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Abstract: Developing affordable, rapid, and accurate biosensors is essential for SARS-CoV-2 sur-
veillance and early detection. We created a bio-inspired peptide, using the SAGAPEP AI platform, 
for COVID-19 salivary diagnostics via a portable electrochemical device coupled to Machine Learn-
ing algorithms. SAGAPEP enabled molecular docking simulations against the SARS-CoV-2 Spike 
protein’s RBD, leading to the synthesis of Bio-Inspired Artificial Intelligence Peptide 1 (BIAI1). Mo-
lecular docking was used to confirm interactions between BIAI1 and SARS-CoV-2, and BIAI1 was 
functionalized on rhodamine-modified electrodes. Cyclic voltammetry (CV) using a [Fe(CN)6]3−/4 

solution detected virus levels in saliva samples with and without SARS-CoV-2. Support vector ma-
chine (SVM)-based machine learning analyzed electrochemical data, enhancing sensitivity and 
specificity. Molecular docking revealed stable hydrogen bonds and electrostatic interactions with 
RBD, showing an average affinity of –250 kcal/mol. Our biosensor achieved 100% sensitivity, 80% 
specificity, and 90% accuracy for 1.8 × 10⁴ focus-forming units in infected saliva. Validation with 
COVID-19-positive and -negative samples using a neural network showed 90% sensitivity, speci-
ficity, and accuracy. This BIAI1-based electrochemical biosensor, integrated with machine learning, 
demonstrates a promising non-invasive, portable solution for COVID-19 screening and detection in 
saliva. 
  

Received: 19 November 2024 

Revised: 10 January 2025 

Accepted: 23 January 2025 

Published: 28 January 2025 

Citation: Garcia-Junior, M.A.; 

Andrade, B.S.; Lima, A.P.; Soares, 

I.P.; Notário, A.F.O.; Bernardino, 

S.S.; Guevara-Vega, M.F.;  

Honório-Silva, G.; Munoz, R.A.A.; 

Jardim, A.C.G.; et al.  

Artificial-Intelligence Bio-Inspired 

Peptide for Salivary Detection of 

SARS-CoV-2 in Electrochemical  

Biosensor Integrated with Machine 

Learning Algorithms.  

Biosensors 2025, 15, 75. 

https://doi.org/10.3390/bios15020075 

Copyright: © 2025 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Biosensors 2025, 15, 75 2 of 19 
 

Keywords: biosensors; COVID-19; bio-inspired peptides; artificial intelligence; salivary diagnostics; 
electrochemical detection 
 

1. Introduction 
SARS-CoV-2 is the virus that causes COVID-19, a disease that has resulted in over 

775 million cases worldwide and about 7 million deaths [1]. The disease conditions range 
from asymptomatic to severe respiratory symptoms [2]. Aside from COVID-19 symptoms, 
it is possible to identify the long-term repercussions of SARS-CoV-2 virus infection in 
multiple organ systems, such as shortness of breath, cough, chest and joint pains, palpita-
tions, myalgia, smell and taste dysfunctions, headache, cognitive and mental impair-
ments, and gastrointestinal and cardiac issues [3]. Testing on nasopharyngeal swabs or 
saliva is commonly used for COVID-19 detection, with saliva representing a non-invasive 
alternative [4]. Although qRT-PCR offers adequate sensitivity and specificity, it has lim-
ited bedside application and is time-consuming [4,5]. Furthermore, the early detection of 
COVID-19 is critical for reducing its spread and mortality rates [6]. To address these is-
sues, point-of-care devices have been developed for rapid diagnosis [5]. However, re-
source shortages and the need for specific, sensitive, affordable, and non-invasive portable 
testing methods persist [7]. 

In this context, electrochemical biosensors provide various advantages for salivary 
diagnostics, including shorter reaction times, simplicity of use, enhanced affinity, and in-
creased sensitivity [8]. These biosensors have successfully detected low levels of salivary 
biomarkers, providing a simple and rapid diagnostic procedure [9]. Regarding the 
COVID-19 pandemic, electrochemical biosensors have shown promise to detect the dis-
ease in saliva [10]. Some electrochemical biosensors have been created for the sensitive 
detection of SARS-CoV-2 at multiple stages of infection [11,12]. This detection is generally 
performed by detection based on antibody functionalization in electrochemical electrodes 
to detect viral proteins in saliva [10–13]. However, chemically synthesized short peptides 
offer competitive cost advantages and are easier to produce using recombinant bacteria 
compared to antibodies, which can improve the democratization of salivary diagnostics 
in low-income and middle-income countries with more non-invasive options in the 
benchmark diagnostic availability. 

Considering that viral transmission can occur through saliva and SARS-CoV-2 is 
composed of three structural proteins—Spike (S), matrix (M), and envelope (E) [14]—the 
detection of these proteins in non-processed saliva may represent an even faster diagnos-
tic tool. From this perspective, the receptor binding domain (RBD) in the S protein inter-
acts with the host cellular receptor to permit viral entrance [15]. Thus, detecting the S-RBD 
motif represents a target on which an especially tailored modified electrochemical sensor 
can distinguish the virus in saliva and allow COVID-19 detection. Herein, selecting pep-
tides that bind to S-RBD presents a promising field in developing accurate detection tools 
for SARS-CoV-2 [16]. It also poses a significant challenge considering the rise of new var-
iants—Omicron, for instance, presents several structural alterations, 15 of which are fo-
cused on the RBD [17]. From this point of view, artificial-intelligence-based tools and ap-
plications have also been proposed to improve accuracy [18]. 

Evaluating the molecular docking of several peptides with a specific target is time-
consuming and costly, so performing numerical simulations for the optimal solution is 
unaffordable. Therefore, the supervised machine learning (ML) algorithm based on the 
Surrogate-assisted optimization model is an attractive tool for these problems [19]. Super-
vised ML is an effective tool for peptide discovery and design, providing faster and more 
efficient predictions of therapeutic peptide value [20]. Supervised ML has been used in 
antimicrobial peptides to quickly screen sequence space and direct tests to promising can-
didates with high putative activity [21]. Moreover, peptides have been designed to bind 
to SARS-CoV-2 viral proteins by mimicking human angiotensin-converting enzyme 2 



Biosensors 2025, 15, 75 3 of 19 
 

(hACE2) receptors using new computational methods [22]. Supervised ML has also been 
employed to anticipate de novo sequences for viral infectivity improvement, resulting in 
the identification of short functional self-assembling peptides [23]. Computational tech-
niques have been created for identifying and optimizing possible peptide hits from viral 
envelope proteins, with a particular emphasis on preventing the fusion process, as well 
[24] as demonstrating the potential of machine learning in peptide creation for antiviral 
medicine. 

Considering that the early detection of SARS-CoV-2 is imperative for controlling the 
spread of COVID-19 and traditional diagnostic methods, while effective, are often costly 
and time-consuming, there is a pressing need for portable, non-invasive, low-cost, and 
rapid diagnostic tools that can be deployed widely worldwide. Our study aimed to de-
velop an electrochemical biosensor that utilized bio-inspired peptides selected and rede-
signed using AI coupled to machine learning algorithms to detect SARS-CoV-2 in saliva. 

2. Materials and Methods 
2.1. Peptide Development 

The Surrogate-Assisted Genetic Algorithm for Peptide Evaluation and Prediction 
(SAGAPEP) framework [25] was used in a systematic, multi-stage approach to evaluate 
and find peptides with high binding potential. The approach began with collecting a da-
taset including 296 peptides; each represented as a linear sequence of amino acids and 
their relative interaction energies with the SARS-CoV-2 Spike protein [26]. 

2.2. Molecular Docking 
Docking calculations were performed by HPEPDOCK 2.0 [27] using the SARS-CoV-

2 Spike and the proposed peptide, restricted to the receptor binding domain region (RBD). 
The affinity energies were identified according to the peptide positioning inside the ex-
pected binding site, with the more negative values being the best ones. Then, a 3D inter-
action map was generated by the Protein–Ligand Interaction Profiler server (PLIP) [28], 
for checking what bond types were being formed between these molecules. In addition, 
we generated complex and 3D map figures using Pymol 3.1 [29]. 

2.3. Experimental Procedures 
Cyclic voltammograms were recorded using KCl (Sigma-Aldrich, Saint Louis, USA) 

solution (0.5 mol L–1) as supporting electrolyte and 5.0 mmol L–1 [Fe(CN)6]3−/4− (Sigma-Al-
drich, Saint Louis, MO, USA) redox probe as an analysis solution [30]. In the described 
cyclic voltammetry (CV) experiment, the equilibration time (t equilibration) was set to 2 s 
to stabilize the system before measurements began. The initial potential (E_begin) was set 
at –0.3 V, and the scan was initiated from this potential. The voltage was then cycled to 
the first vertex potential (E_vertex1) of –0.3 V, up to the second vertex potential (E_vertex2) 
of 0.3 V, creating a triangular wave. The step potential (E_step) was 0.002 V, allowing for 
satisfactory resolution of the potential changes. The scan rate was 0.075 V/s, determining 
the speed at which the potential was swept from the initial to the vertex and back, ensur-
ing detailed capture of the electrochemical behavior of the system [31]. The analyses were 
performed on a portable potentiostat, Palmsens3 (Palmsens, Houten, The Netherlands). 

2.4. Screen-Printed Electrode Modification 
Screen-printed carbon electrodes—SPEs (DropSens DRP-110, Metrohm, Herisau, 

Switzerland)—were modified in two steps to improve detection capabilities. Rhodamine 
6G (R6G) (Sigma-Aldrich, Saint Louis, USA) [32] was initially administered to the elec-
trodes by adding 5 µL of a 0.5 mg/mL solution to the working electrode. It was followed 
by five CV measurements with a 5:5 mmol L–1 [Fe(CN)6]3−/4− in 0.5 mol L–1 KCl solution and 
one more CV reading under the same circumstances. The electrodes were then modified 
by adding 5 µL of Bio-Inspired Artificial Intelligence Peptide 1 (BIAI1) at 1 mg/mL. Five 
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CV measurements were performed identically to assess the electrochemical behavior after 
modification, followed by one additional CV reading using the Fe(CN)6]3−/4− solution. This 
step-by-step modification was intended to analyze and compare the electrochemical reac-
tions produced by each modification agent [33]. 

2.5. Sample Preparation 
In the first round of assays, a pseudotyped vesicular stomatitis virus (VSV) with the 

glycoprotein gene (G) substituted with the Spike protein of SARS-CoV-2 (VSV-eGFP-
SARS-CoV-2-S) was used. This virus was serially diluted (1:2) in Dulbecco’s modified Ea-
gle’s medium (DMEM; Sigma-Aldrich, Saint Louis, USA), resulting in a range of dilutions 
from 1.44 × 105 ffu to 2.25 × 103 ffu [34]. 

Later, saliva samples from healthy, asymptomatic patients were obtained and centri-
fuged at 3000 rpm for 15 min at 4 °C, with the supernatant collected and pooled. VSV-
eGFP-SARS-CoV-2-S was combined with pooled saliva to produce ten infected samples 
with 1.8 × 104 ffu each and ten control samples free of the virus [35]. 

Finally, saliva was taken from 20 patients with flu-like symptoms, either COVID-19-
positive (ten samples) or -negative (ten samples). A quantity of 5 µL of each sample was 
used for the assays for all phases. 

2.6. Data Analysis 
Repeatability and reproducibility were calculated by measuring the electrochemical 

signals of the biosensor under identical conditions (repeatability) and under varying con-
ditions such as with different operators and days (reproducibility). The coefficients of var-
iation were determined from the mean and standard deviation of the measurements. The 
limit of detection (LOD) and limit of quantification (LOQ) were estimated using the stand-
ard deviation of the blank signal and the slope of the calibration curve (SSS) based on the 
equations 𝐿𝐿𝐿𝐿𝐿𝐿 = 3.3 × 𝜎𝜎/𝑆𝑆 and 𝐿𝐿𝐿𝐿𝐿𝐿 = 10 × 𝜎𝜎/𝑆𝑆. 

The classification was tested with state-of-the-art machine learning algorithms, in-
cluding Support Vector Machine (SVM), AdaBoost, Random Forest, Neural Network, 
Gradient Boosting, and Naive Bayes [35]. These algorithms were selected based on their 
performance during model training. To analyze the predictive performance of these algo-
rithms, ten-times-stratified cross-validation was used. The samples were divided into ten 
subsets; in each iteration, nine subsets were used to train the algorithm while one subset 
was exclusively used to test it [35]. This process ensured that each subset was part of the 
test set once. Additionally, the procedure was repeated three times with different sample 
configurations to achieve a closer estimate of the actual performance of the models, result-
ing in a total of thirty executions. 

Three performance metrics consolidated in the literature were used to measure the 
results obtained: sensitivity, specificity, and accuracy. Sensitivity, or the valid positive 
rate, was the proportion of positive cases (e.g., COVID-19 positive) correctly classified. 
Specificity, or the valid negative rate, was the proportion of negative cases (e.g., COVID-
19 negative) correctly classified. Accuracy was defined as the total number of samples 
correctly classified, considering both true positives and true negatives [36]. 

3. Results 
3.1. Molecular Docking Interactions 

The peptide formed different hydrogen bonds with the RBD amino acids ASP405, 
GLN409, LYS417, ILE418, GLU484, PHE486, GLN493, and GLY504, which suggests the 
good stability of this complex with an average affinity energy of –250 Kcal/Mol. In addi-
tion, electrostatic interactions were identified with the residues ASP403, LYS417, ILE418, 
PHE486, and TYR489 (Figure 1). 
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Figure 1. (A) Three-dimensional docking representations for BIAI1 interacting with SARS-CoV-2 
Spike-RBD. The Spike protein is represented in grey, BIAI1 in green, and RBD in pink. (B) Three-
dimensional interaction map for BIAI with SARS-CoV-2 Spike-RBD. Hydrogen bonds are presented 
as dotted lines between the peptides and the Spike-RBD complex. 

3.2. Modification of Screen-Printed Electrodes 
Screen-printed carbon electrodes were successfully modified in two steps to improve 

detection capabilities as this may have increased the electrode area [37]. R6G was initially 
used by adding 5 µL of a 0.5 mg/mL solution to the working electrode. This was followed 
by the modification by adding 5 µL of Bio-Inspired Artificial Intelligence Peptide 1 (BIAI1) 
at 1 mg/mL (Figure 2). 
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Figure 2. Cyclic voltammograms of a bare screen-printed electrode (black line), electrode modified 
with R6G at 0.5mg/mL (red line), and electrode modified with BIAI1 (blue line), using 5.0 mmol L–1 
[Fe(CN)6]3−/4− in KCl 0.5 mol L–1. Scans: –0.3 to 0.7 V, E step: 0.002V, and scan rate: 0.075 V/s. 

Figure 2 shows the scan for the [Fe(CN)6]3−/4− solution at a SPE any surface modifica-
tion (blank). The modification with R6G was essential for the construction of the biosen-
sor, acting as an intermediary in the fixation of the peptides. After the application of R6G 
on the SPE surface, five voltammetric scans in the presence of [Fe(CN)6]3−/4− solution were 
performed. The fifth cyclic voltammogram showed a current increase (red line in Figure 
2) in comparison with the blank experiment (absence of R6G). The same process was car-
ried out in the subsequent step for peptide fixation. After peptide incorporation on the 
SPE surface, a slight current increase was modified, which confirmed the electrode mod-
ification. The data for SPE modification can be found in Table 1. 

Table 1. Mean, standard deviation, repeatability, and reproducibility values of the electrochemical 
procedures for SPE modifications. 

 Mean Standard Deviation Repeatability * Reproducibility * 
Blank Reading 46.98979 3.224133 6.861348 4.385376 

R6G Modification 46.71211 4.19041 8.970715 4.979766 
BIAI1 Modification 52.85969 3.613036 6.835144 4.866002 

* Repeatability and reproducibility are represented as their coefficients of variation in percentage. 

3.3. Biosensor Performance 
In the first phase of the experiment, successive dilutions of VSV-eGFP-SARS-CoV-2 

were generated in a 1:2 ratio, beginning with an initial concentration of 1.44 × 105 focus-
forming units down to 1.125 × 103. Each dilution was examined using a biosensor modified 
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with the R6G and BIAI1 peptides to detect differences in electrochemical signals. The volt-
ammograms illustrate the electrochemical responses for different concentrations of the 
virus. Each color-coded curve highlights the distinct peak currents corresponding to the 
respective viral concentrations, demonstrating the sensitivity of the biosensor to varying 
levels of VSV-eGFP-SARS-CoV-2. The CV measurements revealed separate peaks for each 
concentration level, with the highest signal occurring at the initial concentration and a 
progressive drop in peak current with consecutive dilutions (Figure 3). LOD and LOQ 
values were calculated and can be found in Table 2. 

 
Figure 3. (A) Voltammograms of serial dilutions stratified by viral load. Concentration of 1.44x105 
focus-forming units down to 1.125 × 103. Analysis was performed using 5.0 mmol L–1 [Fe(CN)6]3−/4− 
in 0.5 mol L–1 KCl. Scans: –0.3 to 0.7 V, E step: 0.002V, and scan rate: 0.075 V/s. (B) Peak current 
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values: viral load. Scan rate: 50 mV s⁻¹. Analysis was performed using 5.0 mmol L–1 [Fe(CN)6]3−/4− in 
0.5 mol L–1 KCl. Scans: –0.3 to 0.7 V, E step: 0.002 V, and scan rate: 0.075 V/s. 

Table 2. Limit of Detection (LOD) and Limit of Quantification (LOQ) from the de serial dilutions 
performed on the first phase of the experiment. 

LOD 1.61 × 104 ffu 
LOQ 4.89 × 104 ffu 

In the second phase, saliva samples from healthy individuals were collected, pooled, 
and spiked with the VSV-eGFP-SARS-CoV-2-S virus. Comparison between the voltam-
mograms from the saliva pool, both with and without the virus, demonstrated a clear 
distinction in peak currents, indicating successful virus detection in saliva (Figure 4). For 
these samples, the biosensor exhibited a sensitivity of 100% and a specificity of 80%, re-
sulting in an accuracy of 90%. The ROC curve analysis for this phase provided an area 
under the curve (AUC) of 0.9532, with a standard error of 0.01785 and a p-value of < 0.0001. 
These assays demonstrated an attractive efficiency in detecting real positives while mini-
mizing false positives at higher thresholds (Figure 5). The data for the repeatability and 
reproducibility of the detection of VSV-eGFP-SARS-CoV-2-S can be found in Table 3. 

 
Figure 4. Voltammograms of pooled saliva samples of healthy asymptomatic individuals. The volt-
ammograms illustrate the electrochemical responses for two groups: non-infected saliva, without 
VSV-eGFP-SARS-CoV-2, in black; infected saliva, with 1.8 × 104 of the virus, in red. Analysis was 
performed using 5.0 mmol L–1 [Fe(CN)6]3−/4− in 0.5 mol L–1 KCl. Scans: –0.3 to 0.7 V, E step: 0.002 V, 
and scan rate: 0.075 V/s. 
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Figure 5. Graph representing the electrochemical sensor diagnostic test effectiveness using ROC 
curve analysis, producing an AUC of 0.9532 (95% CI: 0.9182 to 0.9882) and a p-value < 0.0001. 

Table 3. Mean, standard deviation, repeatability, and reproducibility values of the electrochemical 
procedures for viral detection in spiked saliva. 

 Mean Standard Deviation Repeatability * Reproducibility * 
Controls 97.10048056 8.140980015 8.384077987 2.209871449 

Infected saliva 119.443717 8.893037898 7.445379397 2.201690182 
* Repeatability and reproducibility are represented as their coefficients of variation in percentage. 

In the third phase, saliva from patients with flu-like symptoms and negative RT-PCR 
tests were analyzed to detect COVID-19 and COVID-19 patients. Voltammograms from 
the negative and positive patients showed a distinction for peak current and potential 
values between the two groups, suggesting that the virus was successfully detected in the 
saliva of patients (Figure 6). The ROC curve analysis for oxidation yielded an AUC of 0.79 
with a standard error of 0.1213, sensitivity and specificity of 70%, and a p-value of 0.1509, 
indicating moderate discriminatory power that was not statistically significant (Figure 7). 
The data for the repeatability and reproducibility of the detection of SARS-CoV-2 in com-
parison with other symptomatic patients can be found in Table 4. 
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Figure 6. Voltammograms of saliva samples from patients with flu-like symptoms and negative RT-
PCR test to detect SARS-CoV-2 (black) and COVID-19 positive patients (red). Analysis was per-
formed using 5.0 mmol L–1 [Fe(CN)6]3−/4− in KCl 0.5 mol L–1 . Scans: –0.3 to 0.7 V, E step: 0.002 V, and 
scan rate: 0.075 V/s. 

 
Figure 7. Graph representing the electrochemical sensor diagnostic test effectiveness using ROC 
curve analysis, producing an AUC of 0.79 with sensitivity and specificity of 70%, a standard error 
of 0.1213, and a p-value of 0.1509. 
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Table 4. Mean, standard deviation, repeatability, and reproducibility values of the electrochemical 
procedures for viral detection in saliva comparing positive and negative patients. 

 Mean Standard Deviation Repeatability * Reproducibility * 
Negative Patientes 160.5768 9.907850286 6.170162991 12.08960789 
Positive Patients 150.31038 12.05649675 8.021067309 15.10250925 

* Repeatability and reproducibility are represented as their coefficients of variation in percentage. 

3.4. Discrimination Analysis 
Artificial intelligence tools were applied to classify and discriminate salivary voltam-

mogram samples from positive COVID-19-symptomatic patients and negative COVID-
19-symptomatic patients more quickly and with better reliability, most notably machine 
learning algorithms. The classification of salivary voltammogram data was tested using 
the SVM, AdaBoost, Random Forest, Neural Network, Gradient Boosting, and Naive 
Bayes algorithms. The results obtained in these analyses indicate that the best discrimina-
tion was achieved using a Neural Network (Table 5). 

The classification of salivary voltammogram data by the Neural Network algorithm 
showed a sensitivity of 90%, specificity of 90%, and accuracy of 90% when comparing 
positive COVID-19-symptomatic patients and negative COVID-19-symptomatic patients. 
This high level of accuracy demonstrated the potential of using electrochemical biosensors 
combined with advanced machine learning techniques for the non-invasive diagnosis of 
COVID-19. 

Table 5. Machine learning algorithms applied in salivary voltammograms to discriminate positive 
COVID-19-symptomatic patients from negative COVID-19-symptomatic patients. 

Data Used Algorithm Accuracy Sensitivity Specificity 

Raw Data 
(Oxidation and Reduction 

Curves) 

SVM 0.75 0.6 0.9 
Random Forest 0.75 0.7 0.8 

AdaBoost 0.7 0.6 0.8 
Neural Network 0.75 0.8 0.7 

Gradient Boosting 0.7 0.7 0.7 
Naive Bayes 0.75 0.8 0.7 

Raw Data 
(Oxidation Curve) 

SVM 0.5 0.5 0.5 
AdaBoost 0.65 0.7 0.6 

Random Forest 0.5 0.5 0.5 
Neural Network 0.5 0.6 0.4 

Gradient Boosting 0.55 0.6 0.5 
Naive Bayes 0.35 0.4 0.3 

Raw Data 
(Reduction Curve) 

SVM 0.6 0.2 1.0 
AdaBoost 0.7 0.7 0.7 

Random Forest 0.75 0.7 0.8 
Neural Network 0.9 * 0.9 * 0.9 * 

Gradient Boosting 0.7 0.7 0.7 
Naive Bayes 0.75 0.8 0.7 

* Highest values for accuracy, sensitivity and specificity. 

The Shapley Additive Explanations (SHAP) method was applied to the main points 
of the voltammogram that contributed significantly to the discrimination of the samples, 
distinguishing them as positive or negative for COVID-19 (Figure 8). In general, the main 
points of discrimination in the results were present in the peak region of the reduction 
curve. 
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Figure 8. SHAP demonstration used by the Neural Network computational model with the raw 
data of the reduction curve. The potentials of –0.06857 V, –0.14044 V, 0.594251 V, and –0.1065 V were 
the main attributes used in the applications of the algorithm. The regions of 0.400595 V, 0.328723 V, 
0.167011 V, –0.29217 V, 0.288794 V, and –0.02265 V were also used for this differentiation. 

4. Discussion 
We presented one bio-inspired peptide selected and redesigned using AI, explicitly 

designed to strongly interact with the S-RBD motif of SARS-CoV-2, to be used in an elec-
trochemical biosensor to detect COVID-19 when coupled with machine learning algo-
rithms. Due to their excellent specificity and sensitivity, peptides are increasingly being 
employed in electrochemical devices to detect viruses. For example, electrochemical-pep-
tide-based sensors for the HIV and West Nile Virus can detect an array of clinically rele-
vant viral concentrations [38,39]. Peptides have also been used for specific viral antigens 
such as the influenza virus antigen and avian influenza virus [40,41]. Even more complex 
approaches have been tested, utilizing antibody-coated peptide nanotubes for herpes sim-
plex virus type 2 [42]. These findings show that peptides can improve the effectiveness of 
electrochemical sensors to detect viruses. Still, our study reported the first recorded ap-
plication of an electrochemical biosensor technology based on screen-printed carbon elec-
trodes functionalized with an AI-generated synthetic peptide to detect the SARS-CoV-2 
Spike protein, presenting a viable approach to quick and inexpensive, point-of-care diag-
nostics. 

The biosensor displayed good sensitivity by detecting different concentrations of 
VSV-eGFP-SARS-CoV-2 in affinity assays. Serial dilutions were made in a 1:2 ratio, start-
ing from an initial concentration of 1.44 × 10⁵ ffu and decreasing to 2.23 × 10³. The CV 
measurements indicated separate peaks for each concentration level, with the highest sig-
nal detected at the starting concentration. The peak currents were reduced with each con-
secutive dilution, demonstrating the capability of this biosensor to differentiate between 
different viral loads. Several electrochemical technologies have been developed to detect 
viral concentrations, with benefits including label-free detection, quick on-site analysis, 
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and high sensitivity [43,44]. An electrochemical sensor based on gold nanoparticles was 
created to detect HIV-1 virus-like particles label-free, with a detection range of 600 fg/mL 
to 375 pg/mL, allowing direct electron flow between the virus and the electrode surface 
[43]. 

Similarly, a sponge-based electrochemical sensor that can detect the H1N1 virus with 
a limit of detection of 0.4 TCID50/mL and a practical concentration range of 1–106 
TCID50/mL had been presented before [44]. Regarding SARS-CoV-2 detection, a previous 
study used a simple electrochemical biosensor device coupled with screen-printed gold 
electrodes functionalized with a particular synthetic peptide to detect the interaction be-
tween the peptide and the SARS-CoV-2 Spike protein using electrochemical impedance 
spectroscopy [45]. This last biosensor was tested using commercial Spike protein solutions 
and lysed SARS-CoV-2 particles, in opposition to our study, where we used entire viral 
particles. In this context, our study represented an advancement in the detection of the 
virus, considering that interaction with other viral proteins might affect the virus’s bind-
ing ability to the sensor [46]. 

Pooled saliva samples from healthy individuals injected with VSV-eGFP-SARS-CoV-
2-S produced unique voltammogram peaks, suggesting successful viral identification in 
the saliva matrix. The biosensor achieved 100% sensitivity and 80% specificity, yielding 
90% accuracy. ROC curve research revealed an AUC of 0.9532, demonstrating the sensor’s 
excellent efficacy in detecting real positives while limiting false positives, making it a de-
pendable instrument for viral detection in saliva samples. Several investigations have 
shown that either pooled or artificial saliva may be used as a matrix to identify SARS-
CoV-2. This has been investigated using immunochromatographic and automated molec-
ular tests, which have yielded encouraging findings but not offered comprehensive sen-
sitivity, specificity, or accuracy values [47,48]. Studies have also looked at the stability of 
SARS-CoV-2 RNA in saliva and used an artificially intelligent nanopore for fast testing 
[49,50]. Overall, our biosensor performance with pooled saliva spiked with VSV-eGFP-
SARS-CoV-2-S provided clear and quantifiable results, demonstrating high sensitivity 
and specificity compared to the literature. 

Saliva samples from symptomatic individuals were tested using our AI-generated 
peptide-based electrochemical sensor. The ROC curve analysis produced an AUC of 0.69, 
showing moderate discriminating power; however, the p-value of 0.1509 that indicates 
this discrimination was not statistically significant. Sensitivity and specificity were 70%, 
emphasizing the potential of saliva analysis for COVID-19 identification and the need for 
additional diagnostic refinement and validation. In this context, the composition of saliva 
in infected individuals has a considerable influence on the outcomes of salivary diagnostic 
techniques. Saliva includes a variety of biomolecules, such as DNA, RNA, proteins, and 
metabolites, which can change in the presence of illness [51]. However, this changed com-
position of saliva in infected individuals might impair the accuracy of salivary diagnostic 
techniques, potentially resulting in false-positive or false-negative findings [51]. 

When compared to traditional antibody-based electrochemical sensors for detecting 
SARS-CoV-2 infections, our bio-inspired peptide platform can represent a significant ad-
vancement in the analysis of clinical samples. Antibody-based systems frequently detect 
host immune responses rather than the virus itself, which delays diagnosis, cannot con-
firm active infections, and fails to provide quantitative information on viral load or con-
tagiousness, limiting these systems’ effectiveness for early and precise detection [52]. Fur-
thermore, modifying electrodes with antibodies is generally more expensive than using 
peptides, primarily due to the greater complexity and cost associated with synthesizing 
larger biomolecules. Antibody production typically relies on advanced cell culture sys-
tems and rigorous purification protocols whereas peptides often can be synthesized more 
efficiently and cost-effectively through established chemical methods [53]. Additionally, 
while antibody-based sensors have been well established in the literature, their sensitivity 
and reproducibility can be particularly challenging when detecting active viral infections 
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owing to inherent trade-offs between the binding efficiency of capture agents and the ac-
curacy of the electrochemical measurement [54]. Moreover, the peptide-based design im-
proves the electrochemical stability of the biosensor, addressing the degradation and foul-
ing issues frequently encountered with antibody-functionalized electrodes. This advance-
ment ensures more reliable electrochemical responses under varied conditions and high-
lights the potential of peptide-based platforms for scalable and high-performance diag-
nostic applications [55]. In this context, our biosensor based on bio-inspired peptides, 
while demonstrating comparable sensitivity and specificity to existing systems, intro-
duces a novel and cost-effective approach to biosensor development. 

Electrochemical sensors have attractive diagnostic applications but are limited by 
electrode fouling, a low signal-to-noise ratio, and chemical interference [56]. These chal-
lenges may be addressed using ML, which improves sensitivity, repeatability, and accu-
racy in data analysis. ML simultaneously measures several toxicants [57] and enhances 
cancer biomarker identification [58]. The detection of ischemic heart disease was demon-
strated over ten years ago, which attained performance levels equivalent to doctors while 
significantly boosting sensitivity and specificity [59,60]. Deep learning and machine learn-
ing algorithms have also been used for illness prediction and medical diagnostics [61,62]. 
However, ML applications need big datasets and meticulous picture capture [63]. In our 
study, we used artificial intelligence algorithms to analyze the spectra of the positive and 
negative samples, increasing sensitivity, specificity, and accuracy to 90%. Previous re-
search had highlighted the potential of these algorithms in analyzing multi-component 
and Raman spectra [64,65]. 

The ability of electrochemical biosensors to detect various viral diseases has im-
proved due to recent developments in functional nanomaterials [66]. In this context, the 
limit of detection and selectivity for harmful microorganisms and nucleic acids have been 
enhanced by signal amplification techniques [67]. With their benefits in speed, sensitivity, 
and affordability, electrochemical biosensors have demonstrated promise for point-of-
care testing [68,69]. For future pandemic preparedness, emerging-technologies-based bi-
osensors present interesting options [70]. 

Further emphasis has been placed on using algorithms in analyzing electromagnetic 
emission spectrum data [71]. Nevertheless, the application of machine learning is still em-
bryonic, and our approach represents a novel mechanism for analyzing the spectra gen-
erated by CV. Algorithms have demonstrated tremendous promise in assessing electrode 
reaction processes and interpreting data from polarography, linear scanning voltamme-
try, and electrochemical impedance spectroscopy [72,73]. Machine learning has also been 
used to model smartphone-based electrochemiluminescence sensor data and pinpoint ac-
curate signs of localized corrosion [74,75]. Despite advances, the commercialization of 
point-of-care devices remains challenging due to the requirement for expensive reagents, 
equipment, and skilled staff [69]. Although further studies with a higher number of sam-
ples in multicentric cohorts are pivotal for additional validation, this present study em-
phasized the importance of AI in improving electrochemical analysis, and our research 
contributes to further its application to a different branch of analytic electrochemistry for 
salivary diagnostics. 

In summary, our study highlighted several advantages of AI-generated peptides 
over traditional antibody-based sensors, including reduced production costs, enhanced 
stability, and adaptability to emerging targets, as previously reported in the literature 
[76,77]. While antibody-based sensors often require complex and expensive production 
pipelines, our peptide-based system leverages computational design for rapid develop-
ment [78]. Additionally, the integration of machine learning algorithms that we used en-
ables precise signal interpretation, further distinguishing our platform, as has been previ-
ously reported [79,80]. 
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5. Conclusions 
The functionalization of the electrode with BIAI1, a bio-inspired peptide selected and 

redesigned using AI, to create an electrochemical biosensor supported by the Neural Net-
work machine learning algorithm offers a groundbreaking tool for salivary diagnostics in 
a post-pandemic environment. This portable, non-invasive, and scalable technology not 
only facilitates COVID-19 detection but also underscores the growing importance of saliva 
as a diagnostic medium for the rapid screening and early detection of SARS-CoV-2 and 
other infectious diseases, contributing to improved public health surveillance and prepar-
edness. 
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