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Abstract: Here, we report a rapid and accurate optical method for detecting cells from liquid samples
in a label-free manner. The working principle of the method is based on the interference of parts
of a conical laser beam, coming from a single-mode optical fiber directly, and reflected from a flat
glass surface. The glass is functionalized by antibodies against the cells to be detected from the liquid
sample. Cells bound to that surface modify the reflected beam, and hence, change the resulting
interference pattern, too. By registering and interpreting the variation in the image, the presence
of cells from the sample can be detected. As for a demonstration, cell suspensions from a U937
cell line were used in glass chambers functionalized by antibodies (TMG6-5 (mIgG1)) to which
the cells specifically bind. The limit of detection (LOD) of the method was also estimated. This
proof-of-concept setup offers a cost-effective and easy-to-use way of rapid and specific detection of
any type of cells (including pathogens) from suspensions (e.g., body fluids). The possible portability
of the device predicts its applicability as a rapid test in clinical diagnostics.

Keywords: label-free biosensor; biological cells; fiber optics; proof of concept; point of care;
easy-to-use tool

1. Introduction

Detection of cells from body fluids is traditionally accomplished in a microbiological
laboratory, requiring incubators, skilled assistance, and sterile conditions for cell-culturing.
Subsequently, cells are identified by some labeling techniques like ELISA [1]. Both steps
are rather costly and time-consuming, while usually there is a significant time pressure for
early diagnosis. On the contrary, label-free techniques, regardless of utilizing electrical or
optical effects, generally do not need high-tech equipment, and normally can be applied
on-site, albeit they are less sensitive [2–9].

The work presented here introduces a novel all-optical, label-free technique for rec-
ognizing and identifying cells from liquid samples. The method of detection is based on
optical interference of parts of a laser beam. As a laser light mediator, a single-mode optical
fiber was inserted into a fluidic channel of straight walls created from flat glass plates. Since
the outcoupled beam is divergent, part of it is reflected from the flat glass substrate at the
bottom of the channel, eventually meeting with the directly propagating, unreflected light,
giving rise to interference, accordingly. Since any object close to the glass surface disturbs
the beam reflected from it, a change in the interference can be observed upon adsorption of
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the analytes. e.g., cells attached to the reflecting bottom of the fluidic channel can bring
forth a significant change in the interference pattern.

The specific identification of the cells is based on an antibody–antigen reaction. If,
namely, the surface is functionalized by antibodies against a certain cell type, only that
type of cell can be anchored to it [10,11]. To demonstrate the principle of detection and
identification by our method, here we used the human U937 lymphocyte cell line and
respective antibodies, while the results are discussed in terms of further potential general
utilization [10].

On the whole, we established a simple and robust label-free method for the detection
of cells from suspension. The operation principle of the method allows the rapid and
cheap detection of biological objects, including pathogenic microorganisms from body
fluids, while its simple and user-friendly implementation makes it a promising tool for
point-of-care applications.

2. Materials and Methods

U937 cells from a human lymphatic model cell line were grown in a humidified, 37 ◦C
incubator with 5% CO2, under normal cultivating conditions [12]. The cell counting of the
stock suspension (3 × 106 cells/mL) was performed via the traditional Bürker-chamber
method, and its error was less than 5% [13]. Prior to starting the measurement procedure, a
concentration series was prepared by successive dilutions of the stock suspension, with
final concentrations of 106, 3 × 105, 105, 3 × 104, 104, 3 × 103, and 103 cells/mL. As for
the possible change in the cell concentrations during the measurement procedure, the
total measuring time for the whole concentration series was about two hours. During the
measurement, regarding the doubling time of these cells (48–72 h, under optimal conditions
(e.g., constant, 37 ◦C temperature) [14], the increment—calculating with a pessimistic
approach, assuming τdouble = 48 h doubling time and optimal culturing conditions—is less
than 6%.

For the demonstration of the principles of the method, a fluidic chamber was built
from microscope slides with two spacers in between. The schematic representation of the
device is shown in Figure 1. The top slide is shorter, allowing an easy way to insert the
optical fiber, and the inner surface is ground, in order to avoid too much light reflected back
to the direct-light region. As spacers, slices of microscope slides that were a bit longer than
the upper glass plate were used. Their thickness was around 1 mm, while the diameter of
the stripped optical fiber was 125 µm. The top plate plays a dual role. It holds the liquid
sample in the channel, and its edge maintains the liquid surface flat and perpendicular to
the surface of the bottom plate by means of surface tension. Note that although both the
back and the front ends of the channel are open, being the walls of the sample chamber
hydrophilic, for such a height of the liquid layer (1 mm), the capillary forces keep the liquid
in. This technique has already been utilized successfully for building a flat-ended optical
waveguide out of a photopolymer liquid at the end of a single-mode optical fiber [15]. At
the final assembly, a UV-curable optical adhesive (NOA81, ThorLabs, Newton, NJ, USA)
and a transparent liquid were added between the parts, and the ending edges of the upper
and lower glass plates were precisely aligned together. As for the final step, a light flash
from a mercury arc lamp (of 100 W power for 5 s) was applied to cure the NOA81. The
leveled ends of the glass plates—with the help of the surface tension—defined the end
surface of the liquid with which the chamber is filled. The (stripped) optical fiber was
pushed and fixed onto the bottom surface, ensuring its optical axis was parallel with it.
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Figure 1. Schematic 3D figure of the device. The side blocks (black) and the glass plates on top and 
the bottom (gray) form the sample chamber. Thanks to the leveled end faces and edges of the blocks 
and glass plates the sample liquid (light blue) has a flat and vertical surface, which is at the same 
time the output optical window. The laser light enters the sample chamber from a single-mode 
optical fiber (dark blue). The figure is not to scale. 

In order to bind the analyte particles (i.e., cells in this case) onto the surface of the 
sample chamber, it was functionalized with specific antibodies [11]. The assembled device 
was cleaned by ultrasonic treatment in Isopropanol (IPA), and then dried. The sample 
chamber was filled up with AnteoBindTM Biosensor (AnteoTech, Eight Mile Plains, 
Queensland, Australia) and incubated for 15 min at room temperature to facilitate 
antibody binding to the glass surface as a chelator. After that, the chamber was emptied, 
and flushed three times with Phosphate Buffer Saline (PBS). Subsequently, it was filled 
with the antibody (TMG6-5, mIgG1) solution and incubated for an hour at room 
temperature. Devices for control measurements were prepared in the same way, except 
for the antibody in the last step, which was IgG goat anti-mouse. The latter antibody 
covered the pretreated surface, but did not specifically bind the U937 cells. 

A red laser light beam (RLT650-100MGS laser, Roithner LaserTechnic, Vienna, 
Austria, 658 nm, 100 mW output beam) was coupled into a single-mode optical fiber 
(ThorLabs Inc., Newton, NJ, USA, SM600, NA = 0.12). The chosen wavelength is one of 
the most common ones for cheap lasers, but the same principles used in this paper apply 
to other wavelengths in the visible, as well. Label-free biosensing is accomplished by the 
interference of two parts of a divergent laser light beam exiting a single-mode optical fiber. 
The lower part of this conical Gaussian measuring light beam hits the channel–substrate 
interface, and the vast majority of the intensity is reflected from it (for more details, see 
Supplementary Information, Figure S1, Equations (S1) and (S2)). The two coherent beams 
interfere, and the resulting interference pattern can be seen at the surface of a screen. When 
biological cells are attached to the surface, they modify the reflected light, which results 
in a variation in the interference pattern relative to the case without cells. 

As the first step of the measurements, the measuring channel of the device, 
functionalized with antibodies specific to the human lymphatic cell line, was filled up with 
a liquid suspension of U937 cells, and the output interference pattern was recorded at 
regular intervals, to follow the process of sedimentation of the cells. After 15 min, the 
output pattern was not changing anymore, indicating that the sedimentation of the cells 
on the bottom surface was complete. The following 15 min were left for the formation of 
the antibody–cell binding. Then, the chamber was gently flushed with PBS three times, in 
order to remove the cells not anchored specifically to the antibodies. Eventually, the final 
interference pattern was recorded in PBS. For reference, the same procedure was repeated 
with a device functionalized with non-specific antibodies (IgG goat/anti-mouse). Special 
care had to be taken during the measurements, to avoid any air bubble(s) remaining in 
the sample chamber. On the one hand, these might prevent cell adhesion, while on the 
other, they distort the measuring laser beam, introducing artifacts in the interference 
pattern. 

  

Figure 1. Schematic 3D figure of the device. The side blocks (black) and the glass plates on top and
the bottom (gray) form the sample chamber. Thanks to the leveled end faces and edges of the blocks
and glass plates the sample liquid (light blue) has a flat and vertical surface, which is at the same time
the output optical window. The laser light enters the sample chamber from a single-mode optical
fiber (dark blue). The figure is not to scale.

In order to bind the analyte particles (i.e., cells in this case) onto the surface of the sam-
ple chamber, it was functionalized with specific antibodies [11]. The assembled device was
cleaned by ultrasonic treatment in Isopropanol (IPA), and then dried. The sample chamber
was filled up with AnteoBindTM Biosensor (AnteoTech, Eight Mile Plains, Queensland,
Australia) and incubated for 15 min at room temperature to facilitate antibody binding
to the glass surface as a chelator. After that, the chamber was emptied, and flushed three
times with Phosphate Buffer Saline (PBS). Subsequently, it was filled with the antibody
(TMG6-5, mIgG1) solution and incubated for an hour at room temperature. Devices for
control measurements were prepared in the same way, except for the antibody in the last
step, which was IgG goat anti-mouse. The latter antibody covered the pretreated surface,
but did not specifically bind the U937 cells.

A red laser light beam (RLT650-100MGS laser, Roithner LaserTechnic, Vienna, Austria,
658 nm, 100 mW output beam) was coupled into a single-mode optical fiber (ThorLabs Inc.,
Newton, NJ, USA, SM600, NA = 0.12). The chosen wavelength is one of the most common
ones for cheap lasers, but the same principles used in this paper apply to other wavelengths
in the visible, as well. Label-free biosensing is accomplished by the interference of two
parts of a divergent laser light beam exiting a single-mode optical fiber. The lower part
of this conical Gaussian measuring light beam hits the channel–substrate interface, and
the vast majority of the intensity is reflected from it (for more details, see Supplementary
Information, Figure S1, Equations (S1) and (S2)). The two coherent beams interfere, and the
resulting interference pattern can be seen at the surface of a screen. When biological cells
are attached to the surface, they modify the reflected light, which results in a variation in
the interference pattern relative to the case without cells.

As the first step of the measurements, the measuring channel of the device, func-
tionalized with antibodies specific to the human lymphatic cell line, was filled up with
a liquid suspension of U937 cells, and the output interference pattern was recorded at
regular intervals, to follow the process of sedimentation of the cells. After 15 min, the
output pattern was not changing anymore, indicating that the sedimentation of the cells
on the bottom surface was complete. The following 15 min were left for the formation of
the antibody–cell binding. Then, the chamber was gently flushed with PBS three times, in
order to remove the cells not anchored specifically to the antibodies. Eventually, the final
interference pattern was recorded in PBS. For reference, the same procedure was repeated
with a device functionalized with non-specific antibodies (IgG goat/anti-mouse). Special
care had to be taken during the measurements, to avoid any air bubble(s) remaining in the
sample chamber. On the one hand, these might prevent cell adhesion, while on the other,
they distort the measuring laser beam, introducing artifacts in the interference pattern.

3. Results
3.1. Working Principle

The light coming from the optical fiber is slightly divergent, having a cone shape, and
Gaussian intensity distribution as a function of distance from the axis of the optical fiber
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(Figure 2). The numerical aperture (NA = 0.12) of the single-mode optical fiber determines
the half-angle of that light cone. The exit end of the core of the optical fiber acts as a light
source in this case, and it is centered at the half-diameter of the optical fiber (62.5 µm)
from the surface of the glass plate. There is an area from where the incident light beam is
reflected. Since the angle of the light cone is rather small (less than 5 degrees), obeying the
optical laws, most of the light incident on the surface is reflected from it, and eventually
meets the directly propagating light. Note that that some parts of the secondary reflected
light from the lower surface of the glass substrate might also contribute to the interference
to a lesser extent, but this does not represent a practical limitation of our method, since the
evaluation procedure does not make use of the which-way information of the signal beam
(for more details, see Supporting Information).
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Figure 2. Schematic representation of the working principle: (a) Side view of the light path. The light
red region shows the laser beam originated from the single-mode optical fiber, forming a coaxial light
cone, and most of it (darker red) is reflected from the bottom surface of the sample-holding space
(light blue), i.e., the interface functionalized by the analyte cells (green dots). In the overlapping area
of the two parts, there occurs an interference that can be visualized/recorded by a screen (or a sensor
of an imaging device). In order to make it easier to see the concept, the drawing in the figure is not
to scale (actually the diameter of the optical fiber is 125 µm, while its distance from the end of the
glass is about 4600 µm). (b) A 3D representation of the conical light beam. The color code is the same
as used in (a). The lower part of the direct beam hits the bottom surface of the sample chamber in a
parabolic region (shown in lighter red) and is reflected from it. Eventually, the direct and the reflected
parts of the beam are stopped by the screen, where the interference is detected. The local change
of reflectance in the elliptic region can be monitored as a variation in the interference stripes on the
surface of the screen/detector. (The thin black line in the figure represents the edge of the substrate).
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Due to geometrical reasons, the reflected light travels a longer way to a certain point
on the screen than the directly propagating one, in the same medium. Since in this case, the
light is a (coherent, monochromatic) laser beam, the differences in the optical pathlength
result in an interference pattern (Figure 2). For this particular arrangement, it is a series of
parallel bright stripes separated by dark ones (Figure 2b).

According to the notations of Figure 3, ∆ stands for the optical path difference, up to
the distance 2l, between the reflected light leaving the optical fiber under angle α, and the
one that comes directly in the axis. It can be calculated as:

∆ = 2l
(

1
cosα

− 1
)

(1)
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Figure 3. The optical path difference for a reflected and a direct ray.

In the interference pattern, bright stripes occur when ∆ is the multiple of λ = 673 nm,
the wavelength of the light, and there are dark stripes in between, corresponding to a
∆ of an odd multiple of the half-wavelength. If there is any disturbance in the reflected
beam due to absorption or light scattering by particles on the surface, the interference lines
become changed or distorted. In this way, any object of size comparable to or larger than
the wavelength on the reflecting surface can be detected by observing the variation in the
interference fringes. In our case, these objects are the cells attached to the functionalized
surface of the glass plate.

The distance of the optical fiber should be adjusted carefully, so as to avoid its hitting
the top surface of the sample chamber.

3.2. Evaluation Procedure

At first, the reference experiment was carried out when the inner wall of the device
was coated with non-specific antibodies. Having completed the measuring cycle (i.e., after
final washing with pure PBS buffer), no cells were found to be attached to the surface
of the channel, as checked by a microscope; however, the parallel stripes were recorded
as a reference image when the channel was filled up with the buffer, shown in Figure 4.
During the next experiments, another device functionalized by the specific antibodies was
used with the same procedure. In this case, as a result of the adherence of cells to the
lower surface of the fluidic channel, the interference pattern was found to be distorted
(Figure 4). To quantify the difference, utilizing a MATLAB script (for details see Figure S2
and the script itself in the Supporting Information), we created a one-dimensional array
by column-wise summarizing the values of the image pixels, yielding sinusoidal curves
along the dimension perpendicular to the stripes as “reduced interferograms” (Figure 4,
middle inserts). Subsequently, a Fourier transform was carried out, yielding the intensity
distribution as a function of space frequency (Figure 4, bottom insert). The magnitude
of the effects was then defined by the ratio of the amplitudes of the main peaks of the
Fourier components determined from the interference fringes recorded at the end of the
measuring cycle, and in the reference image. We found this method superior to other
methods attempting to determine visibility.
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Figure 4. Schematic representation of the evaluation procedure. In the figure, “1E4” refers to
104 cells/mL concentration used in the experiment, selected as an example to demonstrate the process
(for details for all of the concentrations see Figure 5, Figure 6 and Figure S2 in the Supporting
Information). Interference pattern of the reference (functionalized surface in pure PBS, without
cells) labeled as “Reference” in the leftmost insert. Interference pattern recorded after the completed
measuring cycle (after the cells bound to the surface and the chamber was flushed 3X with PBS)
is in the rightmost insert. After a simple image processing procedure (see Figure S2, Supporting
Information), represented by the middle panel, Fourier spectra were calculated for quantification of
the effect.

3.3. Calibration of the Device

To determine the cell-concentration dependence of the method, a concentration series
of cell suspension, from 103 to 106 cells/mL, was prepared, and the above procedure was
carried out for each concentration (Figure 5).

Note that the frequency values assigned to the maxima of the main peaks might
occasionally be shifted during the measuring cycle (see Figure S2, Supporting Information),
by effects due to the possibly different meniscus curvatures at the beginning and the end
of the measurement. However, such a virtual change in the magnification of the fringe
pattern does not alter the intensity distribution among the stripes of the main component
and the rest, so it does not influence the weights of the Fourier components, either.

The ratio of the main peak values of the sample and reference spectra, respectively
(Table 1), depicted in a semi-logarithmic plot (Figure 6) shows a linear character in the
examined concentration range, implying a logarithmic relationship between their signal
size and cell concentration, apparently strictly following the Weber–Fechner law [16].
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Table 1. The values plotted in Figure 6. The ratios are presented in four-digit precision showing the
degradation and distortion of the interference pattern as the concentration of cells increases.

Concentration (Cells/mL) Amplitude Ratio (Cells in/Reference)

103 0.9105

3 × 103 0.7479

104 0.5857

3 × 104 0.4570

105 0.3749

3 × 106 0.1172

106 0.0888

Biosensors 2024, 14, x FOR PEER REVIEW 8 of 10 
 

 
Figure 6. Cell-concentration dependence of the size of the effect, and a logarithmic fit to the 7 
measured points (appearing as a straight line in the semi-logarithmic representation). The 
horizontal and vertical error bars represent a pessimistic error estimate based on the accuracy of the 
cell concentrations (for details, see Section 2), and 3 successive measurements per concentration, 
respectively. 

Table 1. The values plotted in Figure 6. The ratios are presented in four-digit precision showing the 
degradation and distortion of the interference pattern as the concentration of cells increases. 

Concentration (Cells/mL) Amplitude Ratio (Cells in/Reference) 
103 0.9105 

3 × 103 0.7479 
104 0.5857 

3 × 104 0.4570 
105 0.3749 

3 × 106 0.1172 
106 0.0888 

4. Discussion 
The detected interference is determined by the reflectivity of the functionalized 

surface that depends on the number of cells attached to the bottom plate, irrespective of 
the sample volume they were sediment from. Hence, by increasing the sample volume, 
when possible, the LOD can be improved, practically at will. Since there is no need for a 
top wall for the measuring chamber, it can be extended upward to hold higher sample 
volumes. For example, the sample volume in our experiments was ca. 100 µL, but it can 
be easily expanded several-fold if there is enough sample available. 

In such cases, however, where a lower sensitivity is sufficient (e.g., only the presence 
or absence of a microorganism is the question), conventionally available, horizontally 
aligned glass capillaries of a rectangular cross-section can also be used as measuring 
chambers (see also Supporting Information, Figure S3). In this case, reflections of the 
divergent beam take place from four adjacent walls, and a more complex, “chessboard-
like” interference pattern is generated on the screen, in case of a clean, reference solution. 
However, having the cells (sediment) cover the bottom wall, the interference pattern is 

Figure 6. Cell-concentration dependence of the size of the effect, and a logarithmic fit to the
7 measured points (appearing as a straight line in the semi-logarithmic representation). The horizontal
and vertical error bars represent a pessimistic error estimate based on the accuracy of the cell concen-
trations (for details, see Section 2), and 3 successive measurements per concentration, respectively.

4. Discussion

The detected interference is determined by the reflectivity of the functionalized surface
that depends on the number of cells attached to the bottom plate, irrespective of the sample
volume they were sediment from. Hence, by increasing the sample volume, when possible,
the LOD can be improved, practically at will. Since there is no need for a top wall for
the measuring chamber, it can be extended upward to hold higher sample volumes. For
example, the sample volume in our experiments was ca. 100 µL, but it can be easily
expanded several-fold if there is enough sample available.

In such cases, however, where a lower sensitivity is sufficient (e.g., only the presence or
absence of a microorganism is the question), conventionally available, horizontally aligned
glass capillaries of a rectangular cross-section can also be used as measuring chambers (see
also Supporting Information, Figure S3). In this case, reflections of the divergent beam take
place from four adjacent walls, and a more complex, “chessboard-like” interference pattern
is generated on the screen, in case of a clean, reference solution. However, having the cells
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(sediment) cover the bottom wall, the interference pattern is reduced to stripes (Figure S4).
In this case, an evaluation software could apply either two 1D or one 2D Fourier transforms,
to quantify the effect.

Since the device is a relatively small, handheld one, no special laboratory equipment
and expertise are needed for performing a test [17,18]. Considering the easy transportability
of the device, the method can be ideally suited for outdoor applications and point-of-care
diagnostics [19,20].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios14090421/s1. Figures S1 and S2: Details of the light path and
the evaluation process; Figures S3 and S4: measurements with alternative cuvette geometries; Figure
S5: Phase contrast image of the cells attached to the interface; Videos S1 and S2: Recordings of the
changes of the interference patterns during sedimentation, at various cell concentrations.
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