSC [31], even when the same
classifier is applied to the same dataset. Moreover, these approaches analyze each epoch
independently, thereby failing to capture the time series information and the inherent rules
of sleep transitions. Deep neural networks can partially address these shortcomings due to
their enormous power to extract hidden information [21]. However, the non-interpretability
of the model prediction and the longer computational times hinder the application of these
models in real-time hardware implementations [20].
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Our proposed MLS-Net integrates the strengths of feature-based approaches and deep
neural networks. It uses the deterministic features extracted from multimodal physiological
signals as input, which are then fed into a bi-LSTM network. These deterministic features
enhance the interpretability of the model’s performance. The LSTM network addresses the
limitations of traditional machine learning methods (analyze each epoch independently)
by processing time-series data and considering sleep transition rules. MLS-Net achieves
optimal performance on our dataset with significantly reduced training time compared
with other models. Most importantly, the lightweight nature of MLS-Net makes it highly
feasible for real-time application in the future.

3. Materials and Methods
3.1. Animal

Male young C57Bl/6 J mice were purchased from Shanghai Jiesjie Laboratory Ani-
mal Co., LTD, China, and housed in rooms at 25 ± 1 ◦C and 50–70% humidity, under a
12/12 hr light/dark cycle (light on at 7 a.m.), with free access to food and water. For
polysomnographic recording, the mice were surgically implanted with EEG and EMG
according to previously established procedures [61]. All experiments were conducted in
accordance with the National Institutes of Health Guide for the Care and Use of Laboratory
Animals and were approved by the Animal Care and Use Committee of Shanghai Medical
College of Fudan University.

3.2. Multimodal Dataset Design and Implementation

For multimodal physiological signal recording, 7 healthy mice were recorded, and each
mouse was recorded for 3 days according to the following procedure. A polysomnographic
recording device was designed as previously described [61]. For EEG recording, two
stainless steel screws were inserted on the top of left and right skulls at anteroposterior
(AP) +1.5 mm, mediolateral (ML) +1.5 mm, and AP −3.5 mm, ML 3 mm, respectively. For
EMG recording, two EMG electrodes were inserted into the neck musculature of the mice.
Since freely moving mice close their eyes while sleeping, we cannot use cameras [62] or
electrode eye coils to record Ems [63]. In our previous work, we innovatively proposed
a novel eye movement tracking technique [61]. In brief, a miniature, strong magnetic
rod was implanted in the conjunctiva of mice, and a magnetic displacement sensor was
integrated into the polysomnographic device. The EMs of mice drive the sensor to cut
through the magnetic field lines generated by the magnetic rod. The resulting change
in the magnetic signal indicates the EMs of mice during sleep. Using this technique, we
successfully achieved the simultaneous collection of EEG, EMG, and EM signals during
mouse sleep.

To annotate the sleep–wake states of each epoch, raw EEG and EMG traces were
visually inspected offline and scored into three vigilance states: wakefulness, NREM sleep,
and REM sleep using SleepSign software (Version 2.0, Kissei Comtec, Nagano, Japan),
followed by manual calibration by trained experts. The sleep states were segmented into
non-overlapping consecutive 4 s epochs. Specifically, wakefulness epoch was characterized
by increased EMG activity and low EEG amplitude. NREM sleep epoch was identified by
delta-dominant EEG (0.5–4 Hz) and low EMG power. REM sleep epoch was defined based
on theta-dominant EEG (6–9 Hz) and low EMG power.

3.3. MLS-Net Model

Our proposed MLS-Net algorithm consists of input preprocessing, feature extraction,
bi-LSTM, multi-layer perception, and scoring output, as shown in Figure 2. Before imple-
menting ASSC, a notch filter was applied to eliminate 50 Hz noise in EEG, EMG, and EMs.
The EMG signal was subsequently processed using a Butterworth bandpass filter with a fre-
quency range of 30–70 Hz to effectively eliminate significant electrical noise. Subsequently,
extreme outliers in EEG and EMs caused by motion artifacts and EMG contamination were
removed as follows. We defined the extreme lower tail percentile at 0.01 th and extreme
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higher tail percentile at 99.99 th in EEG and EM signals. The data exceeding the thresholds
were set to the threshold values and then normalized using the following formula. Subse-
quently, the time and frequency domain features were extracted from outlier removal and
normalized multimodal physiological signals. The feature vectors were fed into a bi-LSTM
layer, which was a sequence-processing neural network that incorporated past states (i.e.,
epochs) into the classification of present states and captured temporal dependencies. The
bi-LSTM layer comprises 16 units in each direction, totaling 32 units. The outputs from
the bi-LSTM layer are then fed into a multi-layer perceptron (MLP), followed by a softmax
layer, which generates class probabilities.

SignalNormalized =
Signal − µSignal

σSignal
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and EMs by changing the subscript “Signal’ to the respective signal type.

The neural network models were trained using an Intel Core i7-11800H processor,
16 GB of memory (8 GB × 2), and an NVIDIA GeForce RTX 3060 GPU.

3.4. Expert-Knowledge-Based Feature Extraction

For pre-defined features, all methods tested in this paper start with the identical feature
extraction step, where a wide range of features were computed from the pre-processed
EEG, EOG, and EMG signals (linear time and frequency domains and non-linear time–
domain features). Frequency domain features of EEG signals were performed using Fast
Fourier Transform (FFT) algorithms. The energy of EMG, which carries information about
muscle activity, was also calculated. The frequency of EMs was determined according to
our previous research [61]. A total of 10 features were derived for feature-based analysis,
including the power of regular waves (0.5–4 Hz, 6–9 Hz, 8–12 Hz, and 52–70 Hz), the
root mean-squared of EMG, the mean amplitude of EEG and EMs, and theta/delta EEG
power ratio.
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(1) Amplitude and Power Calculation for EEG Signals:

Powersignal(ω) =
T

∑
t=0

∣∣∣ F(ω, t)|2forωϵ[0.5Hz, 100Hz] (1)

where F(w, t) is the FFT of the signal at time t and frequency ω, and T is the total
duration. This formula is general for EEG, EMG, and EMs by changing the subscript
“signal” to the respective signal type.

(2) Spectral Power Features for EEG:

PEEG(band) =
∑end

t=start

[
∑

fhigh
f= flow

| F( f , t)|2
]

end − start + 1
(2)

where band specifies the frequency band (e.g., PEEG(δ) ϵ [0.45 Hz, 4 Hz], E(θ) ϵ [6 Hz–
9 Hz], upper E(θ) [7 Hz, 8.5 Hz], E(α) ϵ [8 Hz, 12 Hz], PEEG(ω) ϵ [0 Hz, 30 Hz], upper
E(γ) ϵ [52 Hz, 70 Hz]). The upper E(θ) and upper E(γ) have been proven to be effective
for discriminating between sleep and wake [15]. flow and fhigh are the boundaries of
the frequency band, and start and end define the time window.

(3) Theta/Delta Ratio and Sleep State EM Features:

Ratioθ/δ =
PEEG (theta)
PEEG (delta)

, FEMs (state) = fEMs(Astate)forstateϵ(wake, REM) (3)

where PEEG (theta)and PEEG (delta) are power computations in the theta (6–9 Hz)
and delta (0.45–4 Hz) bands, respectively, and Astate denotes the threshold values
(mean ± 1.96 × std.) of EMs during different periods (wakefulness or REM). FEMs(state)
represent the frequency of EMs exceeding Awake and AREM thresholds in the cur-
rent epoch.

(4) The root mean squared (RMS) of EMG:

RMS = 2

√√√√ 1
n

N

∑
i=1

xi
2

N represents the total number of data points in the EEG signal. xi denotes the i-th data
point of the signal.

3.5. Evaluation

In order to evaluate the training and judgment accuracy of different models, all
algorithms should be developed using the same channels, trained on the same pre-clinical
dataset, and validated with the same procedure. In our algorithm, the effectiveness of
different algorithms was validated by leave-one-out cross-validation (LOOCV). Out of all
the “k” recordings derived from 7 mice, a single record was retained as the validation data
for testing the model, and the remaining k-1 records were used as training sample. The
LOOCV process was repeated k times and yielded k results, with each of the k records
used exactly once. The average of k results was deemed to be a single estimation for each
algorithm. Using these strategies, all records were used for both training and validation,
so that the evaluation bias due to single training could be effectively avoided without
compromising the stability and reproducibility of the algorithms. Five different evaluation
measures are used to evaluate the performance of the proposed method, including the
confusion matrix, accuracy, precision, sensitivity (recall), and F1-Score, as shown in Figure 3
and Table 4 [64].

Accuracy =
TP + TN

TP + FN + FP + TN
%Precision =

TP
TP + FP

% (4)
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Recall =
TP

TP + FN
%F1 − Score = 2

Precision × Recall
Precision + Recall

(5)
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Figure 3. Performance of the MLS-Net for sleep-wake classification. (A) Confusion matrix of MLS-Net
evaluated on the test set. (B) Confusion matrix of stMLS-Net and sMLS-Net evaluated on the test
set. Spatio–temporal MLS-Net model (stMLS-Net) and spatial MLS-Net model (sMLS-Net) were
variants based on MLS-Net model. Each element in the matrices indicates the percentage of correct
matching between experts (True label) and each model (Predicted label). The abbreviations used
are as follows: wake (W), eye movement sleep (R), non-eye movement sleep (NR). (C) Overall
performance of MLS-Net, stMLS-Net and sMLS-Net models. (D) Precision, sensitivity (recall), and
F1-Score of MLS-Net, stMLS-Net and sMLS-Net models for REM stage classification. Empty circle in
the histogram indicates individual result in cross-validation. One-way ANOVA followed Dunnett’s
post hoc analysis. Data were presented as mean ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001.

In this context, TN, FN, FP, and TP refer to true negatives, false negatives, false
positives, and true positives, respectively. TN represents the number of sleep stages that
were incorrectly classified as corresponding to the labeled sleep stages. FN denotes the
number of sleep stages that were inaccurately identified as other stages when they should
have been classified as the correct stage. FP refers to the number of sleep stages that were
erroneously classified as labeled stages when they were not. TP indicates the number of
sleep stages that were correctly classified in accordance with their labeled stage.

The coefficient of variation (CV) within groups is calculated using the following formula:

CV =
σ

µ
× 100%

In this formula, σ is the standard deviation of each accuracy for all-fold cross-validation,
µ is the mean of the performance accuracy.

3.6. The Construction of Rebalance Dataset Using Data Augmentation

To address the class imbalance issue, we performed data augmentation by repeating
the minority class samples as suggested in previous studies [65]. The raw epoch sequences
comprise varying durations for wake, NREM, and REM epochs. Initially, we calculated
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the mean length of epochs within each continuous class. Subsequently, we trimmed all
epochs exceeding this mean length to the calculated value. We then increased the number of
samples for the minority classes, expanding them to match the mean duration of the wake,
NREM, and REM classes in the input sequence. This approach enabled us to construct an
augmented dataset, referred to as the balanced dataset, ensuring that all sleep stages are
equally represented in the training set. The augmentation process is illustrated in Figure 6A.

4. Result
4.1. Dataset

From the animal experiments, a small-scale sleep recording dataset was compiled. A
total of seven recordings from seven healthy wild-type mice were conducted. Each record-
ing lasted three days, with data from the last 24 h incorporated into the dataset. As shown
in Table 3, the multimodal dataset comprises 151,200 epochs, including 82,449 wake epochs
(54.5%), 56,286 NREM epochs (37.2%), and 12,465 REM epochs (8.2%). The proportions
of sleep architecture are consistent with previous reports [66]. Each epoch includes one
channel of EEG, EMG, and EM signals, simultaneously collected with a duration of 4 s
at a 500 Hz sample rate. Prior to feature extraction, preprocessing was conducted, which
included 50 Hz noise filtering and the removal of outliers in artifact-contaminated epochs,
following the predefined rules outlined in the methods section. For inner-cross validation,
the dataset was split into training and validation sets, with 85.7% of the sleep samples used
for training and the remaining 14.3% for validation.

Table 3. The distribution of sleep stages in the dataset.

Stage Total Epochs Percentage (%) Training Set (%) Test Set (%)

Wake 82,449 54.5
85.7 (6/7) 14.3 (1/7)REM 12,465 8.2

NREM 56,286 37.2

4.2. The Performance of MLS-Net and Its Variants

We designed the MLS-Net to process multi-modal signals from our constructed dataset.
To minimize the variance of predictions across different mouse recordings, we employed
a cross-validation approach using seven separate MLS-Net trained on a Leave-One-Out
Cross-Validation (LOOCV) method. This approach ensured that six animal recordings
were used for training, while the remaining one, which was never seen by the model
during training, was used for validation. Figure 3A shows the average confusion matrix
comparing the true and predicted sleep labels for the input test set after the 120 th iteration
of training on the MLS-Net model. Our proposed MLS-Net model achieves favorable
diagonal coefficients in its confusion matrix, with an accuracy of 91.6% for NREM, 84.9%
for REM, and 91.7% for wake, respectively. and yielded an overall decoding precision of
89.9%, a mean sensitivity (recall) of 88.8%, an F1-Score of 89.2%, and an overall accuracy of
90.4% (Table 4, Figure 3C).

Table 4. Performance comparison of the different models.

Algorithms Dataset EM-Exclusion Balance Precision (%) Recall (%) F1-Score (%) Accuracy (%) Time (s)

MLS-Net
Our dataset

No No 89.9 88.8 89.2 90.4

86.1
No Yes 74.2 79.5 81.5 81.2
Yes No 80.8 76.8 78.4 80.6

AccuSleep
Dataset -- No 90.0 85.0 87.1 89.9

stMLS-Net Our dataset No
No 91.6 88.9 90.0 91.4

3073.3Yes 78.4 72.7 74.9 75.7

sMLS-Net Our dataset No
No 84.3 83.6 83.9 85.8

479.8Yes 74.1 75.4 74.7 76.4

*MC-SleepNet Our dataset No
No 88.5 84.8 86.4 89.0

608.9Yes 78.6 70.7 73.5 74.6
*SlumberNet

Our dataset No
No 88.0 86.5 86.0 86.5

3178.4Yes 80.5 79.8 79.3 79.6
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Table 4. Cont.

Algorithms Dataset EM-Exclusion Balance Precision (%) Recall (%) F1-Score (%) Accuracy (%) Time (s)

RF Our dataset No
No 84.5 78.9 78.3 83.3

2.9Yes 78.1 73.4 75.3 68.2

LR Our dataset No
No 83.9 80.8 82.2 73.1

10.7Yes 76.3 72.0 73.8 67.7

XGBoost Our dataset No
No 73.4 59.5 48.0 83.6

22.1Yes 76.5 73.4 74.4 67.3

Notation: AccuSleep dataset was an external dataset (https://doi.org/10.17605/OSF.IO/PY5EB accessed on 22
July 2024). EMs-exclusion means whether the EMs signals were removed during the training sets. AccuSleep
dataset was devoid of EM signals, so this section was left unfilled. The balance means whether the data augmenta-
tion were conducted. All performance metrics (precision, sensitivity (recall), F1-Score, and accuracy) are averaged
values across LOOCV validation. All models were tested on both balanced and imbalanced datasets. The accuracy
values for the imbalanced dataset (raw dataset) are highlighted in bold. Time of each model indicates the compute
time after 120 iterations, with each classifier trained on six recordings.

The issue of network structure is crucial for understanding the trade-offs between
model complexity and its practical application, especially in real-time systems such as sleep
state analysis. To explore the appropriate structure of the model, we further generated
two variants on the basis of MLS-Net. In the spatial MLS-Net model (sMLS-Net), the
pre-defined features were removed and replaced by a two-layer CNN for spatial feature
extraction from EEG, EMG, and EM signals, followed by an MLP layer and a softmax
layer. The spatio–temporal MLS-Net model (stMLS-Net) reserved the pre-defined features,
which were concatenated with spatial features extracted from CNN as input. The series
information was also captured by a bi-LSTM neural network. These are then processed
through a MLP, and finally, a softmax layer outputs three targets. These two classifiers were
trained and tested using the identical data partitions (six training sets versus one testing
set) of our dataset.

Compared with MLS-Net, the stMLS-Net model shows a competitive performance
on wake (90.7%) and NREM (94.5%), but the sMLS-Net model had lower accuracy both
in NREM (79.2%) and REM (80.5%), as shown in Figure 3B. The overall performance
of MLS-Net and stMLS-Net is comparable in terms of precision, sensitivity (recall),
and F1-Score, with both models outperforming the sMLS-Net model in these metrics
(Figure 3C). This result demonstrated the importance of the LSTM layer in MLS-Net, as
the sMLS-Net, which lacks the LSTM layer, shows poor performance, especially in REM
sleep classification (Figure 3D).

4.3. Performance Comparison of Various Classifiers

To evaluate the performance of MLS-Net, we conducted a comparative analysis against
five other classifiers. Among these, two represent state-of-the-art models based on neural
networks, specifically MC-SleepNet [58] and SlumberNet [59], while the remaining three
are machine learning models: random forest (RF), linear regression (LR), and XGBoost. To
ensure a fair comparison, all models were trained and tested on the same dataset, following
identical preprocessing steps. Notably, MC-SleepNet and SlumberNet were well-deigned to
process EEG and EMG signals, whereas the other three models were meticulously adjusted
to accommodate EM signals as input. The predictive performance of these models is
summarized in Figure 4A and Table 4.

https://doi.org/10.17605/OSF.IO/PY5EB
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Net, RF, LR, and XGBoost models achieved accuracies of 86.5%, 83.3%, 73.1%, and 83.6%, 
respectively (Table 4). In addition to performance, we also compared the training time 
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Figure 4. The performance of different classifiers on REM classification. (A) Shows the confusion ma-
trix of MC-SleepNet, SlumberNet, random forest (RF), linear regression (LR), and eXtreme Gradient
Boosting (XGBoost). The state-of-the-art models MC-SleepNet and SlumberNet were denoted with
an asterisk (*MC-SleepNet, *SlumberNet). Each element in the matrices indicates the percentage of
correct matching between experts (True label) and each model (Predicted label). The abbreviations
used are as follows: wake (W), eye movement sleep (R), non-eye movement sleep (NR). (B) shows the
performance comparison of precision, sensitivity (recall), and F1-Score for REM classification. The
orange bar indicates the performance of MLS-Net model and the gray bars indicate the performance
of other models. One-way ANOVA followed Dunnett’s post hoc analysis. Data were presented as
mean ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001.

The confusion matrix reveals that both algorithms exhibit excellent performance in
classifying the wake but perform poorly in distinguishing NREM and REM stages, espe-
cially in the case of SlumberNet and feature-based machine learning algorithms (Figure 3D).
From the confusion matrix, we can see that the primary source of misclassification for
NREM stages is their erroneous attribution to the wake stage, while misclassification of
REM stages mainly arises from their incorrect attribution to NREM stages, as shown in the
hypnograms in Figure 5A,B. In terms of overall accuracy, the MLS-Net model achieved the
highest accuracy (89.4%), followed closely by the MC-SleepNet (89.0%). The SlumberNet,
RF, LR, and XGBoost models achieved accuracies of 86.5%, 83.3%, 73.1%, and 83.6%, respec-
tively (Table 4). In addition to performance, we also compared the training time consumed
by each classifier. We found that the MLS-Net model had a significantly faster training
time of 86.1 s per 120 iterations over the same training set than its two variants (stMLS-Net,
sMLS-Net) and MC-SleepNet (608.9 s). In contrast, SlumberNet requires a longer training
duration, up to 3718.4 s for each LOOCV.
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Figure 5. The output hypnogram predicted by different models compared with manual scoring.
(A) shows example hypnograms of one subject. The solid blue line and yellow dashed line denote the
hypnograms depicted by the proposed model and an expert, respectively. (B) was the enlargement of
hypnogram in the shielding area (A).

Further inspection shows that MLS-Net achieved a precision of 92.1%, a sensitivity
(recall) of 83.4%, and an F1-Score of 87.3% for REM sleep (Figure 4B). The sensitivity of
MLS-Net in REM classification outperforms SlumberNet and traditional machine learning
algorithms (Figure 4B). This improvement can be attributed to the utilization of EM signals,
which enhance the discrimination between REM and NREM sleep stages.

4.4. The Performance of Different Classifiers on Balanced Dataset

The sleep stages identified by the expert occur with widely differing frequencies [65]
(e.g., wake: 54%, REM: 8.2%, NREM: 37.2% in our dataset). Such differences in the
frequencies of classes (class imbalance) can potentially hinder the performance of classifiers
and limit further advancements in sleep staging algorithms [65,67]. To address this issue, we
employed a data augmentation technique by duplicating minority class samples in the sleep
epoch sequence (Figure 6A). In the balanced dataset, all samples had an equal opportunity
to compensate for the minority classes. Next, we trained and tested the performance on
both rebalance datasets. After 120 iterations on the training dataset, the overall accuracy of
the MLS-Net, sMLS-Net, and SlumberNet models on the balanced dataset decreased by
9.2% (from 90.4% to 81.2%), 9.48% (from 85.8% to 76.4%), and 6.9% (from 86.5% to 79.6%),
respectively (Figure 4B). Although stMLS-Net and MC-SleepNet exhibited comparable
performance to the MLS-Net model on the standard dataset (Tabel 4), their accuracy
on the balanced dataset dropped even more significantly, with declines of 15.7% (from
91.4% to 75.7%) and 14.4% (from 89.0% to 74.6%), respectively (Figure 4B). These results
suggest that both the spatio–temporal MLS-Net (stMLS-Net) and MC-SleepNet networks
are more susceptible to imbalanced tasks in this work. Moreover, MLS-Net consistently
outperformed the other algorithms with relatively lower variance for each model of the
LOOCV cross-validation (Figure 6D).
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Figure 6. Accuracy comparison cross-models in raw dataset and balanced dataset. (A) The generic
workflow of data augmentation. (B) Accuracy and loss curves of the training and testing on raw
dataset and balanced dataset. (C) The scoring accuracy of different models for all folds in cross-
validation. Two-sided paired Student’s t-test between raw dataset and balanced dataset for each
model. Data were presented as mean ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001. (D) The coefficient
of variation (CV) of accuracy for all folds in cross-validation.

4.5. The Influence of EM Signals on MLS-Net Model

Overall, our proposed MLS-Net model demonstrates performance that is equal to or
superior to that of state-of-the-art models such as MC-SleepNet, SlumberNet, and other
machine learning algorithms on both standard and imbalanced datasets. One possible
reason for this enhanced performance is the use of EM signals. To evaluate the contribution
of EM signals to the performance of MLS-Net, we performed EM-exclusion testing, where
features extracted from EMs were replaced with a null mask. The class-specific accuracy
was evaluated using a mean confusion matrix and overall accuracy metrics, as illustrated
in Figure 7A,B.

The exclusion of EM signals resulted in agreement rates of 77.9% and 72.2% for
REM and NREM sleep, respectively, between predicted classifications and true labels.
An increased incidence of erroneously categorizing REM and NREM epochs as wake
epochs was observed, as depicted in Figure 7A. Consequently, the overall accuracy of sleep
state scoring significantly decreased from 90.4% to 81.2% when EM signals were excluded.
(Figure 7B). A closer investigation has shown that precision, sensitivity (recall), and F1-Score
all decreased for individual stages after EMs-exclusion (Figure 7C). Specifically, the F1-Score
for wake significantly declined from 92.7% to 84.6% after EMs-exclusion, as illustrated in
Figure 7C. These results indicate that incorporating EM signals can significantly enhance
the performance of the MLS-Net by providing additional information during training.
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classification following EMs-exclusion. Empty circle in the histogram indicates individual result in
cross-validation. Two-sided Student’s t-test. Data were presented as mean ± SEM. * p < 0.05.

4.6. External Validation of MLS-Net Model

To evaluate the generalizability of MLS-Net, we conducted an external validation using
the AccuSleep mouse EEG/EMG sleep dataset (https://doi.org/10.17605/OSF.IO/PY5EB,
accessed on 22 July 2024). This dataset includes sleep recordings from five healthy mice
(mouse01–mouse05), each consisting of two complete 24 h polysomnography (PSG) records.
The PSG data comprise one EEG and one EMG signal, sampled at 512 Hz, with sleep states
annotated by experts every 2.5 s. We utilized a continuous 24 h segment from each mouse
to validate the performance of the MLS-Net model. To ensure a fair comparison, all data
were processed within the Pytorch framework, and the parameters of the baseline model
were maintained as previously specified.

Since the AccuSleep dataset does not include EM signals, we left the corresponding
EM parameters (Feature 8, 9, and 10) blank, as shown in Figure 8A. Apart from the features
extracted from EM signals, the distributions of the multimodal signal features extracted
from the external dataset were similar to those extracted from our dataset, as shown in
Figure 8A. From a sleep perspective, we further compared the proportions of NREM, REM,
and wake epochs between the external dataset and our dataset. The external dataset had
proportions of 42.6% for NREM, 6.4% for REM, and 50.9% for wake, which were analogous
to the proportions in our dataset (average 37.2% for NREM, 8.2% for REM, and 54.5% for
wake) in Figure 8B.

https://doi.org/10.17605/OSF.IO/PY5EB
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Figure 8. Performance of MLS-Net on an external dataset. (A) The distribution of pre-defined
features extracted from each epoch in our dataset (yellow) and the external dataset (blue). (B) A
comparison of sleep architecture between our dataset and the external dataset. (C) The confusion
matrix demonstrating the performance of MLS-Net on the external dataset. (D) Overall accuracy
of MLS-Net performance on the external dataset. The symbols ‘+’ and ‘−’ indicate testing on the
EMs included and EMs excluded datasets, respectively. Empty circle in the histogram indicates
individual result in cross-validation. One-way ANOVA followed Dunnett’s post hoc analysis. Data
were presented as mean ± SEM. * p < 0.05.

The performance of MLS-Net in the AccuSleep dataset was shown in the confusion
matrix and overall accuracy against consensus manual scores. As shown in Figure 8C,
the agreement between MLS-Net output and human score on the AccuSleep dataset has
reached 93.7% and 89.0% for wake and REM stage recognition, respectively. The mean
accuracy on the AccuSleep dataset was 89.9%, which is slightly lower than the accuracy of
90.4% achieved on our dataset (Figure 8D). The accuracy of 89.9% in the AccuSleep dataset,
exceeding 80.6% achieved in the EMs-exclusion test on our dataset, can be attributed to
two main factors. Firstly, the high quality of EEG and EMG signals in the external dataset
enabled the model to capture sufficient information for parameter optimization. Secondly,
the performance of a neural network is correlated with the amount of training data [28].
Therefore, the shorter duration of sleep state epochs (2.5 s/epoch vs. 4 s/epoch) in the
external dataset allowed for a greater number of epochs to be extracted from the same
amount of sleep data for training. In summary, MLS-Net successfully withstood external
data validation, thereby further enhancing the model’s generalizability.

5. Discussion
5.1. Hybrid of Feature-Based and Neural Network Methodology

Over the past 30 years, automatic sleep scoring has seen significant advancements.
Compared with feature-based methodologies, deep neural networks demonstrate remark-
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able efficacy in extracting latent information from raw physiological signals. However,
its “black box” nature makes the information difficult to characterize and translate into
the clear, interpretable features used in feature-based approaches [21]. The lack of inter-
pretability in results and prolonged computational times are the main drawbacks that could
limit acceptance by end users [68]. In contrast, feature-based approaches provide clear
insights into the sleep characteristics considered during scoring. Traditional feature-based
approaches also present challenges, as they analyze each input segment independently and
do not fully exploit the temporal sequence information inherent in sleep–wake transitions.
The bi-LSTM neural network, with its forget gate structure, widens the usage of past infor-
mation and is better suited for time series data [64]. In this work, we leverage the strengths
of both feature-based approaches and bi-LSTM neural networks to develop the MLS-Net
model, which utilizes deterministic expert knowledge to enhance the performance of neural
networks. The performance of MLS-Net is validated by LOOCV in mice. This internal
cross-validation ensures that data from the test set does not appear in the training set,
thereby enhancing the model’s generalizability to unfamiliar datasets.

The overall decoding precision, sensitivity, F1-Score, and accuracy of MLS-Net at the
testing set are 89.9%, 88.8%, 89.2%, and 90.4%, respectively. After training with a cross-
validated approach, we performed a head-to-head comparison and found that the MLS-Net
model demonstrates superior performance over the state-of-the-art MC-SleepNet [58],
SlumberNet [59], and traditional machining learning models with higher accuracy and the
lowest CV when using the same channels (Figure 6). Due to the relatively small proportion
(5–10%) of REM epochs within the entire sleep–wake cycle, accurately identifying REM
sleep poses a significant challenge. Our findings demonstrate that MLS-Net achieved an
84.9% agreement with expert scorers on REM epoch classification, while MC-SleepNet,
SlumberNet, random forest (RF), linear regression (LR), and XGBoost achieved agreement
rates of 77.1%, 53.2%, 69.7%, 72.7%, and 72.4%, respectively. Meanwhile, the promising
and stable performance of MLS-Net was validated using an external dataset, where it
maintained an accuracy of over 89% even without the use of EM signals. The notable per-
formance in REM sleep classification can be attributed to the incorporation of deterministic
features extracted based on expert knowledge from multi-modal signals and the temporal
information captured by the bi-LSTM layers.

5.2. EM Signals during REM Sleep Contributes to Sleep Classification

EMs in sleep were originally characterized as falling into the non-rapid eye movement
sleep (NREM) and rapid eye movement sleep (REM) categories [69]. REM sleep is charac-
terized by frequent EMs, whereas NREM sleep is marked by the relative absence of such
movements. This phenomenon is highly conserved across different species, from humans
to rodents [61,70]. Previous studies reported that the average frequency of EMs in mice
was about 0.90, 0.25, and 0.05 Hz during wake, REM, and NREM sleep, respectively [71].
Thus, EMs could be a potential indicator to distinguish between different stages in mice.
One non-invasive method for detecting EMs is through EOG recording, which has been
shown to effectively enhance the performance of sleep classification algorithms in clinical
settings [34]. However, the intricate technical challenges have impeded its implementation
in small animals [72]. Our previous work [61] enabled the simultaneous collection of EEG,
EMG, and EM signals from freely moving mice. In this study, we deigned MLS-Net based
on three modalities of signal fusions (EEG/EMG/EMs). By performing EMs-exclusion
testing, we found that EMs significantly improved the performance of MSL-Net in discrim-
inating sleep status with high accuracy, which was paralleled with counterpart models.

5.3. Limitations and Future Perspectives

Although the MLS-Net model had substantial agreement with sleep experts, there are
important limitations to consider. While we tested the model with an external mouse sleep
dataset, the robustness and generalizability of MLS-Net have not yet been validated for
human use. Human PSG records involve a more complex classification into multiple sleep
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stages compared with rodents, which may pose greater challenges [23]. Much research
has been done on improving human EEG classification as well [12]. MLS-Net capitalizes
on the strengths of neural networks in capturing temporal sequence information while
incorporating predefined features extracted from multimodal signals such as EEG, EMG,
and EMs from mice. Due to the significant differences in sleep architecture and feature
distributions between mice and humans, our findings cannot be directly extended to human
studies. However, given that multi-modal electrophysiological data can be collected not
only in mice but also in humans [73], adapting the MLS-Net model for human datasets could
involve several potential modifications. These may include adjusting the frequency ranges
used in feature extraction to better align with human EEG frequencies or fine-tuning the
memory capacity of LSTM layers to more effectively capture the long-term dependencies
characteristic of human sleep patterns. Secondly, the outstanding performance of the
MLS-Net model was validated on a small-scale dataset, but its performance on large-scale
datasets remains unknown. In theory, a larger amount of training data would lead to a
better training effect for the deep learning method [28]. Additionally, our study was limited
in exploring potential variations in accuracy due to factors such as age, behavior, gender,
or genetic variability among mice.

Given the inherent advantages and limitations of various preprocessing methodolo-
gies, an optimal ASSC system may be derived from a judicious amalgamation of different
techniques [10]. Future research in deep learning is expected to prioritize the development
of simpler models for ASSC that maintain high accuracy while optimizing portability
and efficiency. Efforts should also focus on extracting channel-specific information and
identifying micro-stages within NREM and REM sleep without compromising algorithmic
stability. Moreover, enhancing model compatibility is crucial to facilitate its application in
sleep classification for the pathological states of rodents, potentially aiding in the screening
and identification of physiological markers for sleep-related mental illnesses in preclini-
cal research.

6. Conclusions

This study designed the MLS-Net model that combines the strengths of neural net-
works and feature extraction for rodent ASSC using multimodal biological signals (e.g.,
EEG, EMG, EMs). By leveraging explicit feature inputs, the proposed MLS-Net model effec-
tively mitigates the overfitting commonly associated with neural networks and addresses
the low accuracy issues typically encountered in feature-based machine learning methods.
The MLS-Net model has a runtime of only 86.1 s for 24 h sleep recordings, which is signifi-
cantly faster than the several hundred to thousands of seconds required by other networks.
The time-saving property without compromising its efficiency makes MLS-Net suitable
for real-time sleep scoring applications in preclinical research. Moreover, the algorithm
offers flexibility for users who may wish to customize it to better suit their specific needs.
Potential modifications include using alternate features, adjusting artifact detection criteria
during preprocessing, or incorporating additional signals to enhance performance.
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