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Abstract: Dielectrophoresis (DEP) is an advanced microfluidic manipulation technique that is based
on the interaction of polarized particles with the spatial gradient of a non-uniform electric field to
achieve non-contact and highly selective manipulation of particles. In recent years, DEP has made
remarkable progress in the field of microfluidics, and it has gradually transitioned from laboratory-
scale research to high-throughput manipulation in practical applications. This paper reviews the
recent advances in dielectric manipulation and separation of microparticles and biological cells and
discusses in detail the design of chip structures for the two main methods, direct current dielec-
trophoresis (DC-DEP) and alternating current dielectrophoresis (AC-DEP). The working principles,
technical implementation details, and other improved designs of electrode-based and insulator-based
chips are summarized. Functional customization of DEP systems with specific capabilities, including
separation, capture, purification, aggregation, and assembly of particles and cells, is then performed.
The aim of this paper is to provide new ideas for the design of novel DEP micro/nano platforms with
the desired high throughput for further development in practical applications.

Keywords: dielectrophoresis; microfluidics; cell separation; integrated; microparticle manipulation

1. Introduction

Microfluidics is a scientific and technological field dedicated to the precise control
of small volumes of fluids. Using microfabricated channels or chamber structures on
microfluidic chips, researchers can achieve fine control over liquids. This technology was
first applied in the field of microgas chromatography by Terry et al. in 1975 [1]. This system
demonstrated high resolution and sensitivity, enabling the simultaneous separation and
detection of small sample quantities. The introduction of micrototal analysis systems in
1990 garnered widespread attention and spurred the rapid development of microfluidics [2].
Microfluidics utilizes microscale fluid channels and tiny droplets to control and manipulate
fluids. It is a method of handling and operating fluids at the micrometer scale, effectively
shrinking liquid handling processes from traditional laboratory settings [3]. By directing
liquids into small channels and chambers, microfluidic technology takes advantage of
microscale fluid properties, such as surface tension [4], microfluidic effects, and micromix-
ing [5], to achieve precise control over fluids. One significant advantage of microfluidics
is its ability to control fluids at very small scales, making experimental processes more
efficient and flexible. It allows for high-throughput processing of samples, reduces the
consumption of reagents and samples, and enables the integration of highly automated
experimental systems [6]. Over the past two decades, microfluidic devices, particularly
those based on polydimethylsiloxane (PDMS) soft lithography, have been widely used for
particle focusing [7], capturing [8], concentration [9], and separation [10], ranging from
nanoscale to microscale, biological to synthetic, and rigid to flexible. Microfluidic technol-
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ogy finds broad applications in various fields, including biology, chemistry, medicine, and
environmental science [11,12].

In the field of microfluidics, various methods are available for the manipulation
and separation of particles or cells. These methods use different physical principles [13],
such as acoustic [14], electric [15], and magnetic fields [16], to achieve precise control and
separation of particles or cells, as shown in Table 1. Acoustic separation is achieved by
generating pressure waves in tiny channels. These oscillating waves trigger the lateral
movement of the particles and achieve separation. This utilizes the differences in density
and compressibility between the particles in the microchannel and the surrounding fluid.
Rapid, minimally invasive, and selective separation of microparticles can be achieved [17].
Electrophoretic separation uses an electric field to apply force to particles or cells with
different electrical characteristics, causing them to polarize and migrate under the force
of the electric field. This allows various particles or cells to be guided to specific locations
based on their electrical characteristics, resulting in efficient and precise separation [18].
Magnetic separation manipulates and separates magnetic particles or cells by applying a
gradient magnetic field. When these particles or cells are exposed to a gradient magnetic
field, a magnetic force is generated that drives them in the direction of the gradient. Varying
the magnetic field gradient effectively isolates particles or cells with different magnetic
properties within a microfluidic channel [19]. Optical separation manipulates particles
or cells by means of radiation pressure exerted by a focused beam. When these particles
or cells are subjected to a focused beam within a microchannel, a force is generated that
moves them from the fluid to a precise location. Selective separation can be achieved by
adjusting the intensity, direction, and focus of the beam according to the optical properties
of the particles or cells. Using the radiation pressure induced by the focused light, particles
or cells can be effectively manipulated and localized in a microfluidic environment [20].

Table 1. Comparison of different methods for the manipulation and separation of microparticles and
biological cells.

Technique Working Mechanism Advantage Limitations Refs.

Acoustic
Acoustic radiation pressure

transfers momentum from an
acoustic wave to a particle

Large number of
particles can be

processed at the same
time with high
efficiency, wide

operating range in the
channel space,

contactless operation,
wide versatility, good
biocompatibility, high
precision, adjustable

control, and
flexible function

Relatively high
equipment cost, need
for frequency-specific
acoustic sources, need
for precise control of
acoustic sources and

microfluidic structures,
design complexity,
induced thermal
energy increases

temperature, relatively
low throughput,

problems associated
with wavelength
and diffraction

Zhang et al. [21],
Gao et al. [22],

Friend et al. [23]

Electrical
Electrphoresis

(EP)

The
electrophoretic

force drives
charged particles

to move in the
direction of the

electric field

Suitable for rapid
separation of charged
particles, low voltage

is sufficient for
operation, simple

equipment, easy to
build and control,

low cost

Limited to charged
particles, the electric
field conditions need

to be optimized to
avoid particle
aggregation

Lomeli-Martin et al. [24],
Zhang et al. [25]
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Table 1. Cont.

Technique Working Mechanism Advantage Limitations Refs.

Dielectrophoresis
(DEP)

Interactions
involving the

electrical
polarization of
particles and a
non-uniform
electrical field

Highly selective and
sensitive to the

electrical properties of
particles,

manipulating neutral
particles, precise

operation, label-free,
real-time control,

automated,
microfluidic, and

electronic compatible

Requires
frequency-specific

voltages, sophisticated
electrode design, and
complexelectric field
control, higher cost,

joule heat effect, low,
and side effects

affecting cell viability

Zhang et al. [26],
Li et al. [27],
Encinas [28],

Kim et al. [29]

Magnetica Homogeneous/inhomogeneous
magnetic field

Magnetic particles can
be manipulated for

specific applications,
high purity, highly

specific cell separation
based on magnetic

labeling, or label-free
cell manipulation
based on negative

magnetic
electrophoresis

High cost of
equipment, requires

specific types of
magnetic particles,
additional cost of

magnetic markers and
magnetic fluids,
relatively low
throughput

Hejazian et al. [30],
Giouroudi et al. [31],

Pamme [32]

Optical
Manipulation of particles by

radiation pressure exerted by a
focused laser beam

Non-contact operation
for precise

manipulation of
individual particles
and high efficiency

Requires expensive
laser systems and
precision optical

components with high
alignment

requirements, high
equipment costs, may

be damaging to
particles, and requires

complex optical
system design

Gong et al. [33],
Xie et al. [34]

In 1951, Herbert Pohl first observed and documented the phenomenon of dielec-
trophoresis (DEP), which describes the motion of suspended particles in the presence of a
non-uniform electric field. In his pioneering experiments, Pohl applied voltages of up to
10 kilovolts to generate an electric field strong enough to achieve the experimental goal [35].
Although such voltage levels hindered the practical development of DEP devices, the
situation significantly improved in the 1990s with the advancement of microfabrication
techniques. These microsystems operated at much lower voltages, leading to the develop-
ment of useful and practical DEP microdevices [36]. DEP is a highly effective technique
extensively applied in microfluidic separations, harnessing the electrophoretic migration
of electrically neutral microparticles or cells within a non-uniform electric field [37]. The
strength and direction of the DEP force depend on the particle size and dielectric char-
acteristics. This enables DEP technology to effectively separate particles of comparable
sizes with varying dielectric properties. DEP technology involves the application of a
non-uniform electric field to generate an electrophoretic force that drives the movement of
particles or cells. The direction and strength of this force depend on the dielectric properties
of the particles and variations in the electric field gradient. There are differences in the
dielectric constants of different materials, and the DEP technique is effective in separating
particles or cells composed of different materials [38]. As a non-contact separation method,
DEP avoids damage or deformation that may result from physical contact [39]. In addi-
tion, the DEP technology is highly sensitive and capable of manipulating and separating
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tiny particles or cells [40]. By adjusting the frequency and intensity of the electric field,
precise, selective manipulation of particles or cells can be achieved. It is cost-effective and
suitable for various laboratory and practical application scenarios. Continuous research by
researchers on the principles of dielectric electrophoresis and microfluidics has enhanced
the performance of dielectric electrophoresis technology, making it widely used in a variety
of fields such as cell processing, separation, and particle sorting. Nowadays, DEP is capable
of operating and separating with nanometer and micrometer precision.

2. Dielectrophoresis

Dielectrophoresis (DEP) is the movement of dielectric particles in a non-uniform
electric field due to the interaction of the dipoles induced by the particles in the non-
uniform electric field with the spatial gradient of the electric field. When a particle is placed
in a non-uniform electric field, different forces are generated on each side of the particle.
The difference in magnitude of the forces on each side of the particle then produces a net
force known as the DEP force. The direction of the DEP force depends on the polarizability
of the particle and the suspension medium. For a uniform spherical particle, the generalized
expression for the DEP force is given by [41,42]

FDEP = 2πεmr3Re( fCM)
(
∇
∣∣∣E|2) (1)

where εm describes the dielectric permittivity of the suspending solution, r is the radius of
the particle, ∇

∣∣E|2 is the gradient of the square of the electric field, Re indicates the real
part of the Clausius-Mossotti (CM) factor ( fCM) which is a function of the frequency of the
electric field and dependent on the dielectric properties of the particle and the suspending
medium. The CM factor is expressed as:

fCM =
ε∗p − ε∗m

ε∗p + 2ε∗m
(2)

where ε∗ = ε − (jσ/ω), ε∗p and ε∗m describe the complex permittivity of the particle and the
suspending medium, respectively. σ signifies the electric field conductivity, ω denotes the
angular frequency, and j =

√
−1. If the particle’s polarization exceeds that of the medium,

indicated by (ε∗p − ε∗m) > 0, fCM > 0, the particle experiences a positive dielectrophoretic
(pDEP) force, drawing it toward regions of elevated electric field intensity. Otherwise, when
the particle’s polarization is less than the medium, as shown by (ε∗p − ε∗m) < 0, fCM < 0, the
particle is subjected to a negative dielectrophoretic (nDEP) force, propelling it away from
zones of high electric field intensity. Consequently, the CM factor is pivotal in ascertaining
the orientation of the DEP force exerted on particles. However, since biological cells contain
structures such as the cell wall, cytoplasm, and cell membrane, a double-layered spherical
shell model can be employed:

fCMcell =
ε∗cell − ε∗m
ε∗cell + 2ε∗m

(3)

ε∗cell = ε∗wall

(
rwall
rmem

)3
+ 2

(
ε∗cyt+mem−ε∗wall

ε∗cyt+mem+2ε∗wall

)
(

rwall
rmen

)3
−

(
ε∗cyt+mem−ε∗wall

ε∗cyt+mem+2ε∗wall

) (4)

ε∗cyt+mem = ε∗mem

(
rmen
rcyt

)3
+ 2

(
ε∗cyt−ε∗mem

ε∗cyt+2ε∗mem

)
(

rmen
rcyt

)3
−

(
ε∗cyt−ε∗mem

ε∗cyt+2ε∗mem

) (5)

where ε∗cell is the complex permittivity of the cell, with rwall representing that of the cell
wall. The cytoplasm possesses its own permittivity, ε∗cyt, and the cell membrane’s complex
permittivity is indicated by ε∗mem. The force exerted on the cell through AC-DEP is contin-
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gent upon the dielectric attributes of these cellular components—the cell wall, cytoplasm,
and cell membrane. The strength and orientation of this force are governed by the intrinsic
electrical characteristics of the cell’s layered structures. This dependency endows AC-DEP
with the capacity to not only characterize but also distinguish between various microalgae
species based on their unique dielectric responses.

It can be seen that the strength of DEP forces correlates with both the particle diam-
eter and the gradient of the electric field non-uniformity. Particle trajectory alterations,
influenced by the exerted DEP forces, result in distinct streaming patterns for particles
of varying sizes, facilitating size-dependent particle separation. Furthermore, the DEP
forces’ orientation, which is contingent upon the electrical attributes of the particles and the
suspending medium—namely, their permittivity and conductivity, as well as the electric
field’s frequency—affords precise control over particle manipulation and sorting based on
their electrical characteristics. Owing to its rapid analysis, absence of the need for label-
ing, high sensitivity and selectivity in particle analysis, and minimal sample requirement,
DEP has emerged as a prevalent technique for particle manipulation within microflu-
idic systems [43,44]. To induce the DEP effect, a spatially non-uniform electric field is
essential, which can be generated using insulator-based DC-DEP or microelectrode-based
AC-DEP [45], which is summarized in Table 2.

Table 2. DEP manipulation and separation of microparticles and biological cells.

Method Structure Sample Medium Application
Flow Rate or
Throughput

Efficiency or
Purity

Ref.

DC-DEP

Sawtooth-shaped
structure

HEK 293 cells, NSPCs DEP buffer
Distinguishing

and
characterizing

- >99.99% Liu et al. [46]

Non-uniform
electric field

generated at the tip
of the microtubule

Small extracellular
vesicles (30–150 nm)

Biofluid Isolation 0.6 mL/h Throughput >90% Shi et al. [47]

Sawtooth
microchannel

Listeria monocytogenes Phosphate buffer
Separation and
identification

1.18 × 108

bacteria/s/m2

Throughput
95%

Crowther
et al. [48]

Metal-
Semiconductor-

Metal
ZnO nanowires (NWs)

Zinc acetate,
HMTA

Arrangement
1.28 A/s Forward Bias

20,000 A/s Reverse
Bias

>90% Sun et al. [49]

Two electrically
insulated columns

with different
clearances

Exosomes from
MCF-7 cells

(104.02 ± 6.99 nm)
Bidistilled water Separation

0.3 mL/min
Throughput

>90%
Ayala-Mar
et al. [50]

Asymmetric orifice
Chlorella

(3 µm, 6 µm)
PBS Separation - 100% Gao et al. [51]

Asymmetric orifice
PS

(3 µm, 4 µm, 6–7 µm)
PBS

Separation and
counting

10–20 particle/min
Throughput

>90% Song et al. [52]

Symmetric/
Asymmetric ratchet

PS (3 µm, 5 µm,
10 µm)

PBS Focusing 1.86 × 10−8 m2/(V·s)
Survival rate

98%
Lu et al. [53]

Bifurcating
microchannel

PS (5 µm, 15 µm)
PBS,
0.5%

Tween 20
Separation

12 µL/h
Throughput

nearly 100% Li et al. [54]

Asymmetric
nano-orifice

PS (140 nm, 490 nm,
7 µm, 15 µm), magnetic
nanoparticles (150 nm),

magnetic-coated PS
(470 nm, 5.2 µm),

sliver-coated hollow
glass beads (14 µm)

K2HPO4
Continuous
separation

0.468 × 10−4 µL/s,
1.315 × 10−3 µL/s

- Zhao et al. [55]

Zigzag
PLT (1–5 µm),

RBC (4–15 µm)
PBS Separation 200 µm/s >99.4% Guan et al. [56]

Nano-orifice Oil droplet
KCl aqueous

solution
Oil/water
separation

175.2 µm3/s - Ren et al. [57]
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Table 2. Cont.

Method Structure Sample Medium Application
Flow Rate or
Throughput

Efficiency or
Purity

Ref.

Dead-end branches
Droplet of fresh

human blood
Blood plasma,

RBCs
Blood plasma

separation
0.857 µL/h
Throughput

99%
Mohammadi

et al. [58]

Constricted
channel region

Protein Crystals
(100 nm–2.5 µm)

Pluronic F108
aqueous solution

Sorting >70 µL/h >90%
Abdallah
et al. [59]

Asymmetric orifice
PS (0.5 µm, 1 µm,
3 µm), Fluorescent

(51 nm, 140 nm)

DI water,
K2HPO4

Separation 4.758–6.717 µL/h >90% Zhao et al. [60]

AC-DEP

Nanogap electrodes
SSLBs, brain-derived

myelin particles
DI water, PBS

Trapping and
immobiliza-

tion
10 µL/min > 90% Barik et al. [61]

Inclined,
comb-shaped

electrodes

PS (8 µm, 10 µm,
12 µm) Bacillus cereus,

S. aureus, E. coli,
MCF7, Jurkat

CROSSORTERTM
Buffer, PBS

Separation and
enrichment

1–2 mL/h 92.3%
Oshiro

et al. [62]

Asymmetrical
aluminum
electrodes

Tetraselmis sp.
Artificial
seawater
medium

Harvesting of
microalgae

biomass
2.5 mL/min 90.9%

Hawari
et al. [63]

Microelectrode
Needles

T cell (10–15 µm),
B cell (7.5–10 µm), MLV

DI water, Sucrose
solution

Directed
Movement,

Periodic
U-Turns,

Trapping, and
Release

5 µL/min >90%
Frusawa
et al. [64]

Triangular ratchets
PS (3 µm, 5 µm, 10 µm),

yeast cells (7 µm)
PBS

Focusing and
separation

144 µm/s 90%
Malekanfard

et al. [65]

Interdigitated gold
electrodes

PS (3 µm, 5 µm, 10 µm) PBS, sucrose, etc.
Focusing and

separation
40 µL/h

PS: 98.7%,
MCF7:
82.2%

Modarres
et al. [66]

Dual electrodes PS (10 µm), HEK-293 Sucrose solution

Cell capture
and electropo-

ration
transfection

20–140 nL/min 80%
Punjiya

et al. [67]

Transparent
parallel-line

electrode array

MESCs (5–8 µm), MEFs
(10–20 µm)

LCB, HEPES,
CaCl2, sucrose

solution
Separation 24 µL/min 90%

Takahashi
et al. [68]

Circular channel
with electrodes on

the sidewalls

PS (2 µm, 3 µm,
3.5 µm), RBCs, WBCs,

MDA-MB-231
PBS Separation 200 µm/s -

Derakhshan
et al. [69]

Nanogap
Electrodes

AuNW
Gold Nanowire

Suspension

Single
Nanowire
Assembly

- 70% Han et al. [70]

Y-Y shaped
microchannel,

alternating
triangular
electrodes

NSCLC, RBC (5 µm),
CTCs

Blood sample,
Buffer solution

Separation of
CTCs

200 µm/s 99%
Zhang

et al. [71]

Y-Y microfluidic RBC, CTCs DEP buffe
Isolation of

CTCs from PB
200 µm/s 100% Lv et al. [72]

Stainless-steel wire
mesh electrodes

Anabaena
Artificially
prepared

eutrophic water

Capture and
removal of
Anabaena

algae

0.168–0.838 L/h 89.79% Liu et al. [73]

AC Insulator-
based DEP

DNA PBS
DNA Size
Separation

1.3 µL/h 92% Jones et al. [74]

3D self-assembled
ionic liquid
electrodes

PS, PC-3, live cells, dead
cells, ADSCs, and

MDA-MB-231
DEP buffe Separation 15 µL/h

PS, PC-3:
94.7%,

live/dead
cells: 89.8%,

ADSCs:
81.8%,

MDA-MB-
231: 82.5%

Sun et al. [75]
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Table 2. Cont.

Method Structure Sample Medium Application
Flow Rate or
Throughput

Efficiency or
Purity

Ref.

Four-sector
electrode array

PS (50 µm) DI water

Positioning,
and

Aggregation,
Separation

200 µm/s >90%
Zemánek
et al. [76]

BPE CTCs Buffer Separation 0.1 mL/h >80% Li et al. [77]

Microwells CT26, BMDC Buffer
Cell pairing
and fusion

2.5 µL/min 86%
Pendharkar

et al. [78]

Porous Ni@PVDF
conductive
membrane

SiO2, Al2O3, BaTiO3 DI water, NaCl
Membrane
antifouling

- 90.1% Liu et al. [79]

Asymmetric Orifice Yeast cells
DI water,
K2HPO4

Continuous
cell characteri-

zation and
separation

13.5 µL/h - Zhao et al. [80]

3D electrodes
Chlorella (3–5 µm),

Closterium
PBS Separation 300 µm/s >90%

Wan
g et al. [81]

Right-angle bipolar
electrodes

Euglena, H. pluvialis, C.
reinhardtii, Dunaliella
salina, and Platymonas

DEP buffe

High-
efficiency

selection of
non-spherical

flagellate algae

54 µL/h
72 µL/h
48 µL/h

92.06%
92.78%
99.06%

Chen et al. [82]

Integrated DEP and
inertial forces

Cladocopim (10 µm),
Effrenium (15 µm)

PBS
Separation and

enrichment
200 µm/min,
300 µm/min

90% Zhou et al. [83]

Microelectrodes Yeast cells
TES, CaCl2,

sucrose
Capture and
separation

1 µL/min >94%
Julius

et al. [84]

2.1. DC-DEP

DC-DEP is generally recognized as a highly effective technique for isolating particles
based on size. The magnitude of the DEP effects exerted on the particles linearly scales
with the particle diameter, resulting in different DEP forces experienced by mixed particles
of varying sizes and leading to their separation into individual streams. The size of the
particles and the intensity of the electric field determine the transverse dielectrophoretic
force exerted on them, causing larger particles to be deflected more than smaller ones.
As particles traverse the microchannel, they are sorted according to size into distinct
transverse positions [85].

In the field of DC-DEP microfluidic technology, researchers are constantly exploring
new methods to achieve efficient separation of particles and cells, which brings new break-
throughs in sample processing, clinical diagnostics, etc. Liu et al. report a DC-iDEP (DC
insulated base electrophoresis) chip, which consists of a single channel with a series of
consecutively smaller, sawtooth-like triangular features. Each group of 27 triangles has
the same geometry. The distance between the endpoints of the paired triangles, known as
the gap, decreases gradually from 73 microns to 25 microns. Successful high-resolution
isolation and characterization of neural stem and progenitor cells (NSPCs) was achieved by
successive zigzag triangle structures providing different electric field strengths. By measur-
ing the ratio of electrophoretic mobility (EK) to dielectrophoretic mobility (DEP), different
cell types were successfully recognized, demonstrating the effectiveness of this technique
in cell separation and subpopulation identification. This study revealed the existence of dif-
ferent subpopulations within NSPCs and observed a consistent trend of NSPC abundance
with their known terminal fates in the EK/DEP mobility range. In addition, neurogenic
and astrocytic progenitor cell subpopulations were successfully differentiated [46].

Shi et al. demonstrated a microchip structure based on the principle of microelec-
trodynamics, which consists of glass micropipettes with a small conical geometry. The
device generates a non-uniform electric field at the tip of the pipette, which creates a dielec-
trophoretic force and successfully achieves a rapid, label-free separation of nanoparticles



Biosensors 2024, 14, 417 8 of 36

and exosomes. The iDEP device can extract extracellular vesicles from 200 µL samples in
only 20 min, and the yield can be increased by sample concentration. The iDEP device
provides a new liquid biopsy technique for the rapid clinical isolation of small extracellu-
lar vesicles [47]. Crowther designed microchannels with a serrated structure, where the
channel walls consist of triangular-shaped insulating materials that are equally shaped
and interconnected with each other. At the point where the microchannel narrows, i.e.,
where the two triangles on the channel wall are closest to each other, an opening is formed.
Different serotypes of Listeria monocytogenes were successfully distinguished by gates
of different sizes, suggesting a promising application of the gradient-iDEP method and
physical modeling [48].These findings suggest that DC-DEP has potential clinical applica-
tions for particle and cell separation, bringing innovative ideas to the fields of liquid biopsy,
diagnostics, and sample processing. Sun et al. demonstrated a piezoelectric-enhanced
PDMS microfluidic chip that allows for the simultaneous capture and separation of exo-
somes of different sizes using a DC-iDEP method. The chip comprises a channel with two
electrically isolated rear sections, each tailored to induce distinct spatial distributions of
non-uniform electric fields, thereby exerting varying dielectrophoretic forces on exosomes
in suspension. Applying a potential difference of 2000 V across the main channel length
facilitated the size-based separation of exosomes via DEP [49]. Ayala-Mar et al. designed
a chip structure that is a microdevice consisting of a main channel and a side channel.
The main channel consists of an inlet, an outlet, and two elliptical electrically insulated
column regions, and the two arrays of electrically insulated columns capture smaller and
larger extracellular vesicles (EVs) based on different gap sizes. Using the iDEP, the authors
successfully achieved simultaneous separation and concentration of EVs within a multi-
section microfluidic device and divided them into two subgroups based on their particle
size. EVs were captured and separated in both sections in just 20 s. And their chip was
under electroosmotic flow. The separated particles could be released and collected through
the side channels perpendicular to the main channel [50].

The microfluidic chip structure designed by Li et al. capitalizes on conductivity dif-
ferences, utilizing DC voltage to enhance the electric field gradient at the liquid-liquid
interface, thereby enhancing the dielectrophoretic force used for particle separation. The
electric field gradient within this system is determined by two primary factors: the ratio
of the asymmetric orifice sizes and the conductivity difference in the side channels. Ex-
perimental findings indicate that as the conductivity ratio of the two electrolyte solutions
decreases, the particle separation distance increases, aligning with numerical predictions.
Furthermore, numerical simulations reveal that the separation distance expands with
higher electric field strength and narrower orifice width. However, higher applied voltage
can induce ionic liquid movement, which impacts the separation efficacy. To mitigate
this effect, adjustments to the voltage or orifice size can be made [86]. The chip structure
designed by Gao et al. uses three pairs of asymmetric holes to apply DC voltage, creating
non-uniform electric field gradients that enhance the DC-DEP effect. The channel is com-
posed of three inlet channels and two outlet channels, with the electric field induced by
embedded microelectrodes creating a non-uniform field in the asymmetric pore region. It
was determined that the PS adsorption thickness had little impact on the DC-DEP behavior
but did affect the trajectory movement. By adjusting the conductivity of the suspension
within the chip, successful separation of the Chlorella vulgaris microalgal cell population
was achieved. This method shows promise for the precise selection of target cells in com-
plex microalgal populations and the removal of unwanted cells from suspensions [51]. The
chip structure designed by Song et al. uses local DC dielectrophoretic forces to separate
particles and count them. The particles are introduced into the microchannel, and the
applied voltage creates an electric field gradient to separate the particles. Particle counting
was achieved by detecting changes in the current near the particles. Successful separation of
6 µm and 4 µm particles was achieved with the DEP force moving the 6 µm particles away
from the aperture. 4 µm particles produced a signal of 0.004–0.005 V, and 6 µm particles
produced a signal of 0.006–0.008 V, with a noise of 0.0004 V. The particle size difference of



Biosensors 2024, 14, 417 9 of 36

0.93 mV can be used for size counting. A single-sided orifice counts and separates particles
simultaneously without risk of orifice clogging [52].

As shown in Figure 1, Lu et al. designed a microchip structure that focuses particles in
a ratchet microchannel using DC-DEP. Particle focusing occurs passively via lateral forces
induced by the flow and channel structure, directing particles to equilibrium positions in
the channel cross-section. Symmetric ratchet microchannels were found to provide better
particle focusing than asymmetric ones due to a larger tensor angle. In asymmetric ratchet
microchannels, the asymmetry and directional switching of particle DEPs on the upstream
and downstream sides of ratchets resulted in stronger forward than backward focusing.
However, the ratchet structure has a significant disadvantage: it generates a much higher
electric field around the ratchet tip, potentially causing thermal and electrical issues in the
sample and microfluidic system [53].
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Figure 1. Schematic illustration of the DC-DEP manipulation of particles and cells in a ratchet
microchannel. Reproduced from ref. [53]. Copyright 2020, MDPI.

Li et al. designed a chip structure featuring a novel method for particle separation
in bifurcated microchannels using a DC electric field. This continuous, sheathless elec-
trodynamic separation utilizes wall-induced electric lift to concentrate particles along the
main branch’s centerline, then deflects them into size-dependent flow paths in the side
branches. The technique demonstrated label-free separation of 5 µm and 15 µm spherical
polystyrene particles along a 2 cm bifurcated microchannel. However, high DC fields can
potentially damage biological entities. This risk can be reduced by using DC-biased AC
fields [54]. Zhao et al. developed a microfluidic device with nano-orifices that uses DC-DEP
to continuously separate similar-sized microns and nanoparticles through pressure-driven
flow with varying conductivities. The device successfully separated 140 nm polystyrene
from 150 nm magnetic nanoparticles, 470 nm magnetic-coated PS from 490 nm PS nanopar-
ticles, 5.2 µm magnetic-coated PS from 7 µm magnetic-coated nanoparticles, and 14 µm
silver-coated hollow glass beads from 15 µm PS particles. Unlike conventional methods,
this technique employs asymmetric holes on both sides of the channel wall to create a
strong, inhomogeneous electric field, allowing for effective nanoparticle separation while
avoiding the Joule heating effect [55].

Zhao et al. developed a microchip structure utilizing a nanopore-based DC-DEP
system to classify oil-in-water emulsion droplets based on their size and content in mi-
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crochannels. In this DEP system, oil droplets of the same size but varying content are
separated through opposite DEP effects: positive DEP and negative DEP. This study suc-
cessfully achieved size-dependent separation of smaller silicone oil droplets, specifically
those measuring 7.5 and 11 µm in diameter, demonstrating high separation resolution
with a size difference of only 3.5 µm. The experimental results closely matched the sim-
ulation predictions [87], shown in Figure 2. The microchip structure developed by Guan
et al. features an innovative serrated microchannel fluidic design that was evaluated for
platelet separation and simulated using COMSOL 4.3b. The design utilizes a one-sided
zigzag arrangement to ensure a uniform potential distribution within the microfluidic
channel. Compared to traditional straight channels, the zigzag microchannel enhances
cell separation efficiency. The sharp corners within the zigzag design minimize the hor-
izontal distance required for effective separation and help create an asymmetric DEP
electric field. The separation efficiency is highly dependent on the voltage applied; optimal
platelet separation was observed at 20 V with an entrance velocity ratio increased from 1:1
to 1:4 [56].
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Zhao et al. developed a microfluidic chip with asymmetric orifices to examine the
dielectrophoretic behavior of water-in-water ionic liquid (IL) emulsion droplets under a
DC electric field. By selecting a suspension medium with the appropriate conductivity,
they achieved continuous separation of different types of similarly sized IL droplets. This
study discusses and demonstrates the positive and negative DEP behaviors exhibited by
IL microemulsion droplets. When the surrounding medium’s conductivity is lower than
that of HMIM-PF6 and BMIM-PF6 droplets, both types of IL droplets exhibit positive DEP.
Conversely, if the medium’s conductivity is higher than that of the IL droplets, they exhibit
negative DEP. Additionally, if the suspension medium’s conductivity is lower than that of
BMIM-PF6 droplets but higher than that of HMIM-PF6 droplets, the BMIM-PF6 droplets
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experience positive DEP, whereas the HMIM-PF6 droplets exhibit negative DEP [88]. Zhao
et al. designed a microfluidic device to manipulate and separate polystyrene-based Janus
particles and homogeneous polystyrene particles using DC-DEP in microchannels. The
device features an asymmetric orifice that creates a strong, non-uniform electric field gradi-
ent. By adjusting the suspension solution’s conductivity, one type of particle experiences
negative dielectrophoretic (DEP) forces, while the other type experiences positive DEP
forces. This mechanism allows for the separation of 5 µm Janus particles from homoge-
neous polystyrene particles as well as the differential separation of 3 µm and 5 µm Janus
particles. To gain deeper insights into the dielectrophoretic behavior of the Janus particles,
this study analyzed the effects of DC-DEP forces and electric fields and the impact of the
gold coating’s coverage, thickness, and conductivity on these particles. The findings reveal
that Janus particles with more than 50% gold coating coverage are subjected to positive
DEP forces, which attract them to areas of maximum electric field intensity [89].

Ren et al. proposed a nanopore-based active oil/water separation technique that
combines hybrid kinetics and differential pressure. Utilizing an inhomogeneous electric
field using insulating nanopores under a DC voltage, oil droplets, which have weaker
dielectric properties than wastewater, experience negative DEP forces. When the nDEP
force predominates over the electro-osmotic hydrodynamic (EHD) force of the oil droplets’
motion, effective kinetic electrofiltration through the nanopores is achieved. To improve
the efficiency of oil/water separation, the relative strengths of the nDEP and EHD forces
acting on the oil droplets were optimized by increasing the DC voltage, lowering the
surface charge density, and refining the nanopore structure. This study concluded that the
electric field within the nanopore system is influenced by both the externally applied DC
voltage and the electric field generated by the electric double layer (EDL) [57]. Liu et al.
discovered that the particle zeta potential significantly impacts wall-induced uplift. They
experimentally investigated the electrokinetic transport of four same-sized polystyrene
particles through straight rectangular microchannels in a flowing buffer solution. This study
revealed that lateral particle migration due to the electro-lift force strongly depends on the
particle zeta potential. Particles with higher electrokinetic mobility exhibited enhanced
focusing under identical flow conditions. Additionally, it was observed that electrokinetic
particle mobility increased logarithmically with decreasing buffer concentration. This
increase was attributed to a reduction in the duration of the electro-lift force’s action,
leading to decreased electrokinetic particle focusing [90].

Crowther et al. explored the development of an innovative insulator geometry to
enhance the separation efficiency of iDEP. This research involved shrinking microchannels
with six distinct insulators, where the gate spacing was adjusted after every three gates,
creating two sets of gate configurations. The selected gate spacing was designed to mimic
the existing insulator design used in current measurements. This configuration aimed
to streamline particle movement, minimize the potential for extraneous capture regions,
and laterally homogenize the force, all while maintaining a high gradient to facilitate
effective separation [91]. Mohammadi et al. introduced an innovative microfluidic device
designed for the separation of plasma directly from fresh blood inside a microfluidic
conduit, enabling real-time optical inspection of plasma composition without the necessity
for preliminary or subsequent processing actions. The microchannel features a series
of end branches on either side that initially fill with a droplet of fresh blood measuring
2 µL using capillary forces. These end branches create stagnation zones where an applied
electric field traps red blood cells via DEP, preventing further red blood cells from entering
the channel. To examine the formation of the stagnation zone and ensure the capture of
red blood cells during the initial contraction phase, the designed experiment isolates up to
0.1 µL of plasma from 2 µL of fresh human blood droplets. Image analysis measurements
indicate that plasma purity reaches 99% after just 7 min [58].

Abdallah et al. have developed a microfluidic device focused on optimizing through-
put and enhancing sorting accuracy. This study initially considered various standard
device geometries and modeled the applied potential to identify the configuration that max-
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imizes sorting efficiency for separating nanoparticles from microparticles. The optimized
design demonstrated a theoretical sorting efficiency of 91.6%, while experimental results
showed an efficiency of 93.8% when sorting 500 nm particles from 2.5 µm particles using
the optimal voltage scheme. This research also explored the potential for sorting smaller
particles, ranging from 1 µm to 100 nm, which could be achieved by adjusting the device’s
geometry (specifically the contraction width) and fine-tuning the applied potential [59].
Zhao et al. proposed a nanopore-based DC-DEP technique for the continuous separation of
polystyrene (PS) micro- and nanoparticles within a pressure-driven flow. By employing a
larger pore aspect ratio and shorter, smaller pores, they created a stronger non-uniform
electric field gradient at a lower applied voltage, resulting in a more potent DEP force.
Size-based separation of 1 µm and 3 µm PS particles was successfully achieved by adjusting
the applied potential. For smaller nanoparticles, the suspension solution’s conductivity
was modified such that PS nanoparticles of one size experienced positive DEP while those
of another size encountered negative DEP. This technique successfully demonstrated the
segregation of 51 nm and 140 nm nanoparticles, as well as the separation of 140 nm and
500 nm nanoparticles [60].

2.2. AC-DEP

Different AC-DEP microelectrode configurations are utilized for various applications.
Particles exhibit unique dielectric signatures, which are leveraged for targeted separation in
AC-DEP microfluidic systems. By adjusting the frequency applied, particles with diverse
dielectric properties can be effectively segregated. When the frequency is set between
the critical frequencies of two mixed particle types, one type experiences positive DEP
and moves towards regions with higher electric field intensity, while the other encounters
negative DEP and remains distant from areas with stronger electric fields [92].

Barik et al. utilized microfluidic channels and nanogap chip architecture in their
experimentation. By applying alternating current (AC) bias voltage and modulation of
fluid flow rates, they successfully captured and immobilized 700-nanometer-sized SSLB
(Solid Supported Lipid Bilayer) particles within nanogaps. They employed DEP to linearly
arrange suitable receptors within the nanogaps without necessitating chemical modifica-
tions or patterning. Unlike traditional microarrays, the nanogap platform exhibits flexibility
across a range of particle sizes, all while ensuring operational voltages are kept at levels
that minimize heat and bubble formation [61] (shown in Figure 3). Oshiro et al. introduced
an innovative chip design for conducting experiments on cell separation. This chip fea-
tures a diagonal electrode arrangement that includes both a High-Throughput Dilution
(HDF) region downstream and a DEP region. Within the DEP region, applying voltage
prompts charged cells to alter their migration direction, swiftly flowing towards the outlet.
Unlike similar DEP-based cell separation devices, this chip eliminates the need for buffer
exchange before sample loading. Instead, automated buffer exchange within the chip’s
HDF region swiftly displaces cells from the sample into the appropriate buffer, ensuring
minimal compromise to cell quality. Additionally, the authors successfully achieved target
cell separation by manipulating frequency [62]. Hawari et al. designed a new electrode
configuration introducing DEP to enhance the harvesting efficiency of marine microalgae.
This configuration comprises a central electrode and four symmetrical outer electrodes.
The authors employed alternating current modules and AC-DEP modules for microalgae
harvesting. Under optimal conditions, the AC-DEP module reduced the aluminum content
in the microalgal biomass by 52% compared to the AC module without significant differ-
ences in harvesting efficiency. By utilizing the new asymmetric electrode configuration and
applying the AC-DEP module for marine microalgae harvesting, a significant reduction in
aluminum content was achieved while maintaining high harvesting efficiency [63].
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Figure 3. Schematic illustration of the nano-gap electrode-based AC dielectrophoretic microfluidic
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particles and trapping by under a bias of 3 V, (c) Before and after injection of CTX for 15 min,
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Frusawa et al. used an inserted microelectrode chip structure in their experiments. The
microelectrodes in the chip consisted of tungsten tips that were independently controlled
by a controller. Through a plug-in system, an external electric field in the form of AC or
FM waves can be applied to the suspension. By adjusting the frequency and amplitude of
the electric field, the orientation and manipulation of the cells on the microelectrodes were
successfully achieved, and the periodic trajectories of the cells were observed [64], as shown
in Figure 4. Malekanfard et al. designed a system employing a low-frequency alternating
current electric field to induce an oscillatory electrodynamic flow of either particles or
cell suspensions, concentrating them within a ratchet microchannel using induced-charge
electrokinetic phenomena (iDEP). The channel consists of two opposing, 20-triangular
ratchet teeth arranged along the sidewall. This method involves a trade-off in time to
achieve an effectively “infinite” channel length, allowing for the precise concentration of
particles and cells under low electric field conditions. Tight focusing of 5 µm particles was
achieved after applying a 150 V AC voltage for only 30 s [65].

Siebman et al. developed a device that employs AC-DEP to rapidly trap and con-
centrate green microalga Chlamydomonas reinhardtii on-chip, coupled with fluorescent
detection. The device was equipped with four-point needle electrodes arranged orthogo-
nally and spaced 5 mm apart, surrounding a 2 mm-high transparent microfluidic chamber.
This configuration was selected for its efficiency in assembling cells into planar 2D struc-
tures, facilitating microscope analysis without out-of-focus interference. Upon applying an
AC field, algal cells experienced non-uniform electric fields, resulting in positive DEP near
the chamber’s bottom, effectively trapping each cell through a combination of the electric
field and close packing. The authors successfully utilized AC-DEP to rapidly assemble
algal cells into planar, two-dimensional arrays without affecting cell fluorescence [93].
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Modarres et al. reported a microfluidic system leveraging frequency-hopping DEP for
sorting particles based on size. They exploited the frequency-dependent behavior of parti-
cles in response to a non-uniform electric field to manipulate the force field. The device
employed interdigitated electrodes to create sinusoidally varying field strengths, enabling
particle trapping.
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By applying specific capture frequencies, particles were directed towards traps located
near the electrode digits (nDEP) or edges (pDEP). Adjusting the release frequency allowed
for the selective liberation of target particles according to their crossover frequencies. The
authors used their device to capture microspheres of 3, 5, and 10 µm with a capture effi-
ciency of 99.8%. They further demonstrated that the device achieved 82.2% enrichment of
CTC-like cells [66] (shown in Figure 5). Punjiya et al. designed a microfluidic chip employ-
ing a two-electrode geometry consisting of a tangential grounding line and a half-ring trap.
This design is capable of applying a uniform electric field in the presence of a steady flow
of cells, thereby generating a negative DEP force directed towards the negative Z-axis. This
force concentrates the cells at the capture point and is unaffected by gravity. The authors
used HEK-293 human embryonic kidney cells to demonstrate a technique that combines
negative dielectric trapping with electroporation. The electroporation process was moni-
tored by the efflux of calcium xanthophyll dye while a plasmid encoding red fluorescent
protein (RFP) was transfected into the cells. The findings, visualized through fluorescence
intensity plots normalized to background levels over time, validated electroporation at
a 4 Vp-p amplitude, concurrent with nDEP cell trapping [67].

Takahashi et al. designed a continuous cell sorting system leveraging AC-DEP to
distinguish cells according to their dielectric characteristics, coupled with a liquid flow
control system. Transparent conductive glass was utilized to induce the DEP effect by
creating a non-uniform electric field, with an electrode array specifically designed to
enhance field non-uniformity. This system was utilized to purify mouse embryonic stem
cells and mouse embryonic fibroblasts from a mixed-cell suspension. Initially, the ES-B3
cell purification ratio was approximately 59%, which improved to around 94% after the
first cycle of sorting. The purity of ES-B3 cells stabilized at around 90% after 10 sorting
cycles. Moreover, the device demonstrated the capability to continuously enhance the
purity of mixed-cell suspensions, efficiently processing large volumes in a continuous
manner [68]. Derakhshan et al. employed AC-DEP to continuously separate particles
and cells within a circular microchannel. Using electrodes positioned along the channel
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sidewalls, they induced controlled electrothermal flow, reducing fluid mixing compared
to conventional interdigitated electrode arrays. Experimental results indicated that a
minimum electric potential of 25 V was necessary to separate three polystyrene particles at
an average velocity of 200 µm/s. For biological cells, effective separation of white blood
cells, red blood cells, and MDA-MB-231 breast cancer cells required a minimum voltage of
9 V. This study found that increasing the applied electric potential beyond 12 V significantly
increased electrothermal flow and mixing, while maintaining the potential within 9 V to
12 V achieved effective separation with a temperature rise below 1 K, ensuring suitability for
biological applications [69].
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In AC-DEP microfluidic devices, achieving electric field non-uniformity often involves
integrating microelectrodes of different geometries and dimensions within the microchan-
nel (shown in Figure 6). Han et al. proposed a method of self-limiting AC-DEP for
assembling nanoparticles selectively over large areas. Their circuit design included a litho-
graphically defined capacitor connected in series with a pair of trapping electrodes in each
parallel unit. This configuration enabled the capacitor to bear most of the applied voltage
when nanoparticles formed bridges across the electrode gap. As a result, the voltage drops
across the gap decreased, minimizing the occurrence of multiple nanoparticle trappings at
identical sites.

Using this setup, they successfully formed arrays of aligned nanoparticles for further
device fabrication and system integration. This self-limiting mechanism resulted in a
787% enhancement in single-particle assembly yield compared to the control, achieving
a 70% single gold nanowire (AuNW) assembly yield at 1 MHz and 2 Vp-p [70]. Zhang
et al. designed a Y-Y shaped microfluidic device for AC DEP-based isolation of non-
small cell lung cancer (NSCLC) cells. The device features a microchannel with alternating
triangular protrusions on the upper wall, each of which is electrically charged to create a
non-homogeneous electric field. Blood samples containing erythrocytes and circulating
tumor cells (CTCs) are introduced from the upper inlet, while a buffer solution is introduced
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from the lower inlet, directing cells to one side of the channel. At the channel intersection
where the streams converge, cells experience dielectrophoretic forces proportional to their
sizes due to the varying electric field, facilitating the effective separation of CTCs from
erythrocytes. Numerical simulations indicated that with electrical potentials ranging
from 1.6 V to 2.2 V and inlet flow rate ratios from 1.9 to 2.5, the separation efficiency
could achieve approximately 99% [71]. Lv et al. designed the Taguchi method to design
16 variations of Y-Y microfluidic microchips aimed at optimizing cell capture through AC-
DEP for separating circulating tumor cells (CTCs). They performed numerical simulations
on flow patterns, electric fields, and cell trajectories, employing the signal-to-noise ratio
(SNR) to assess the impact of these factors and determine the most effective configuration.
Their findings indicated that increasing the buffer inlet flow velocity enhances separation
purity. The sequence of geometric parameters’ impact on separation purity was determined
as W > α > L > β, with β having the least influence at 7.81% and W having the most
significant impact at 50.48%. The optimal geometric parameter combination was identified
as L = 1080 µm, W = 110 µm, β = 60◦, and α = 60◦ [72].
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Liu et al. proposed an innovative AC-DEP for the direct capture and elimination
of cyanobacteria. They explored factors influencing removal efficiency by employing a
two-stage process: initially using 30-mesh wire mesh electrodes to capture larger, ag-
gregated cyanobacteria, followed by 80-mesh wire mesh electrodes to capture smaller,
filamentous cyanobacteria. In their experiments, a cyanobacteria solution with an initial
concentration of 756 µg/L was processed at a flow rate of 0.503 L/h. Applying an AC
voltage of 15 V at 10 kHz significantly increased the removal rate from 68.37% without
DEP to 89.79% with DEP. Higher initial concentrations of cyanobacteria also enhanced the
polarization induction effect, further improving removal efficiency. Optical microscopy
confirmed that the captured algal cells maintained their structural integrity, indicating that
this DEP method can prevent secondary pollution from reagent addition and phycotoxin
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release [73]. Jones et al. designed an AC-iDEP sorting device with ionic liquid electrodes for
separating different nucleic acid analytes at different outlets within a microchannel. Their
device uses DEP forces to guide particles through a constriction zone and sort them by size.
The authors performed continuous-flow DEP sorting on four types of double-stranded
DNA (dsDNA) analytes ranging in size from 1.0 to 48.5 kilobase pairs (kbp). They found
that the instability of the low-frequency electrohydrodynamic directly affected the signifi-
cant variation of the sorting efficiency, which led to the selective enrichment and exclusion
of dsDNA of different sizes at different outlets of the device. Experimental results showed
that sorting efficiencies ranged from 0.59 ± 0.04 (effective side exit sorting) to −0.92 ± 0.03
(center exit sorting), achieving sorting efficiencies in excess of 90% [74].

Zemánek et al. proposed a novel method for noncontact micromanipulation using
controlled AC-DEP. This technique involves modulating the voltage phase shifts applied
to electrodes, thereby simplifying hardware requirements and broadening the range of
achievable forces. The innovative electrode layout comprises four identical quadrants
with parallel, mutually orthogonal electrodes, facilitating arbitrary movement within the
manipulation area. Utilizing the negative DEP frequency range, experiments involved
50-micron polystyrene microspheres suspended in deionized water. By alternately applying
phase shifts of 0 and π to all electrodes, the control algorithm successfully achieved initial
levitation of objects to a height of 140 µm. Both numerical simulations and laboratory
experiments confirmed the system’s ability to accurately position and guide a 50 µm
microsphere, as well as to bring two objects together and separate them. The worst-case
positional error was found to be just 8 µm, representing 16% of the microsphere dimensions
or 0.7% of the manipulation span [76]. Li et al. reported a DEP device with an array of
bipolar electrodes (BPE) for continuous, specific, and efficient capture of circulating tumor
cells (CTCs). Their device transmitted an alternating current field between insulating
barriers in parallel microchannels to simultaneously capture CTCs. Embedded along each
microchannel wall are microscopic pockets aligned with the tips of BPEs, providing defined
volumes for discrete single-cell capture. In their experiments, a mixed cell sample was
introduced under a 40 kHz alternating current field at an average linear velocity of 60 µm/s.
The researchers observed selective capture and accumulation of breast cancer cells at the
BPE tips, while white blood cells passed through without retention [77].

Pendharkar et al. designed an insulator-based AC-DEP microfluidic chip for the
patterning and fusion of biological cells. The chip has two pieces of ITO glass placed
opposite each other with conductive surfaces facing each other within the chip, and the
bottom ITO glass is covered with a PDMS film with 6000 microscopic pores for capturing
individual cells. By applying an AC electric field, the non-uniform electric field generated
by the PDMS layer was utilized to capture and guide the cells to the microwells for pairing.
They successfully achieved patterning and cell fusion between CT26 and bone marrow
dendritic cells (BMDCs) using iDEP-LC technology. The fusion efficiency was as high as
70% in precisely matched cells, and within four days, 60% of the fused cells were still viable.
The authors also investigated the characteristics of the fused cells, including intracellular
components labeled with fluorescence and different cell morphologies. This fabrication
method provides a straightforward, biocompatible way to generate a large number of
PDMS microwells, enabling the chip to efficiently immobilize approximately 6000 cells [78].
Liu et al. reported a generalized membrane antifouling strategy based on AC-DEP in which
they prepared Ni/PVDF conductive membranes by electroless nickel plating on PVDF
ultrafiltration membranes, which were used as an electrode for constructing a nonuniform
electric field at the filtration feed end using an AC electric field. The authors applied their
equipment to systematically design flow-through electrofiltration experiments for three
colloidal contaminants with different dielectric constants or conductivities. The membrane
permeation rate for electronegative SiO2 and electropositive Al2O3 particles, which have
relative dielectric constants lower than those of medium water, increased by 90.1% for
both membranes when subjected to an AC electric field. This demonstrates the significant
enhancement in permeation efficiency under these conditions [79].
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Zhao et al. described an innovative design for AC-DEP by integrating asymmetrically
porous electrodes on opposite sides of a primary microfluidic channel. This setup enables
the continuous separation and characterization of particles and droplets. DEP effects
manifest within the asymmetric pore region: particles or droplets exhibiting positive DEP
move towards smaller pores and deviate from the central axis of the main channel, while
those experiencing negative DEP migrate towards the central axis and away from larger
pores. The researchers successfully achieved size-based separation of 5 µm and 10 µm
polystyrene particles, as well as type-based separation of similarly sized ionic liquid (IL)
and oil droplets. They also investigated the migration of particles and IL droplets under
various frequencies of the AC electric field. Their study represents the first measurement of
the lateral migration of particles and water-in-ionic liquid emulsion droplets in microfluidic
chips in relation to the frequency of the applied AC electric field. This study marks the
initial exploration of lateral migration of particles and water-in-ionic liquid emulsion
droplets in microfluidic devices concerning the frequency of the applied AC electric field,
thereby identifying the critical frequency and distinct behaviors of the droplets [94].

Afterwards, they devised a microfluidic DEP chip specifically designed for continuous
characterization and separation of viable and non-viable yeast cells, employing a series
of asymmetric openings. Positioned horizontally within the main channel are two open-
ings: a narrow 10 µm aperture and a wide 500 µm aperture. Through modulation of AC
electric field frequencies, the researchers effectively segregated live and dead yeast cells in
deionized water [80], as shown in Figure 7. Wang et al. reported a method for microalgal
cell separation utilizing the AC-DEP technique, which incorporates a three-dimensional
electrode structure for a DEP separation chip. The electrodes were designed to be bifur-
cated and located on opposite sides of the microfluidic channel; one side had eight strip
electrodes with sharp corners, while the other side contained a rectangular electrode. This
arrangement creates a distinct gradient of electric field strength along the electrodes. The
authors used this chip to treat a mixed solution containing Chlorella and Clostridium. They
observed that Closterium cells were attracted to the strip electrode by positive DEP forces,
moved downward through the channel, and were expelled. Chlorella cells, on the other
hand, were repelled upwards by negative DEP forces, deviated from the strip electrode,
and were subsequently expelled. This method was successful in separating Chlorella and
Clostridium cells with an efficiency of more than 90% [81].

Chen et al. used an AC-DEP chip with right-angle bipolar electrodes for the character-
ization and selection of non-spherical flagellated algae. Compared with the sharp-angled
triangular electrode, the electric and flow fields near the right-angled bipolar electrode were
milder and more uniform, which favored cell adhesion to the electrode edges at a smaller
angle. They simulated the equilibrium state of spherical, elliptical, and spindle-shaped
cells under the positive DEP force applied by the right-angle bipolar electrode. The authors
applied their chip to successfully achieve 92.06% separation of Euglena and H. pluvialis.
and 92.78% isolation of Dunaliella salina and Platymonas. A recovery efficiency of 99.06%
was achieved in the isolation of Euglena cells with high viability and motility, obtaining
100% purity of live Euglena cells [82]. Zhou et al. developed a microfluidic chip integrating
AC DEP and inertial forces for the separation and enrichment of Symbiodinium, the microal-
gae symbiotic with corals. The chip combines a separation module and an enrichment
module. In the separation module, Symbiodinium cells are first initially stratified by inertial
forces, and then DEP forces are used to further separate different cells. In the enrichment
module, cell focusing is achieved by controlling the flow rate using inertial contraction-
expansion microchannels, and finally, the DEP force directs the focused cells to a single
outlet for enrichment. The authors successfully achieved the separation of Effrenium and
Cladocopim cells in Symbiodinium using their microchip, with a separation purity of 90%.
At the same time, as shown in Figure 8, the concentration of Symbiodinium cells at the
outlet was approximately 5.5 times the concentration of the original solution, achieving
efficient enrichment [83].
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Julius et al. reported an AC-DEP device using an adaptable dielectrophoresis embed-
ded platform tool (ADEPT). The chip contains six microelectrodes arranged in a circular
pattern, each of which can be controlled independently. They first captured cells in the
center using a frequency of 200 kHz and an amplitude of 10 Vp-p, and then increased the
frequency to 4 MHz and an amplitude of 20 Vp-p to achieve separation of live and dead
yeast cells with a separation efficiency of 94%. They further demonstrated that phenotype-
based separation experiments were successful in achieving up to 96% separation of yeast
and Bacillus subtilis [84].

3. Applications of DEP

DEP is considered an effective tool for manipulating micro-scaled and nano-scaled
targets in the microchannel by using electric fields, which have a wide range of applications,
including particle sorting, capture, purification, aggregation, attachment, and localization.
These applications have been instrumental in making DEP technology useful in drug screen-
ing, cell analysis, biosensors, and microelectronics. Under dielectrophoretic forces, particles
or cells move between electrodes in a curvilinear manner due to the electric field strength
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and spatial distribution, resulting in highly selective sorting. This sorting function can be
precisely tuned to the type, size, shape, and charge of the particles, resulting in efficient
separation of particle mixtures. Compared to conventional particle manipulation methods,
the DEP operation requires a very small sample size, allowing for a non-destructive and
highly accurate process.

3.1. Particle Separation

A DEP device with self-assembled liquid electrodes consisting of ionic liquids is
designed for continuous separation of particles and human cells. This device leverages
room-temperature ionic liquid, which exhibits higher conductivity compared with con-
ventional DEP buffers, to form the liquid electrode. By integrating two DEP buffers of
varying conductivities with the ionic liquid, the authors managed to harness the applied
potential within the primary channel to establish a robust gradient of electric fields. This
configuration facilitated efficient separation of polystyrene microbeads and PC-3 human
prostate cancer cells, achieving deflection rates of 94.7% for the cells and 1.2% for the
microbeads. They also demonstrated the device’s capability to discriminate between viable
and non-viable PC-3 cancer cells, achieving deflection rates of 89.8% for viable cells and
13.2% for non-viable cells. Additionally, the device successfully isolated MDA-MB-231
human breast cancer cells from human adipose-derived stem cells (ADSCs), achieving
separation purities of 81.8% for ADSCs and 82.5% for MDA-MB-231 cells [75].

Wu et al. designed an integrated microfluidic system utilizing bipolar electrodes and
surface acoustic wave regions to achieve label-free separation of different types of cells
and particles. The system consists of a deterministic lateral displacement (DLD) array for
initial separation, a bipolar electrode (BPE) region for particle focusing and separation
based on dielectric properties, and a surface acoustic wave (SAW) module that utilizes
acoustic radiation force for separation of density and compressibility differences. They
injected mixed samples of polystyrene particles, oil droplets, and live/dead yeast cells
into a DLD array with an integrated microfluidic chip and performed initial separation
based on particle size differences under flow conditions combining a DC electric field and
pressure drive. The AC electric field in the BPE region was utilized to generate the DEP
force for further focusing and separation of particles based on dielectric properties. In the
SAW region, finer separation is achieved by acoustic radiation forces. By adjusting the
frequency and voltage of the AC electric field, a separation efficiency close to 90% of the
target particles was achieved [95]. Luo et al. introduced a method integrating sheathless
prefocusing based on gravitational sedimentation with DEP separation in a microfluidic
device for continuous cell sorting according to size or dielectric characteristics. Initially, a
tube was inserted into the microfluidic chip’s inlet, allowing gravitational sedimentation
with adjustable steering angles within the tube to concentrate cells into a stream at the
upstream section of a microchannel. After prefocusing, DEP forces were applied in the
microchannel’s downstream area for active cell separation. The researchers successfully
demonstrated sorting of yeast cells, approximately 6 µm in diameter, and THP-1 cells,
around 13 µm in diameter, based on cell size. Additionally, they achieved separation of
OCI AML3 cells and THP-1 cells, both approximately 13 µm in diameter, based on distinct
dielectric properties. The technique achieved separation efficiencies exceeding 90% [96].

As shown in Figure 9A, Zhang et al. presented a hybrid microfluidic platform com-
bining DEP and inertial forces to achieve adjustable particle separation. They employed
an external DEP force field alongside inertial forces, using a sheath flow to remove par-
ticles from the top inertial focusing positions. This action confined all particles near the
microchannel’s bottom, which was patterned with microelectrodes, enabling DEP forces
to alter the focusing positions of all particles effectively. The authors successfully demon-
strated separation of 13 µm and 5 µm particles with separation efficiencies of approximately
100% and 96%, respectively. Additionally, they conducted experiments to enhance the
resolution of particle separation in a binary mixture featuring diameters of 8 µm and
13 µm. By incrementally increasing the applied voltage from 27 volts to 33 volts, the 13 µm
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particles were focused along the channel centerline, while the 8 µm particles remained con-
centrated in two streaks near the channel’s sidewalls, effectively achieving separation [97].
Wu et al. introduced a microfluidic platform that integrates driving electrodes for cell
and microbead separation alongside bipolar electrodes for individual cell or microbead
manipulation using DEP. Their experimental strategy combines pressure-driven flow with
deflective DEP barriers to achieve efficient, high-throughput separation. They achieved
over 90% recovery efficiencies for yeast cells and polystyrene microbeads. Additionally,
they conducted trapping experiments using yeast cells and PS microbeads in solutions of
varying conductivity, demonstrating successful capture at the central position of wireless
electrodes through negative DEP forces. By applying a rotating electric field, yeast cells
underwent translational movement along the periphery of the electrodes, while an array of
bipolar electrodes enabled cellular self-rotation influenced by electro-rotational torque and
traveling wave DEP forces [98].
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Wang et al. designed a combination of thermo-oxidative non-uniform deterministic
Lateral Displacement (DLD) arrays and an AC-DEP chip for efficient exosome separation.
The chip fabricated DLD arrays with nanoscale spacing and tapered structures. They
applied AC power, and 600 nm particles were subjected to dielectrophoretic forces and
the DLD effect, deviating from the main flow path and being collected from the waste exit.
The smaller 100 nm particles flowed directly to the exosome outlet, achieving size-based
separation. The authors have successfully used their device to separate exosomes from
complex biological samples, achieving a purity of 91.47%, significantly higher than the
57.84% of the original samples [99] (shown in Figure 9B). A microfluidic chip for nanoscale
sorting of extracellular vehicles (EVs) was designed by Soong et al. The chip incorporates
optically-induced dielectrophoresis (ODEP) technology. They generated a non-uniform
electric field by irradiating light through a digital projector on a photosensitive amorphous
silicon layer. An AC voltage was used between two ITO substrates to induce a positive
ODEP force that attracts the EVs within a defined light pattern. The green light intensity and
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speed were varied to sort EVs of different sizes from a moving light pattern generated by a
digital projector. The authors applied their chip to successfully classify the EVs into three
different size categories: small (100–150 nm), medium (150–225 nm), and large (225–350 nm).
A separation efficiency of 86% was achieved [100]. Chu et al. also designed microfluidic
chips combining the ODEP mechanism with laminar flow patterns in microfluidic systems
for sequential size-based particle sorting and separation. They successfully achieved
PS separations at 5.8, 10.8, and 15.8 µm using their chip, all with separation efficiencies
around 90% [101].

3.2. Particle Capture

The atomically sharp edges of monolayer graphene are utilized to generate highly
localized electrical field gradients, aiming to trap biomolecules using DEP. Their approach
involved creating locally backgated devices that incorporated an 8-nm-thick dielectric layer
of HfO2 along with graphene deposited via chemical vapor deposition. This configuration
produced gradient forces that were ten times stronger than those produced by conventional
metal electrodes. This enhancement enabled near-perfect trapping of particles under precise
positional control at minimal voltages of only 0.45 V, effectively capturing nanodiamonds,
nano-sized beads, and DNA from large-volume solutions within seconds. Their method
leveraged the intrinsic thickness of graphene and the precise deposition of insulators
using atomic layer deposition (ALD), resulting in a highly scalable and reproducible
technique. This approach significantly advanced the precision and reliability of nanoparticle
trapping and positioning, thus supporting biological assays at low concentrations and
facilitating the investigation of molecular interactions [102]. Ertsgaard et al. developed a
novel DEP and surface-enhanced Raman spectroscopy (SERS) platform, termed TRAIL
(Trap, Raman, and Imaging Line), for the rapid detection and analysis of nanovesicles.
Their experiments focused on utilizing a high-aspect ratio 11-nanometer electrode gap
to generate ultra-strong electric field gradients at significantly lower voltages compared
to conventional microelectrodes, facilitating efficient DEP line-trapping. The researchers
observed that metallic nanoparticles exhibited a positive Clausius-Mossotti factor (CMF)
across the standard operating frequency range of 1 Hz to 10 MHz, even in highly conductive
buffer solutions. Using 70-nanometer gold nanoparticles, they demonstrated that Raman
enhancement could be further optimized by employing gold or silver nanoparticles of
varying shapes and sizes. Additionally, functionalizing gold nanoparticles could enable
chemically specific trapping in conductive solutions, targeting specific receptor molecules
on nanovesicles or analytes, thereby enhancing the trapping specificity and efficiency of
the TRAIL platform [103].

Shi et al. reported a nanopipette-based DEP device designed for the rapid capture of
nanoparticles from solutions of various ionic strengths under a low applied DC field. The
device effectively trapped particles in the close-proximity region in front of the pipette tip.
Optimal trapping conditions were established using a 2-micrometer-diameter pipette and a
10 V/cm positive bias in a 10 mM KCl solution. The capture yield was observed to increase
over time, stabilizing after approximately 40 min. The authors successfully captured
exosomes from healthy donor plasma and liposomes resuspended in a PBS solution under
applied negative potential. Additionally, they demonstrated selective trapping of liposomes,
and 510 nm carboxylic acid polystyrene beads were suspended in PBS solution by adjusting
the polarity of the voltage on the pipette [104] (shown in Figure 10a). Kwak et al. reported
a dielectrophoretic corral trap system for size-selective particle capture, featuring micron-
sized circular traps. By applying AC voltage, the DEP electrodes generated non-uniform
electric fields. They carefully selected the frequency of the AC voltage, using the CM
factor to create conditions where particles with significant susceptibility to the electric
field gradient were captured by the DEP gates, while smaller particles passed through
unaffected. The system was tested with particles of 2 µm and 3 µm radii to evaluate
size-selective trapping efficiency. They found that higher microchannel heights resulted
in increased trapping efficiency, contrasting with traditional shallow channel methods.
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This configuration enabled rapid isolation and concentration of specific-sized particles in
a single step, overcoming the inefficiencies of multiple treatments and dilution steps in
existing separation techniques [105], as shown in Figure 10b.
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A comparative study of a ring electrode system and a point electrode system for
capturing particles by DEP was performed by Weber et al. This study focused on assessing
response times and the proportion of bacteria responding under identical boundary con-
ditions (applied electric field). Results indicated that the ring electrode system achieved
bacterial capture within 1 s, a performance more than 200 times faster than that of the dot
electrode system. Additionally, the ring electrode achieved a capture efficiency exceeding
99%. This work underscores the superior efficiency and rapid response of the ring electrode
design in DEP-based microbial capture applications [106]. Islam et al. designed a paper-
based DEP capture device for capturing micro-scale particles and cells. The device induces
a dielectrophoretic force by applying an electric field perpendicular to the direction of fluid
flow in this paper channel, using a local non-uniform electric field gradient generated by
the insulating fiber structure inside this paper. This force acts on suspended particles and
cells, causing them to move out of the fluid and be captured in specific regions of this paper
channel. The authors applied voltages as low as 2 V to effectively trap and concentrate
micron-sized particles through two mechanisms: constant flow rate or passive capillary
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flow. They further demonstrated that the device successfully captured fluorescently labeled
polystyrene particles and E. coli cells [107].

3.3. Particle Purification

Weirauch et al. devised an economical mesh-based filter using DEP, employing struc-
tured field disruptors for particle purification. The system initially traps a mixed particle
sample and subsequently reorganizes them selectively through frequency modulation,
achieving multidimensional separation. This capability was demonstrated using ellipsoidal
and spherical polystyrene particles, enabling shape-specific sorting at flow rates as high as
120 mL/h and allowing for shape-selective separation at high flow rates up to 120 mL/h,
achieving a throughput 1000 times higher than similar microchannels with comparable
efficiency [108]. Chu et al. described a two-step ODEP method for the purification of cell
samples obtained by negative selection and immunomagnetic microbead-based isolation of
circulating tumor cells (CTCs). The method uses the different responses of ODEP forces to
cells bound to magnetic microbeads and cells not bound to magnetic microbeads to sequen-
tially sort and isolate cancer cells from cells bound to microbeads using an ODEP-based
virtual cell filter and tracker. This two-step ODEP cell processing technique increased the
throughput and cell purity and resulted in significantly higher purity of cancer cells with
purification efficiencies in the range of 81.6–86.1% compared to other ODEP-based CTC
isolation techniques [109]. Zhang et al. proposed a microfluidic chip based on DEP for the
rapid separation and high-purity purification of macrophages. They utilized DEP spectrum
mapping under different electric field frequencies to identify specific frequencies that could
effectively separate RAW264.7 macrophages from MCF-7 breast cancer cells and optimized
the separation conditions in experiments by adjusting voltage and flow rate. The authors
have successfully achieved macrophage separation with a purity of up to 99% using their
chip and have been able to separate macrophages from plasma samples with a purity
of 98% [110].

It can be seen from Figure 11 that Park et al. designed an integrated microfluidic
system for the analysis of suspended cancer cells. The system combines a preprocessing
module based on deterministic lateral displacement (DLD) and a DEP module utilizing
an electroactive microwell array (EMA). Using an ordered array of pillars that manipulate
particle paths based on their size enables effective size-based separation in the process. The
DLD module is capable of separating prostate cancer cells (PC3) from a sample mixed with
microbeads and exchanging the medium with the DEP buffer. The separated target cells
from the DLD module are then introduced to the DEP module, where single-cell-level cap-
ture is realized by applying a positive DEP force through electrodes beneath the microwells.
The authors successfully separated PC3 cells from a mixed sample using their system, with
a cell separation efficiency of over 94% and a capture efficiency of over 93% for PC3 cells at
a flow rate of 2.5 µL/min [111]. Kiryo et al. reported a method utilizing DEP and a flow
management system to purify pluripotent stem cells (PSCs) based on their pluripotency
status. They examined the dielectric properties of mouse embryonic stem cells (mESCs)
with and without pluripotency, observing distinct frequency dependencies in their DEP
responses. Leveraging these variations, the author established a cell sorting system capable
of effectively segregating mESCs according to their pluripotency status, eliminating the
need for fluorescent dyes or magnetic antibodies in the process. By employing DEP and
a flow control system, they successfully separated mESCs based on their pluripotency,
enriching the pluripotent cells in the collection port with a purification efficiency of ap-
proximately 90% [112]. Bian et al. reported a microfluidic chip based on optically induced
DEP for achieving continuous purification of marine microalgae. The top layout of the
microfluidic channels of the chip was designed with three different widths of 0.5 mm,
1.5 mm, and 2 mm for generating different flow conditions to achieve secondary tandem
separation of Haematococcus pluvialis. They demonstrated a reduction of Haematococcus
pluvialis from 37.5% to 1.2% after mixed liquid samples were collected at the chip exit under
optimized ODEP operating conditions. High-quality purification of Chlorella vulgaris was
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achieved [113]. Chen et al. reported an iron/polyvinyltetrazole (pFeP/PVT) composite
microsphere adsorbent incorporating DEP. They changed the dielectric properties of the
pFeP/PVT composite microsphere adsorbent by adjusting the frequency of the electric
field, utilized the generated dielectrophoretic force to attract the micelles of heavy metal
ions to achieve high-efficiency adsorption at low frequencies, and generated repulsive force
to promote the desorption of the micelles at high frequencies to achieve the recycling of
adsorbents. The authors successfully achieved an increase in the removal rate of heavy
metal ions from about 30% to about 90% using their device, and the adsorbent can be
recycled up to 10 times [114].
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3.4. Particle Focusing

A three-dimensional integrated dielectrophoretic channel is proposed for continuous
cell focus. They used a cut plotter to cut chips from a conductor-insulator laminate and
were able to design and construct functional fluidic devices in a matter of hours at a fraction
of the cost without the use of chemicals, masks, or clean room environments. Using their
microchip, the authors successfully achieved enrichment of yeast cells to 80% purity at a
rate of 10,000 cells per second with only about 12% cell loss [115]. Mira et al. designed
a microfluidic device with interleaved electrode arrays for enrichment of rare circulating
tumor cells, specifically circulating hybrid cells (CHCs), from blood. The device uses
a specific V-shaped electrode structure that allows peripheral blood mononuclear cells
(PBMCs) to be deflected by DEP forces in a densely populated cell environment, while
CHCs remain in the central channel due to a weaker DEP response. Efficient depletion
of PBMCs and enrichment of CHCs were achieved by optimizing voltage and frequency
parameters. Their device achieved a 96.5% reduction in PBMCs and an 18.6-fold increase in
tumor cell concentration. In pancreatic cancer patient PBMCs, the platform successfully
enriched tumor cells harboring KRAS mutations using droplet digital PCR within 1 h,
demonstrating enrichment in 75% of clinical specimens [116], as shown in Figure 12.
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Keck et al. investigated the use of DEP technology to enrich Trypanosoma brucei
at specific locations. They designed a semicircular microelectrode that was fabricated on
silicon wafers to generate a strong localized electric field gradient that helps to capture and
enrich target cells at specific locations. It was also experimentally determined that under
specific frequency (750 kHz) and voltage (5 Vp-p) conditions, the positive DEP response
could be most effectively utilized to attract parasites to specific regions of the electrode.
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Ultimately, the authors achieved a 780% focus of parasites in a specific region within 50 s
under optimal conditions [117]. Cao et al. developed a DEP-based technique for enhancing
protein immunoassays with high sensitivity. They created Ag/SiO2 nanorod arrays using
oblique angle deposition (OAD), generating ultrahigh-voltage electric field gradients. By
applying bias voltages as low as 5 volts, they efficiently captured small proteins. Their
method utilized oxide-coated silver nanorod arrays and prefabricated serrated electrodes,
achieving a remarkable 1800-fold enhancement of bovine serum albumin in just 180 s. Using
this setup, they demonstrated an ultrasensitive immunoassay for mouse immunoglobulin
G, lowering the detection limit from 5.8 ng/mL to 275.3 femtograms/mL, significantly
boosting sensitivity. Furthermore, they applied the technique to detect prostate-specific
antigen cancer biomarkers in human serum, achieving a detection limit of 2.6 ng/mL.
The enhanced sensitivity is attributed to the rapid biomarker enrichment and the metal-
enhanced fluorescence effect enabled by the integration of nanostructures. Enhanced
protein enrichment also accelerates binding kinetics, yielding saturated signals within one
minute [118]. Nguyen et al. designed a microfluidic chip technology integrating DEP focus
and impedance measurement for the detection of rare lung cancer circulating tumor cells
(CTCs). They designed microfluidic devices containing circular microelectrodes that use
positive DEP and hydrodynamic drag forces to guide the target cell (lung cancer cell A549)
to the center of the working area and capture it on the desired sensing electrode. The
presence of cells was identified by measuring impedance, and impedance spectroscopy
was used to analyze different numbers of cells. Using their chip, the authors achieved
over 90% enrichment of A549 cells on the sensing electrodes and were able to measure the
impedance ringing of the cells captured on the electrodes in the frequency range of 1 kHz
to 1 MHz [119].

3.5. Particle Assembly

The assembly behavior of segmented metal-dielectric particles under DEP effects is
investigated. They fabricated segmented particles filled with gold (Au) and solvent using
the templated electrodeposition technique. The synthesized particles were suspended
in deionized water, placed on slides with microelectrodes, and then an AC electric field
was applied to observe the DEP behavior of the particles. It was observed that certain
segmented particle types rotated 90◦ as they neared the crossover frequency, reorienting
their long axis perpendicular to the direction of the applied electric field. By exploiting the
dielectrophoretic behavior of segmented particles in an AC electric field, they effectively
achieved independent control over subpopulations of particles in binary mixtures com-
posed of multicomponent particles with varying segmentation patterns [120]. Zhou et al.
designed an atomic force microscopy probe-induced dielectrophoresis (AFM-DEP) chip
for spatial manipulation and assembly of nanoparticles. Their chip combines the precise
localization capability of AFM with the ability to manipulate particles in parallel with DEP.
An AC voltage applied between the AFM probe and the ITO substrate generates a spatially
non-uniform electric field. This facilitates precise control of nanoparticle manipulation and
assembly directly on the chip. The probes act as movable DEP tweezers to manipulate and
assemble nanoparticles by moving the probes. The authors have successfully utilized their
AFM-DEP technique for the three-dimensional manipulation of nanoparticles. The effect
of parameters such as gap distance, AC voltage, solution depth, solution concentration,
and duration on nanoparticle assembly has also been investigated. The nanoparticles
were assembled into basin shapes, linear structures, elliptical structures, and dot matrix
structures by adjusting specific parameters [121].

Zheng et al. designed AC-coupled DEP to purposefully assemble single-walled carbon
nanotubes (SWNTs) devices on a large scale. They added a suspension of SWNT droplets
onto a curved, flexible substrate. An AC power supply was applied, and the SWNTs were
subjected to dielectrophoretic forces in a non-uniform electric field, which attracted and de-
posited between the tips of the electrode pairs. After the first SWNT or SWNT bundle forms
a reliable contact on the electrode pair, subsequent SWNT deposition becomes unfavorable
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as the first deposition changes the electric field distribution around the electrode pair,
and self-limiting deposition is achieved. The authors confirmed the effect of self-limiting
deposition by SEM and AFM imaging, as well as Raman spectroscopy analysis, which
observed that the majority of the electrode pairs were bridged by single SWNTs or small
bundles of SWNTs [122]. Frisenda et al. prepared TiS3 nanoribbons through liquid-phase
exfoliation and utilized the dielectrophoretic (DEP) method to direct the assembly of these
nanoribbons between two gold electrodes, thereby fabricating photodetectors operational
within the visible light spectrum. Previous research has successfully utilized DEP for as-
sembling carbon nanotubes or graphene [123–126]. They applied a 1 MHz sinusoidal signal
to create a non-uniform electric field between the electrodes, using the DEP effect to attract
the TiS3 nanoribbons to the area of maximum electric field intensity, achieving orderly
arrangement and assembly between the electrodes. The resulting photodetectors exhibited
a photocurrent responsivity of 3.8 mA/W at a 1 V bias under 405 nm blue light illumination,
outperforming current devices that rely on two-dimensional materials exfoliated in liquid
phase and assembled using drop-casting or ink-jet techniques [127].

The dielectrophoretic assembly of different nano-targets is shown in Figure 13. Inaba
et al. utilized one-step dielectrophoretic (DEP) assembly technology to fabricate NO2 gas
sensors that incorporate p-type carbon nanotubes (CNTs) and n-type tin dioxide (SnO2)
nanoparticle heterojunctions. They varied the ratios of CNTs and SnO2 nanoparticles,
suspended the mixture in deionized water, and used DEP force to assemble the particles
into sensor channels at the gaps between electrodes. By adjusting the mixing ratios and
DEP assembly times, they optimized the sensor performance. The sensors achieved a
high response of approximately 1 ppm NO2 in a nitrogen environment and around 20 in
synthetic air, with UV light used solely for initialization. Additionally, under continuous
UV exposure, the sensors exhibited a maximum normalized response of about 19 to 1 ppm
NO2 in synthetic air, detecting NO2 concentrations as low as 20 parts per billion [128].
Seo et al. reported a chip-scale micro-supercapacitor with high area energy density that uti-
lizes nano-porous metallic microwires (AuMWs) formed by DEP-assembled gold nanoparti-
cles (AuNPs) as electrodes. They applied an AC voltage to the interleaved finger electrodes,
and the AuNPs aggregated in the electrode gaps due to the DEP force, forming this mi-
crowire structure. By electrodepositing MnO2 on the electrodes and AuMWs via cyclic
voltammetry, combined with the porous rough surface of the AuMWs, a significant in-
crease in the electrode surface area and enhancement of the capacitor’s charge storage
capacity were achieved. The authors utilized their device to demonstrate a 72% and 78%
improvement in specific capacitance and area capacitance for AuMW-MSCs compared to
MSCs without integrated microwires [129].
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4. Conclusions

In this paper, we highlight recent advances in the field of dielectrophoretic manip-
ulation and separation of particles, especially the challenges posed by manipulating mi-
croparticles of various nanoscale sizes and materials. Dielectrophoretic manipulation relies
on applying a force to polarizable materials within a nonuniform electric field. This tech-
nique encompasses two primary methodologies: direct current dielectrophoresis (DC-DEP)
utilizing insulator-based approaches and alternating current dielectrophoresis (AC-DEP)
employing micro-electrodes to create varying electric field distributions. Depending on
the specific application and materials involved, static or dynamic fields with specific fre-
quencies are utilized to ensure reliable operation in studies manipulating diverse particles.
The electric field forces generated can be used for particle separation, capture, purifica-
tion, focusing, assembly, etc. The non-contact, highly sensitive, and easy-to-use nature
of DEP technology makes it more suitable for particle manipulation and separation. In
addition, among the diverse techniques in other fields, we advocate combining microfluidic
platforms with the high sensitivity and precision of DEP. We review recent advances in
dielectric manipulation and separation of particles in three sections:

(1) In DC-DEP, a DC power supply and internally designed insulating structures are
utilized to generate a non-uniform electric field within the chip, which enables the sepa-
ration and manipulation of particles. DC-DEP is mainly categorized into electrode-based
DC-DEP and insulator-based DC-DEP. Electrode-based DC-DEP relies on electrodes embed-
ded in microfluidic channels to generate non-uniform DC electric fields. These electrodes
can be simple two-dimensional planar structures, such as 2D planar electrodes formed
on the bottom or other surfaces of the microchannels. They can also be more complex
3D structures, such as top-bottom patterned electrodes, sidewall patterned electrodes,
and three-dimensional electrode structures formed by electroplating or chemical vapor
deposition techniques. When a DC voltage is applied, these electrodes are capable of
generating a non-uniform electric field directly in the microfluidic channel, enabling precise
manipulation of the particles. Insulator-based DC-DEP, on the other hand, utilizes insulator
structures to generate non-uniform electric fields without the need to embed electrodes
directly in the microchannel. The technique can be embedded in microchannels with insu-
lating barriers, such as circular or diamond-shaped pillars. Alternatively, the microchannels
can be designed in serrated, spiral, or other curved shapes to utilize the geometry to create
non-uniformity in the electric field. The use of insulators isolates the electrodes from the
main channel and generates an electric field in the main channel through capacitive effects.
This approach avoids direct contact between the electrode and the sample, reducing the
risks of contamination and electrochemical reactions. Effective separation can be achieved
at a lower voltage, thereby reducing the Joule heating effect and electrochemical reactions,
which helps to preserve the integrity and activity of biological samples. Moreover, it also
supports particle separation under continuous flow conditions, which not only improves
separation efficiency but also increases throughput. This is particularly crucial for clinical
and research environments that need to handle a large number of samples. Electrode-based
DC-DEP provides greater manipulation precision and controllability of the electric field
distribution, while insulator-based DC-DEP provides better biocompatibility and simplicity.
In future developments, more functionalities, such as cell culture, chemical reactions, and
biosensing, could be integrated to achieve comprehensive, one-stop biomedical analysis.

(2) AC-DEP utilizes a non-uniform electric field gradient generated by an AC electric
field to exert a force on particles, enabling manipulation and separation of cells or particles.
The core principle of the technique relies on the Clausius-Mossotti (CM) factor, which
describes the relative capacitance and conductivity between the particle and the medium.
When the real part of the CM factor is positive, the particles move towards regions with
high electric field strength (pDEP); when the real part of the CM factor is negative, the
particles move towards regions with low electric field strength (nDEP). The electrode
structures of AC-DEP are crucial for realizing a non-uniform electric field, and they have
a direct impact on the manipulation effect of the particles or cells. For example, the DEP
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effect can be enhanced by employing asymmetric electrode structures. Common AC-DEP
electrode structures include planar electrodes, array electrodes, and fork-finger electrodes.
Each structure is capable of generating a specific DEP effect in a non-uniform electric field
according to its design features, which is suitable for different cell manipulations and
separations. The strength and duration of the electric field have a significant effect on the
cell manipulation effect and need to be optimized according to the experimental purpose.
The choice of experimental conditions can improve the efficiency of cell manipulation and
the accuracy of separation. By adjusting the frequency and intensity of the AC electric
field, the manipulation and separation of different types of cells can be realized, such as
the separation of live cells from dead cells. Frequency-modulated wave DEP can realize
the periodic U-turn motion of cells in a short period of time and is used for the rapid
measurement of crossover frequency. These electrode structures enable efficient electric field
manipulation in smaller spaces, providing higher precision and sensitivity. The electrode
designs are trending towards integrating multiple functions. Electrodes such as integrated
DEP and AC insulator-based DEP can achieve more complex manipulation modes. This
integration not only enhances operational flexibility but also broadens application ranges,
such as in liquid flow, particle separation, and manipulation. High-density electrode array
designs significantly improve the manipulation and parallel processing capabilities of
electrodes. This design allows simultaneous processing of a large number of particles or
cells in the same experiment, thus increasing both the efficiency of experiments and the
speed of data acquisition. In recent years, DEP technology has made significant progress
in the field of biomedical research, especially in applications such as manipulation and
separation of microplastic particles, cell transfection, and microalgae harvesting, which
have shown unique advantages.

(3) DEP is the movement of electrically polarized particles in a non-uniform electric
field due to the interaction of their internally induced electric dipoles with the spatial
gradient of the electric field. The combination of this technology with microfluidic chips
provides an effective method for the sequential isolation of cells. The advantage of DEP
lies in its non-invasive and labeling-free nature, which makes it possible to accurately
differentiate and purify cells with different pluripotencies without causing damage to cells
or biomolecules. In addition, DEP is characterized by low cost and rapid prototyping.
Utilizing non-traditional microfabrication techniques, such as cutting plotters, researchers
are able to design and build functional microfluidic devices in a very short period of time
and at a very low cost. In the field of nanomanipulation, DEP is combined with atomic force
microscopy (AFM). By applying an AC voltage between the AFM probe and a conductive
substrate, a non-uniform electric field can be generated, enabling precise manipulation
of nanoparticles. In recent years, DEP has made remarkable developments in a variety
of applications. With its precise cell manipulation capabilities, DEP has successfully en-
abled the isolation of different types of cells, including cancer cells and stem cells. It has
facilitated the capture and analysis of microscopic particles such as marine microplas-
tics, microorganisms, and plankton. It has shown significant results in wastewater treat-
ment, especially in the separation and recovery of suspended solids, oil droplets, and haz-
ardous chemicals. We recommend the combination of microfluidic platforms with DEP for
more applications.

With advancements in technology, DEP has significantly improved its precision for
manipulating nanoscale samples. Recent research has demonstrated the ability to manipu-
late particles within the nanometer range, providing robust support for precise nanoscale
operations. This high-resolution control capability is of great significance for the devel-
opment of nanoscience and nanotechnology. Future research will increasingly focus on
the application of functionalized nanomaterials in DEP. For instance, the use of composite
materials such as magnetic nanoparticles and metal-coated nanoparticles can enhance the
flexibility and effectiveness of DEP. These functionalized nanomaterials not only improve
manipulation performance but also enable intelligent responses in specific environments,
thereby expanding the range of applications for DEP technology. DEP technology performs
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well at the laboratory scale but faces challenges in large-scale production and industrial
applications. Integrating other microfluidic functions such as mixing, separation, and
detection into a single platform is a complex task that requires precise control of various
microfluidic operations. To enhance scalability, flexible electronics, low-cost materials,
and high-throughput microfluidic chips can be used. The development of novel materials
and structures, digital microfluidics, and nanofluidics can improve integration. Establish
standardized operating procedures and quality control measures to ensure the repro-
ducibility and reliability of experiments and develop more accurate control systems and
monitoring devices.
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