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Abstract: Timely ketone detection in patients with type 1 diabetes mellitus (T1DM) is
critical for the effective management of diabetic ketoacidosis (DKA). This systematic review
evaluates the current literature on breath-based analysis for ketone detection in T1DM,
highlighting nanotechnology as a potential for a non-invasive alternative to blood-based
ketone measurements. A comprehensive search across 5 databases identified 11 studies
meeting inclusion criteria, showcasing various breath analysis techniques, such as semicon-
ducting gas sensors, colorimetry, and nanoparticle-based chemo-resistive sensors. These
studies report high sensitivity and correlation between breath acetone (BrAce) levels and
blood ketones, with some demonstrating accuracies up to 94.7% and correlations reaching
R? values as high as 0.98. However, significant heterogeneity in methodologies and cut-off
values limits device comparability and precludes meta-analysis. Despite these challenges,
the findings indicate that BrAce monitoring could offer significant clinical benefits by
enabling the earlier detection of ketone buildup, reducing DKA-related hospitalisations
and healthcare costs. Standardising BrAce measurement techniques and sensitivity thresh-
olds is essential to broaden clinical adoption. This review underscores the promise of
nanotechnology-based breath analysis as a transformative tool for DKA management, with
potential utility across varied ketotic conditions.
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1. Introduction

Diabetes is a significant public health challenge, affecting approximately 1 in 20 Aus-
tralians and ranking as the seventh leading cause of mortality in the country in 2020 [1,2]. In-
adequately managed diabetes presents severe risks, both acute and long-term, contributing
to a spectrum of microvascular and macrovascular complications [3]. These complications
impose a substantial financial burden on the Australian healthcare system, with associated
costs estimated at $3 billion in 2019 [4]. Addressing the clinical and economic impact of
diabetes necessitates innovative approaches to diagnosis and management, highlighting
the importance of advancing technologies for early detection and effective monitoring.

For individuals with T1DM, insufficient levels of insulin hinder the utilisation of
glucose for energy, causing the body to break down fat as an alternative energy source [5].
Reduced glucose availability, either from fasting, a ketogenic diet, insulin deficiency, or
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insulin resistance, prompts the body to produce increased amounts of acetyl CoA from fatty
acids [5,6]. This process results in elevated concentrations of ketone bodies in both blood
and breath. Diabetic ketoacidosis (DKA) occurs when ketone bodies accumulate rapidly
due to impaired insulin action and reduced glucose utilisation [5,6]. This condition often
necessitates acute care, leading to emergency department (ED) and intensive care unit (ICU)
admissions, and is associated with substantial morbidity, potential mortality, and significant
costs to the healthcare system. Addressing these clinical challenges underscores the need for
efficient and accessible diagnostic tools for the early detection and management of DKA [2].
According to data from the International Diabetes Federation, in 2013, over 79,000 children
were diagnosed with type 1 diabetes (T1D), with a staggering 80% presenting with DKA at
the time of diagnosis [7]. Moreover, studies highlight that social determinants of health are
strong predictors of DKA recurrence [8].

Breath analysis has emerged as a non-invasive alternative for managing diabetes
mellitus and DKA, focusing on detecting volatile organic compounds (VOCs), particularly
acetone, as biomarkers [9-11]. Acetone concentration in exhaled breath shows promise as
a novel biomarker for non-invasive diabetes diagnostics and monitoring, particularly for
type I diabetes [12,13]. The elimination of free acetone from the lungs follows the principles
of diffusion, with acetone levels in exhaled air being approximately 1/330 of the acetone
concentration in plasma [14]. In healthy individuals, breath acetone (BrAce) levels typically
range from approximately 0.3 to 1.0 parts per million (ppm) [10,11]. In contrast, individuals
with TIDM may exhibit higher BrAce levels, especially when ketosis is present, typically
>1.7 ppm [15]. The specific levels can vary depending on factors such as the individual’s
metabolic state, dietary habits, and overall health [14,15].

Early studies focused on gas chromatography—mass spectrometry (GC-MS) for acetone
detection. GC-MS offers high accuracy and specificity but is limited by its cost, time
consumption, and lack of portability, restricting its clinical utility [10,11]. Advances in
sensing technologies, including nanotechnology-based devices, now enable faster, cost-
effective, and portable breath analysis solutions, addressing the limitations of earlier
methods [11,16-18]. In the context of diabetes management, sensors operate through
mechanisms such as chemo-resistive [10,11], colorimetric [19,20], and optical detection [21].
Among them, highly sensitive chemo-resistive-based sensors, such as SnO,, MoO3, WO3,
and NiO, have attracted significant attention as they exhibit the capability to detect a wide
range of gases with remarkable sensitivity [9-11,22,23]. The fundamental working principle
of metal oxide semiconductor-based gas sensors, whether p-type or n-type, revolves around
surface interactions with the target analyte [10,11]. Initially, surface oxygen species create a
uniform electron depletion layer, resulting in high resistance. However, exposure to gases
containing target analytes triggers surface reactions that neutralise these oxygen species,
thereby lowering the resistance, facilitating detection [10,11].

Recent developments in nanotechnology have led to the creation of highly sensitive
and selective sensors for breath acetone detection. Jiang et al. [24] developed a highly
sensitive mixed potential-type acetone sensor for breath analysis, targeting diabetic ketosis
diagnostics. The sensor uses a GdyZr,Oy7 solid electrolyte combined with a CoSb;Og sens-
ing electrode, fabricated through a sol-gel method. This novel configuration achieves an
ultralow detection limit of 10 ppb and provides linear detection across a wide concentration
range of 10 ppb to 100 ppm, with excellent selectivity, repeatability, and stability, even under
varying humidity levels. The sensor’s performance was validated using breath samples
from healthy individuals and diabetic patients, demonstrating a strong correlation between
sensor response and acetone concentration measured by gas chromatography-mass spec-
trometry. Additionally, the sensor showed high accuracy in distinguishing diabetic ketosis
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patients, making it a promising tool for non-invasive diabetes management and blood
ketone monitoring.

Li et al. [25] developed a wearable, wireless facemask platform for real-time acetone
detection in breath, aimed at monitoring lipid metabolism non-invasively. The facemask
integrates a Ti3C,Tx MXene-based sensor functionalized with in situ-grown TiO, nanoparti-
cles and short peptides, enhancing sensitivity, selectivity, and response calibration through
light irradiation. The platform incorporates a textile filter with Pt nanoparticles for breath
interference filtration, achieving an acetone detection limit of 0.31 ppm. On-body tests
validated the sensor’s ability to monitor dynamic changes in breath acetone during ex-
ercise and dietary interventions, demonstrating its potential for personalised healthcare
in lipid metabolic management. This innovative system represents a promising step to-
ward integrating MXene-based sensors into daily-used textiles for real-time, non-invasive
health monitoring.

In another approach [26], a flexible pre-concentrator device was developed for acetone
detection in human breath, using modified metal-organic framework (MOF) materials [23]
embedded in a wearable face mask. By coating MIL-101 (Cr) nanoparticles with poly-
dimethylsiloxane (PDMS) through physical vapour deposition, an enhanced hydrophobic-
ity and gas adsorption capacity was achieved, enabling efficient acetone pre-concentration
under high-humidity conditions [26]. The device demonstrated a detection range from
100 ppb to 2500 ppb, with a 76.3-fold signal enhancement compared to commercial materi-
als. Integrated with a mass spectrometer, this system achieved linear and sensitive acetone
quantification, showcasing potential for non-invasive health monitoring applications in
flexible electronic systems. While current nanostructured gas sensors generally operate at
sub-ppm detection limits [10,11,17,18], they fall short of the ppb-level sensitivity required
for effective healthcare applications. However, recent developments in sensors incorpo-
rating noble or minor metal modifications offer a promising pathway toward practical,
user-friendly diagnostic devices that could be integrated into patient homes, clinics, and
hospitals. These advancements underscore the potential of nanotechnology in developing
non-invasive, efficient, and accessible diagnostic tools for the early detection and manage-
ment of diabetes and its complications, like diabetic ketosis. By enhancing the sensitivity,
selectivity, and portability of breath analysis devices, nanotechnology-based sensors rep-
resent a promising frontier in diabetes care. Breath analysis has the potential to facilitate
timely interventions and improved patient outcomes, making breath the best future option
for non-invasive monitoring in diabetes.

2. Methods
2.1. Protocol

This systematic review was conducted according to the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) framework and Cochrane Handbook
guidelines [27]. The protocol for the study was registered with the PROSPERO International
Register of Systematic Reviews (Registration ID: CRD42023410996).

2.2. Search Strategy

A comprehensive search was conducted across 5 databases—Medline, SCOPUS, Em-
base, Cochrane, and PubMed—to evaluate the efficacy and utility of nanotechnology-based
breath analysis devices in the TIDM population. Additional references were examined to
ensure the inclusion of all relevant evidence. The search strategy utilised medical subject
headings (MeSHs) such as “diabetic ketoacidosis” and incorporated Boolean operators to re-
fine and merge search terms (details in Appendix A). A systematic approach was employed,
framing the research question using the PICO framework: the population comprised TIDM
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patients, both with and without DKA; the intervention focused on BrAce measurement; the
comparators included blood capillary ketone testing, or TKB; and the outcomes assessed
the accuracy of BrAce measurements, their correlation with blood ketone levels, and their
predictive value in the onset and resolution of DKA. This structured methodology ensured
a rigorous and targeted review of the existing literature.

A diverse range of keyword combinations was utilised across the 5 databases to
maximise the retrieval of relevant studies. This flexible approach, rather than relying on a
standardised keyword set, was designed to capture a broad spectrum of articles, ensuring
comprehensive coverage of both nanotechnology-based breath analysis techniques and
other breath analysis technologies. Such a strategy aligns with the review’s objective of
critically comparing the applications of nanotechnology in ketone detection to existing
breath analysis methods, thereby providing a holistic perspective on the field.

2.3. Study Selection and Eligibility Criteria

The inclusion criteria encompassed studies published within the past 10 years, in
English, that measured BrAce, and focused specifically on the TIDM population. TKB
measured in blood samples served as the gold standard for comparison across all included
studies. Exclusion criteria eliminated studies conducted on animal models, those not
published in English, studies that did not include breath samples from T1DM patients,
and those focusing solely on T2DM populations. This screening process initially identified
291 articles, encompassing cohort, cross-sectional, and prospective study designs. After
removing 86 duplicates, 205 unique studies remained for further analysis.

2.4. Quality Assurance

Two researchers, K.M. and ]J.N., independently conducted database searches using
predefined criteria and agreed-upon search terms. The Rayyan platform was employed
to efficiently identify and remove duplicate records. The consolidated search results were
subsequently reviewed and assessed by K.M., ].N., and V.P. This evaluation included a
rigorous appraisal of research quality, informed by prior reviews, the researchers’ col-
lective expertise, and the National Heart, Lung, and Blood Institute (NHLBI) Quality
Assessment Tool. Any discrepancies were resolved through group discussions with the
research supervisor, V.P. The screening process involved a sequential review of titles and
abstracts followed by full-text evaluation, with exclusion decisions supported by clearly
documented justifications.

2.5. Data Extraction

The primary reviewer, K.M., independently conducted data extraction using a cus-
tomised Excel tabulation form based on the Cochrane Consumers and Communication
Review Group’s data extraction template. This systematic approach enabled the detailed
documentation of key study characteristics, including objectives, methods, participant
demographics, technology used, study optimisation processes, primary and secondary
outcomes, study design, limitations, BrAce detectability limits, and comparators. The
second reviewer, ].N., and the supervisor, V.P,, subsequently cross-referenced and validated
the extracted data to ensure accuracy and consistency.
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2.6. Risk of Bias Tools

The risk of bias and quality assessment was conducted by the primary reviewer
using an Excel spreadsheet and the National Heart, Lung, and Blood Institute (NHLBI)
Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies as seen in
Appendix C. This tool facilitated the evaluation of internal validity and potential bias in the
selected studies by examining critical aspects such as study design, confounding variables,
and outcome measurement methods, ensuring the inclusion of high-quality evidence in the
final review. The tool comprised 14 questions, each rated as “yes”, “no”, or “not applicable
(N/A)”, to assess internal validity. Studies were categorised as poor (<5/14), fair (>6/14),
or good (>10/14) based on their scores. While no studies were excluded solely based on
quality, these ratings were taken into account during data analysis and the interpretation of
findings. The included studies demonstrated a range of quality from poor to good, with an
overall low risk of bias for cohort and cross-sectional studies, as detailed in Appendix B.

The risk of bias assessment allowed us to incorporate study quality into data interpre-
tation. While two studies were rated as “poor”, their findings were contextualised within
the broader framework of higher-quality evidence to maintain balanced conclusions. The
majority of studies (four rated as “good” and five as “fair”) demonstrated a low to moderate
risk of bias, supporting the reliability of our overall conclusions. Collectively, the evidence
suggests that nanotechnology-based breath analysis holds significant clinical potential for
ketone detection in TIDM. However, it also highlights the need for more rigorous research
in this emerging field. The observed variability in study quality necessitates caution when
interpreting results, particularly from studies with “poor” quality ratings. This variability
informed our decision to forego a meta-analysis and instead adopt a qualitative synthesis
approach. The risk of bias assessment underscores the urgent need for high-quality, large-
scale studies to solidify the evidence base for breath analysis as a non-invasive tool for
monitoring DKA.

2.7. Synthesis of Results

The study selection process is detailed and visually represented through a PRISMA
2020 flowchart (Figure 1), illustrating each step in the screening and inclusion of articles.
Beginning with the identification of numerous studies, the application of defined inclusion
and exclusion criteria refined the selection to focus on studies relevant to the research
objectives. The primary outcome of interest was the accuracy of assessing the risk of DKA
development in patients with T1IDM based on BrAce levels and their correlation with
TKB or beta-hydroxybutyrate (BHB) levels. Across the included studies, linear regression
analyses consistently demonstrated a positive correlation between BrAce and blood ketone
levels. However, some heterogeneity was observed, likely stemming from variations in the
devices used, sample sizes, and study populations. These factors highlight the potential
influence of methodological differences on the strength of the observed correlations and
underscore the need for standardised approaches in future research.
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Identification of new studies via databases and registers

Identification

Records identified from:
Databases (n = 5)
Registers (n = 0)

Records removed before screening:
Duplicate records (n = 0)

Records marked as ineligible by automation

tools (n = 0)

Records removed for other reasons (n = 0)

Records screened
(n = 205)

Records excluded
(n=129)

l

Reports sought for retrieval
(n=76)

Reports not retrieved
(n=1)

Screening

Reports assessed for eligibility
(n=75)

Reports excluded:

Case reports/Reviews (n = 12)
Wrong study design (n = 10)
Wrong outcome (n = 27)
Wrong publication (n = 15)

Included

New studies included in review
(n=11)

Reports of new included studies
(n=0)

Figure 1. PRISMA flow chart showing final results.
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3. Results
3.1. Search Yield

A total of 291 studies were identified through the primary database search, with
no additional studies found via snowballing or reference list reviews. After removing
duplicates, 205 unique articles remained, of which 129 were excluded following title and
abstract screening. One article was deemed irretrievable. The remaining 75 articles un-
derwent full-text screening, resulting in 11 studies being included in the final analysis.
Exclusions were based on publication type, such as reviews and case reports (12); inap-
propriate study design (10); irrelevant outcomes measured (27); and wrong population
(15). The final 11 studies underwent critical appraisal and comprised three cohort studies,
three cross-sectional studies, one exploratory study, one prototype development study, one
proof-of-concept study, one methodological study, and one comparative study.

3.2. Demographic and Clinical Characteristics of Included Studies (Table 1)

The included studies can be broadly categorised into three groups: newly developed
nanosensing technologies, evaluations of existing technology accuracy, and comparisons
between laboratory-based and portable devices. The review found that most studies
measuring BrAce in individuals with T1IDM were conducted on relatively small cohorts,
with the exception of two larger studies (Hancock 2020 and Blaikie 2014) [28,29]. Across all
studies, a total of 374 participants were included, with reported BrAce levels ranging from
0.02 to 474 ppm. The review incorporated studies employing various techniques, with a
subset utilising nanotechnology-based methods such as nanoparticle-based chemo-resistive
sensors and semiconducting gas sensors, which exploit nanoscale materials for superior gas
sensing performance. Other methods, including ringdown spectroscopy, colorimetry, and
gas chromatography, were also included due to their reported sensitivity and applicability
in detecting BrAce in T1IDM patients, though they were not classified as nanotechnology
based. The studies were conducted across diverse geographic locations, including Malaysia,
the USA, Japan, the UK, the Netherlands, Switzerland, and Taiwan.

3.3. Correlation Between TKB and BrAce

In the largest study, which included 113 participants, breath acetone (BrAce) demon-
strated a stronger correlation with TKB than with blood glucose levels (R? = 0.29 versus R?
= 0.039, respectively) in detecting DKA [29]. Across all included studies, a robust associ-
ation was observed between BrAce concentrations and blood ketone levels, particularly
B-hydroxybutyrate (BHB). For example, Akturk (2021) reported statistically significant
results with a p-value of 0.0066, and Tsunemi (2022) documented a strong correlation with
an R-value of 0.828 [30,31]. This consistent correlation among individuals with TIDM high-
lights the diagnostic potential of BrAce measurements. Furthermore, all breath analysis
devices evaluated demonstrated the ability to distinguish between healthy individuals
and those with TIDM. However, Giintner (2022) noted that their sensors underpredicted
acetone levels at high BrAce concentrations due to the non-linear diffusion of the analyte
within sensor films and its adsorption on nanoparticle surfaces [32]. This underlines the
importance of enhancing the accuracy of breath analysis systems through improved sensor
calibration algorithms. These findings emphasise that refining the technology is essential
to realise its full clinical applicability [29].
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Table 1. Characteristics of included studies and finding.

Study Population Exposure Outcomes
Mean Age S ntate Sensitivit
Sample & Technology/ Comparative Breath of Detection y BrAce and .
Ref.  Country A or Range T1DM : 5 and 2 Conclusions
Size (n) (Years) Device Measure Ketosis and Range Specificit TKB (R?)
Non-Ketosis State P y
) Semiconductor Blood There is a good correlation between
[33]  Malaysia 3 FIGARO Ketone levels Y 3-7 PPM 0.92 BrAce and TKB in blood.
TGS 822
The device can distinguish between the
breath of diabetic and healthy patients.
) Based on the background subtraction
[14] USA 32 Rlngdown " Blocl)d . Y 0.13-3.97 PPM method, acetone is the only signiﬁcant
spectroscopy etone levels gas measurable at 266 wavelengths.
Alcohol consumption may generate a
false positive signal for BrAce.
The highly selective and sensitive
colorimetric sensor has a
Blood ketone smartphone-assisted unit to analyse the
] ) levels and breath of human subjects, and can
[13]  Malaysia 35 10-80 Colorimetry portable Y 0.02-50 PPM 0.98 predict the concentration of acetone.
ketos.can The proposed device showed more
device accuracy compared to the commercial
Ketoscan device.
BrAce strongly correlates with TKB
(correlation was stronger in patients
) Blood ketone whose serum C-peptide was not low).
Semiconductor levels and Sens = 73.3% BrAce is good for detecting DKA but
[31] Japan 35 40-57 gas another s'emi— Y 538-15000 PPB Spec=1 0'0%’ 0.69 not good for detecting severe DKA or
sensor-FM-001 conducting for those that drink alcohol.
&as sensor When BrAce > 3400 ppb, there is a high
risk of proceeding to DKA.
BrAce falls more gradually than TKB
during the resolution of ketosis.
Patients were divided into three risk
Blood ketpne categories (normal, elevated and high)
Ion Molecule levels using of developing DKA based on
[28] UK 81 Reaction Mass Abbott Y 0.25-474 PPM Sens = 91% 0.85 their BrAce.
Spectrometry F.reestyle The elimination of acetone in breath is
Optium Meter the slowest (rate-determining) step,

involving the kinetics of formation and
loss of acetone.
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Table 1. Cont.

—Sudy, DR By s
Mean Age g Can Differentiate g Sensitivity
Ref. Count Sample  Ran TIDM Technology/ Comparative Breath of Detection nd BrAce and Conclusion
et ountty - Gize (n) or Range Device Measure Ketosis and Range ane. TKB (R?) onclusions
(Years) " & Specificity
Non-Ketosis State
The relatively high daily variability of
ketone levels indicate that single blood
or BrAce measurements are often not
sufficient to assess daily ketone
exposure for most users.
metal oxide Mass . Single coincident blood and BrAce
[34  USA 21 43 semiconductor ~ SPECtTOSCOPY Y 0-45 PPM Sens = 83% 097 measurements show only a moderate
sensors PBAM and blood Spec = 80% correlation, possibly due to the
ketone levels temporal lag between BrAce and
blood BHB.
Vigorous or prolonged exercise can
cause an increase in ketone levels in the
hours following exercise.
Blood ketone The concentration of acetone in breath
[35]  Taiwan 12 Transform-GC- 4 s and Y 0.1-100 PPM from a healthy subject is extremely low
MS urine compared to a diabetic patient.
The acetone concentration of minors
with T1D is lower than those measured
Quantum Blood ketone ‘1;\} }?dlﬂ;‘i Ketone level low. th
ing- i ere the ketone levels remain low, the
[71  Netherlands 4 laser(-:lizcsae(jlespec- tgsetrllrgg Pﬁiil Y 0.05-3 PPM acetone levels in breath do not change
troscopic system sion Xceed considerably; this is due to the lag in
acetone diffusion from plasma to
the lungs.
The sensor tends to underpredict BrAce,
but only at high normalised BrAce.
o Blood ketone The sensor can track BrAce dynamics
chemo resistive testing and during fasting, exercising, and OGTT.
[32]  Switzerland 19 20-36 sensor a.nd mass Y 271-3364 PPB 0.9 Large inter-subject variation has been
nanoparticles spectrometer observed, which reflects differences in
(PTR-TOF-M)

the activation of fatty acid oxidation or
cardiorespiratory fitness.
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Study Outcomes
Mean Age Can Differentiate Sensitivit

Sample & Technology/ Comparative Breath of Detection y BrAce and .
Ref.  Country 2 or Range T1DM : 5 and 2 Conclusions

Size (n) (Years) Device Measure Ketosis and Range Specificit TKB (R?)

Non-Ketosis State P y
- The BrAce measurements were
) Blood ketone Sens = 94.7% significantly associated with elevated
[30] USA 19 2414122 Y colorimetry testing Y 1-60 PPM Spec=>5 4.20/:: TKB in adults, but not in fasting adults
or in children.

- BrAce levels were found to increase
with TKB levels, and a significant
relationship was found between

feionizati the two.
soft-ionization - Single BrAce measurements do not
[29] UK 113 7-18 Y mass Abbott ketone Y 0-3 PPM 0.29 5

provide a good measure of BGLs.

- BrAce concentrations show wide
variations amongst healthy individuals
and depend subtly upon diet and time
of day.

spectrometer blood testing
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4. Discussion

In investigating the accuracy and utility of nanotechnology-based breath analysis for
ketone detection in TIDM, several key findings have emerged, highlighting the complexities
involved in interpreting BrAce levels.

4.1. The Time Lag Effect Between TKB and BrAce

A shared finding across studies by Hancock (2020), Giintner (2022) and Suntrup (2020)
is that acetone elimination from breath is a slow process, often resulting in detectable
acetone levels even after ketosis has resolved [28,32,34]. This emphasises the importance
of understanding the kinetics of acetone elimination for the accurate interpretation of
BrAce measurements. Furthermore, Hancock (2020) observed that changes in BrAce levels
become significant only at relatively high blood ketone concentrations. This aligns with
the understanding that the diffusion of acetone from plasma to the lungs is strongly
influenced by the concentration of acetone in the blood [14,28]. These insights highlight the
nuanced relationship between BrAce levels and blood ketones, emphasising the need for
careful consideration in clinical applications. This highlights the critical need for improved
calibration methods or algorithms to address the time lag between blood ketone levels and
BrAce measurements. Moreover, several studies reported a lack of data on higher blood
ketone concentrations, particularly in individuals with DKA. An exception is Hancock
(2020), which included subjects with BHB levels ranging from 0.1 to 7.6 mmol/L and
BrAce levels from 0.3 to 474 ppm [28]. This limitation may hinder the comprehensive
understanding of acetone measurements in critical medical scenarios involving elevated
TKB levels, underscoring the importance of further research in this area. In practical terms,
BrAce nanotechnology proves highly effective for detecting the onset of DKA, offering
an early warning system for healthcare providers and patients [7,28,34]. However, for
monitoring the recovery and resolution of DKA, blood ketone measurements remain the
more accurate and responsive method [15]. While BrAce technology provides valuable
insights, it is best utilised in combination with other monitoring methods to ensure a
comprehensive assessment of DKA progression and the effectiveness of treatment.

4.2. Addressing Factors That Affect BrAce

Many of the studies shared common limitations, including potential false positive
signals in breath analysis resulting from alcohol consumption, fasting, exercise, time of
sample collection, and tooth brushing [14,29-32,34]. Furthermore, the findings highlight
the need to move beyond simply measuring acetone concentration. To develop a com-
prehensive, adaptable, and personalised point-of-care breath analysis system, researchers
must account for intrasubject variance factors such as diet, alcohol intake, insulin usage,
glycogen reserves, and overall fitness when designing the system’s algorithm. The limited
sample sizes of previous studies have posed challenges in establishing and validating a
breath analysis framework that accommodates the numerous variables influencing exhaled
acetone levels. For instance, a study by Giintner (2022) identified significant inter-subject
variation in BrAce levels, potentially driven by differences in glycogen stores, cardiorespira-
tory fitness, and metabolic fuel preferences [32]. These findings underscore the importance
of incorporating a multifactorial approach in future system designs. All studies collectively
underscore the critical need for further research and validation to fully establish the clinical
utility and real-world applicability of BrAce measurements. This includes studies with
larger sample sizes, extensive longitudinal investigations at higher ketone ranges, and
personalised research focusing on paediatric populations, who are at the highest risk for
developing DKA [36]. Developing a breath analysis system with high selectivity necessi-
tates a sensor matrix that is highly specific to acetone while repelling other VOCs and gases.
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Such a system must accurately measure BrAce concentrations under varying conditions of
humidity, pressure, temperature, and the presence of interfering analytes [37].

In the study by Tsunemi et al. (2022) [31], participants were instructed to gargle prior
to measurement to mitigate interference from isoprene, a naturally occurring compound in
the oral cavity. Similarly, another study advised participants to avoid tooth brushing for at
least two hours and alcohol consumption for 24 h before testing to minimise exogenous
influences [32]. These precautions highlight the inherent challenges of measuring breath
acetone solely from exhaled air due to contaminants and gases in the ambient environ-
ment [37]. Achieving accurate detection amidst these interferences requires advanced
sensor selectivity and sensitivity, making the task inherently complex. A promising solu-
tion could involve integrating artificial intelligence to personalise the correlation between
sensor responses and a patient’s unique metabolic or disease state. This approach has
the potential to enable the development of a highly accurate, personalised point-of-care
BrAce system.

4.3. Single Standalone Measurements of BrAce Are Not Sufficient to Assess Ketone Levels

The current literature highlights the dynamic and variable nature of BrAce levels in
daily life [29,34]. Blaikie et al. [29] reported significant fluctuations in BrAce concentra-
tions among healthy individuals, attributing this variability to factors such as diet and
time of day. Similarly, Suntrup et al. [34] emphasised the considerable daily variability in
ketone levels, noting that isolated measurements of blood or BrAce often fail to effectively
capture an individual’s overall daily ketone exposure. These variations underscore the
limitations of single measurements, which may not reliably reflect an individual’s ketone
profile. Suntrup et al. further suggested that, for most users, single-point measurements
of blood or BrAce are insufficient to provide a comprehensive assessment of daily ketone
exposure, calling for more integrated or frequent monitoring approaches [34]. Dietary
choices, insulin regimens, and individual responses to lifestyle factors introduce significant
complexities, underscoring the need for a more tailored and individualised approach to
BrAce measurement [29,33,34]. The limitations of single measurements extend beyond
technical constraints, reflecting the intricate interplay of physiological and environmen-
tal factors that influence BrAce dynamics [38]. Collectively, these studies highlight the
inadequacy of standalone measurements in capturing the nuanced and dynamic nature
of a patient’s ketone levels, advocating for a more holistic and personalised approach to
BrAce assessment.

4.4. Euglycemic DKA Risk from SGLT-2 Inhibitor Use

The widespread adoption of SGLT2 inhibitors has revolutionised diabetes manage-
ment, providing significant benefits in blood sugar control and reducing cardiovascular
risks. However, this class of medication is associated with a two-fold increased risk of eug-
lycemic DKA, a condition where ketosis occurs despite normal blood sugar levels [39,40].
This presents a diagnostic challenge, as conventional blood and urine tests often fail to
detect early signs of ketosis, increasing the risk of patients unknowingly progressing toward
DKA. Breath acetone analysis offers a promising solution by providing immediate insights
into the metabolic state of diabetic patients, including those on SGLT2 inhibitors, enabling
earlier detection and intervention [13]. Several studies have explored the potential of BrAce
measurements as a non-invasive tool for detecting DKA in patients with type 1 and type
2 diabetes, particularly those using SGLT2 inhibitors. Sha et al. (2022) [13] demonstrated
that their breath analysis device effectively tracked ketone body production in individuals
undergoing fasting, managing diabetes, or receiving SGLT2 inhibitor therapy. Similarly,
Edelman et al. (2019) [41] found a significant correlation between BrAce levels and blood
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ketone concentrations in type 2 diabetes patients treated with SGLT2 inhibitors, underscor-
ing its potential for ketosis monitoring. Further supporting this, Saasa et al. (2019) [42]
reported an association between BrAce levels and ketosis, highlighting the clinical value
of BrAce as a biomarker for assessing DKA risk, particularly in diabetic patients using
SGLT2 inhibitors. The availability of non-invasive, real-time, and portable BrAce devices
also empowers patients to actively manage their health, fostering greater engagement,
compliance, and improved health outcomes [37,38]. Although further comprehensive
clinical studies are required to fully validate the utility of breath acetone measurement in
individuals using SGLT2 inhibitors, early evidence indicates its potential as a valuable tool
for the early detection of ketosis in this population [38].

5. Conclusions

This systematic review highlights the potential of nanotechnology-based breath anal-
ysis as a viable, non-invasive method for ketone monitoring in patients with TIDM. The
strong correlation observed between BrAce levels and blood ketone levels supports BrAce
as an accurate proxy for blood-based assessments, presenting a promising alternative to
the invasive capillary tests currently used for detecting and managing DKA. Advances in
sensor technology have significantly enhanced sensitivity, with studies reporting detec-
tion rates as high as 94.7%. This capability not only facilitates early intervention but also
reduces the risk of severe DKA episodes and associated hospitalizations, delivering both
clinical and economic benefits. Despite these promising findings, certain limitations must
be addressed to unlock the full potential of BrAce technology in clinical practice. Variability
in methodologies, definitions, and BrAce cut-off values across studies poses challenges
for device comparability, underscoring the need for standardisation in future research.
Establishing uniform measurement protocols, sensitivity thresholds, and cut-off values will
improve device reliability, streamline regulatory approval processes, and facilitate broader
clinical adoption.

Current devices also face performance challenges under extreme conditions, such
as severe DKA, where high acetone levels or other interfering compounds may impact
sensor accuracy. Large-scale studies are necessary to refine sensor algorithms and enhance
selectivity for acetone amidst other VOCs. Personalising devices by accounting for indi-
vidual variability and environmental factors could further improve their precision. As
nanotechnology-based breath analysis advances, its applications should extend beyond
T1DM to address other ketotic states, including those triggered by ketogenic diets, fasting,
and medications like SGLT2 inhibitors. Exploring these broader applications could enhance
its utility and reinforce its role in diverse clinical and metabolic scenarios.

In conclusion, nanotechnology-based BrAce measurement represents a promising
advancement in non-invasive ketone monitoring, with the potential to revolutionise DKA
management. Addressing current limitations and achieving standardisation in methodolo-
gies, sensitivity thresholds, and device calibration will be essential for the development of
reliable, user-friendly tools. Such advancements could empower individuals with TIDM to
monitor ketone levels more effectively, enabling timely intervention and reducing the risk
of severe DKA episodes. The progression toward rapid, real-time breath analysis offers
significant promise for enhancing clinical outcomes and improving the quality of care for
those at risk of DKA.
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Abbreviations

TIDM  Type I diabetes mellitus

T2DM  Type 2 diabetes mellitus

DKA Diabetic ketoacidosis

SGLT2i Sodium glucose transport protein 2 inhibitors

ED Emergency department

ICU Intensive care unit

TKB Total ketone body in blood

PPM Parts per million

BrAce Breath acetone

PICO Population, Intervention, Comparative Interventions, and Outcomes

Appendix A

Table Al. Search terms for Medline OVID and Embase.

Search Numbers

Terms

Diabetes Mellitus, Type 1.mp. [mp = title, book title, abstract, original title, name of substance word, subject
heading word, floating sub-heading word, keyword heading word, organism supplementary concept word,

1 protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms,
population supplementary concept word, anatomy supplementary concept word]

2 ketosis/or diabetic ketoacidosis/or diabetes mellitus/or hyperglycaemia/

3 Breath Tests/

4 ketones/or acetone/or ketone bodies/or 3-hydroxybutyric acid/or
acetoacetates/

5 diagnosis/or emergency treatment/or glycaemic control/or hospitalisation

6 1and 2 and 4

7 2and 3 and 4

8 land 2 and 3

9 2and 4 and 5

10 6and 7

11 3and 4

Table A2. Search terms for Cochrane.

Search Numbers

Terms

1 (juvenile diabetes):ti,ab,kw OR (Diabetes Mellitus type 1) ti,ab,kw OR (DMT1):ti,ab, kw

5 (ketones) ti,ab,kw OR (acetone) ti,ab,kw OR (ketone bodies) ti,ab,kw OR (3-hydroxybutyric acid) ti,ab,kw OR
(acetoacetates) ti,ab,kw

3 (1 and 2)
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Table A2. Cont.

Search Numbers

Terms

4 MeSH descriptor: [Breath Tests] explode all trees
5 (breath):ti,ab,kw OR (exhaled):ti,ab,kw OR (exhalation):ti,ab,kw OR (expired gas):ti,ab,kw OR (expired
air):ti,ab,kw OR (nanotechnology) ti,ab,kw
6 40R5
(diagnosis) ti,ab,kw
7 OR (emergency treatment) ti,ab,kw
OR (glycaemic control) ti,ab,kw
OR (hospitalisation) ti,ab,kw
8 20R7
9 3and 6 and 8

Table A3. PICO tool.

PICO Tool

Search Terms

Patient population:
Diabetes mellitus type 1

Juvenile diabetes, IDDM1,DMT], type 1 diabetes mellitus

AND

Intervention/Exposure:
BrAce nanosensors

Breath nanosensors, breath analysis, breath biomarkers, VOC, breathalyser, Non-invasive
ketone measurement, Ketone detection, nanosensor technology, exhaled air,

exhalation, expired gas, expired air

AND

Comparison:

Blood/plasma ketone levels

3HB, 3-hydroxybutyric, acetoacetates, ketones, ketone bodies

AND

Outcome measure:
Ketosis/DKA

Ketosis, diabetic ketoacidosis, hyperglycaemia, DKA, ketones, ketone bodies, acetone, breath

acetone, BrAce, Breath

Appendix B

Table A4. Risk of Bias Assessment.

Cohort studies—NHLBI risk of bias tool

Author (year)
Hancock 2020 [28]
Suntrup 2020 [34]
Blaikie 2014 [29]

Cross-Sectional studies—NHLBI risk of bias too

Author (year)
Sha 2022 [13]
Tsunemi 2022 [31]
Gunter 2022 [32]

All other types—NHLBI risk of bias tool

Author (year)
Ruhani 2017 [33]
Wang 2008 [14]

Fan 2014 [35]
Reyes-Reyes 2014 [7]
Akturk 2021 [30]

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12
v v v v X v v v v v v v
v v v X v % v X v v x x
v v v v v x x x v x v x
1
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12
v % v v v X v X v v v x
v v v v v X% v X v v v x
v v v v v X v v v v v x
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12
v x NA x x x v v X v x x
v v vy X x v v v v v v NA
x x x x x x v v v x v x
v v v v X v X X v v v x
v v % v v % v X x v x x

Q13
NA
NA
NA

Q13
NA

NA
NA

Q13
NA
NA
NA
NA

Q
=
'S

L ENENENEN el ENENE el ENENEN

~

~

Total/14

12

8

8
Total/14

9

10

11
Total/14

Opverall study quality

Good

Fair

Fair

Overall study quality

Fair

Good

Good

Opverall study quality

Good

Fair
Fair
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Appendix C

National Heart, Lung,
and Blood Institute

Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies

Other
Criteria Yes No (CD, NR, NA)*
1. Was the research question or objective in this paper clearly stated?

2. Was the study population clearly specified and defined?
3. Was the participation rate of eligible persons at least 50%?

4. Were all the subjects selected or recruited from the same or similar populations (including the same time period)?
Were inclusion and exclusion criteria for being in the study prespecified and applied uniformly to all participants?
5. Was a sample size justification, power description, or variance and effect estimates provided?

6. For the analyses in this paper, were the exposure(s) of interest measured prior to the outcome(s) being measured?

7. Was the timeframe sufficient so that one could reasonably expect to see an association between exposure and
outcome if it existed?

8. For exposures that can vary in amount or level, did the study examine different levels of the exposure as related to
the outcome (e.g., categories of exposure, or exposure measured as continuous variable)?

9. Were the exposure measures (independent variables) clearly defined, valid, reliable, and implemented consistently
across all study participants?

10. Was the exposure(s) assessed more than once over time?

11. Were the outcome measures (dependent variables) clearly defined, valid, reliable, and implemented consistently
across all study participants?

12. Were the outcome assessors blinded to the exposure status of participants?
13. Was loss to follow-up after baseline 20% or less?

14. Were key potential confounding variables measured and adjusted statistically for their impact on the relationship
between exposure(s) and outcome(s)?

Figure Al. National Heart, Lung, and Blood Institute (NHLBI) Quality Assessment Tool for Ob-
servational Cohort and Cross-Sectional Studies. * CD, cannot determine; NA, not applicable; NR,
not reported.
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